
IOP PUBLISHING JOURNAL OF MICROMECHANICS AND MICROENGINEERING

J. Micromech. Microeng. 18 (2008) 075030 (6pp) doi:10.1088/0960-1317/18/7/075030

A theoretical analysis of the resolution
due to diffusion and size dispersion of
particles in deterministic lateral
displacement devices
Martin Heller and Henrik Bruus

Department of Micro- and Nanotechnology, Technical University of Denmark,
DTU Nanotech, Building 345 East, DK-2800 Kongens Lyngby, Denmark

E-mail: Martin.Heller@nanotech.dtu.dk and Henrik.Bruus@nanotech.dtu.dk

Received 28 January 2008, in final form 22 May 2008
Published 13 June 2008
Online at stacks.iop.org/JMM/18/075030

Abstract
We present a model including diffusion and particle-size dispersion for the separation of
particles in deterministic lateral displacement devices also known as bumper arrays. We
determine the upper critical diameter for diffusion-dominated motion and the lower critical
diameter for pure convection-induced displacement. Application of our model to data suggests
that the systematic deviation, observed for small particles in several experiments, from the
critical diameter for separation given by simple laminar flow considerations may be explained
by diffusion and size dispersion.

1. Introduction

In 2004, Huang et al [1] developed the elegant method of
particle separation by deterministic lateral displacement in so-
called microfluidic bumper arrays. The method, which relies
on the laminar flow properties characteristic of microfluidcs,
shows a great potential for fast and accurate separation of
particles on the micrometer scale [1–4]. Among the key
assets of the deterministic lateral displacement separation
principle are that clogging can be avoided because particles
much smaller than the feature size of the devices can be
separated, that the devices are passive, i.e. the particles bump
into solid obstacles or bumpers, and that the separation process
is continuous.

More precisely, particle transport in microfluidic bumper
arrays is primarily governed by convection due to the fluid
flow and by displacement due to interaction with the bumpers
in the array [1]. These processes are deterministic and the
critical diameter for separation of relatively large particles in
these devices is well understood in terms of the width of flow
lanes bifurcating around the bumpers in the periodic arrays
[3]. However, if bumper arrays and particles are scaled down,
diffusion will influence the separation process and affect the
critical particle size significantly. Previously reported data

on separation of particles in bumper arrays all show a bias
toward larger critical particle size than that given by the width
of the flow lanes nearest to the bumpers of the array [1–3]. In
this work we extend existing models by adding diffusion and
taking particle-diameter dispersion into account, and thereby
explain the observed discrepancy.

In bumper arrays particles are convected by the fluid flow
through an array of bumpers placed in columns separated by
the distance λ in the flow direction, see figure 1(a). For a given
integer N, the array is made N-periodic in the flow direction
by displacing the bumpers in a given column a distance λ/N

perpendicular to the flow direction with respect to the bumper
positions in the previous column. Due to this periodicity of the
array and the laminarity of the flow, the stream can naturally
be divided into N lanes, each carrying the same amount of
fluid flux, and each having a specific path through the device,
see [1].

For a given steady pressure drop, the fluid in the device
moves with an average velocity u0. Assuming a parabolic
velocity profile u(x) in the gap of width wg between two
neighboring bumpers, see figure 1(b),

u(x) = 6u0
x

wg

(
1 − x

wg

)
, (1)
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Figure 1. (a) An array of bumpers (black dots) with the definition of the lane number l (small arabic numbers), the column number c (large
arabic numbers) and the gap number g (roman numbers). The shaded region illustrates how the shift in the position of gap II follows the
geometry of the array. Large particles following the displacement path will therefore stay in the same gap number and lane number
throughout the entire array as illustrated by the skew bumping trajectory of a large particle (large illuminated sphere). Small particles will
not be displaced by the bumpers and will therefore visit all lane numbers as they follow the so-called zigzag path through an entire period of
the array [1]. This is illustrated by the almost horizontal trajectory of a small particle in the upper flow lane (small illuminated sphere).
(b) Close-up of a single gap between two bumpers (disks) in the array. Each of the four flow lanes carries the same flow rate. Due to the
parabolic flow profile in the gap region, the width w

(l)

l of the flow-lane l depends on its position in the gap.

the total flow rate Qtot is given by

Qtot =
∫ wg

0
u(x) dx = wgu0. (2)

By numerical simulations at low Reynolds numbers relevant
for the actual devices, Re ≈ 10−3 − 10−2, we find the
assumption of a parabolic flow profile in the gap region well
justified. This also agrees with the usual estimate for the
entrance length lentr = 0.06Re w, which is here of the order of
1 nm.

For an N-periodic array, the N flow lanes in a given gap
carry the same flow rate Qtot/N . The width w

(l)
l of lane l is

found by solving

Qtot

N
=

∫ x(l)+w
(l)
l

x(l)

u(x) dx, (3)

where x(l) = ∑l
j=0 w

(j)

l is the starting position of lane l.
In the simple bifurcating flow-lane model [1, 3] the critical
diameter dc is given as dc/2 = w

(1)
l . A small particle with

d < dc will never leave its initial flow lane and will thus be
convected in the general flow direction following a so-called
zigzag path. The conventionally used name zigzag path refers
to the case where the bumpers are large compared to their
center-to-center distance. In this case the path, which appears
almost straight in figure 1 given the smallness of the bumpers,
becomes truly zigzag-shaped [1]. Large particles with d > dc

will quickly bump against a bumper and from then on be
forced by consecutive bumping to follow the skew direction
of the array geometry, the so-called displacement path. When
a particle gets bumped by a bumper in the array it will be
displaced perpendicular to the flow direction until its center is
located one particle radius d/2 from the surface of the bumper.
This corresponds to nl lanes of displacement,

nl = N

wgu0

∫ d/2

0
u(x) dx = N

d2

4w2
g

(
3 − d

w

)
. (4)

In the bulk fluid, where the lanes are assumed to have
equal width λ/N , see figure 1(a), the displaced distance �disp

is therefore

�disp(d) = nl
λ

N
= λ

d2

4w2
g

(
3 − d

wg

)
. (5)

In this work we extend the simple bifurcating flow-lane
model by including diffusion and particle-diameter dispersion.

2. Model including diffusion

During the average time τ = λ/u0 it takes a particle to move by
convection from one column to the next, it also diffuses. We
assume that the diffusion process perpendicular to the flow
direction is normally distributed with mean value zero and
variance

σ 2 = 2Dτ, (6)

where the diffusivity D is given by the Stokes–Einstein
expression

D = kBT

3πηd
. (7)

Here kB is Boltzmann’s constant, T is the temperature and η

is the viscosity of the fluid. Throughout the paper we use this
expression to calculate D for any given particle size.

In figure 2 are sketched the two limits of (a) a small
strongly diffusing particle, for which the interaction with the
bumpers as well as the role of the flow lanes is negligible,
and (b) a large particle, for which diffusion rarely brings the
particle out of its given lane, and where each bumping event
resets the position of the particle.

Note that we do not model Taylor–Aris dispersion
explicitly. The reason is that this convection–diffusion
phenomenon mainly affects the particle distribution along the
flow direction [5]. However, we are not interested in the
detailed arrival times of the particles in the outlet, only in their
transverse distribution.
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(a) (b)

Figure 2. (a) The motion of very small particles is dominated by
diffusion. Their distribution at the end of the array is therefore
determined by their transverse diffusion during the time spent in the
array. The intensity of the shaded region indicates the probability
for finding the small particle at a given position in the array. A
non-diffusive particle would follow the solid black trajectory
straight through the array. (b) Large particles diffuse as well—but
not very much—and every time they interact with a bumper their
position in the gap is reset to the particle radius. Large particles
therefore only have a slight probability of escaping the displacement
path represented by the full black line. In both panels the Gaussian
distribution of the diffusing particles is shown at four cross-sections.

2.1. Diffusion model

In order to escape bumping, a particle must diffuse more in
the time interval τ than the difference �disp −λ/N between the
bulk displacement and the shift in position of the next bumper.
The probability pesc for this to happen is given by the integral
of the Gaussian tails (see figure 2) in the neighboring lanes,
i.e., by the error function

pesc(d) = 1

2
− 1

2
erf

(
�disp(d) − 1

N
λ√

2σ(d)

)
, (8)

where we have introduced the d-dependence explicitly. When
a particle is transported through a bumper array it must bump
at every bumper within one period of the array in order to be
displaced one gap at the outlet. Thus, if the particle escapes
at least one time in N attempts, it will not be displaced. We
define the critical particle size dc to be the size for which half
of the particles escape bumping as they pass one period of the
array. Thus dc can be found by solving

N∑
k=1

(
N

k

)
pesc(dc)

k[1 − pesc(dc)]
N−k = 1

2
. (9)

In figure 3 we have plotted the result of our model calculation
for the critical particle sizes as a function of the bumper period
for parameter values corresponding to the bumper arrays used
by Inglis et al [3] (full line), Huang et al [1] (dashed line) and
Larsen [6] (dotted line). The corresponding measured data
points from these papers are plotted as circular, square and
triangular points, respectively.

It must be emphasized that although the authors of [3] in
their text only describe bumper arrays with a relative column
displacement ε = 1/N , they do plot, without comments, data
points with other displacements, e.g., ε = 0.3. These non-
1/N bumper arrays lead to more complicated displacement
characteristics. This interesting topic, which we are currently
studying, goes beyond the scope of the present work, where we
focus on the influence of diffusion and particle-size distribution
on the more simple and most widely used 1/N-bumper arrays.
In figure 3, we have therefore only plotted data points from [3]
with ε = 1/N .

Figure 3. Our model applied to the experimental data of Inglis et al
[3], Huang et al [1] and Larsen [6]. Particle diameter d over the gap
width wg is plotted as a function of the inverse period 1/N . The full,
dashed and dotted black lines show the theoretically predicted
critical particle size for the bumper arrays used by Inglis et al [3]
(only points with ε = 1/N ), Huang et al [1] (only for N = 10) and
Larsen [6] (only for N = 100), respectively. The experimental data
points are representing particles following bumper paths (open
symbols), zigzag paths (solid black symbols) and neither of these
paths (solid gray symbols).

2.2. Comparison with experiments

The observation that the critical particle size in a 1/N bumper
device is larger than the width of the first flow lane is also
supported by the experimental data in figure 2 of [3]. Our
model suggests that the deviation of the critical particle size
from the width of the first flow lane can be explained by
diffusion of the particles. In figure 3 it is seen how well the
theoretical lines predict the transition between zigzag paths
and displacement paths: the full line divides open and closed
circles, the dashed line divides open and closed squares, and
the dotted line divides open and closed triangles.

Using parameter values corresponding to the bumper
device presented by Huang et al [1] our model predicts a
critical particle diameter of 0.45 times the width of the gap
for the particles traveling through the device with an average
velocity of 400 µm s−1. This is in good agreement with
figure 2(a) in [1].

3. A discrete model including diffusion and
dispersion

Particles typically used in experiments on particle separation
are not mono-disperse. Their average diameters are distributed
around a certain mean value with a relative standard deviation
	d/d, which typically is 20%, 10% and 5% for particles with
d = 25 nm, d = 100 nm and d = 500 nm, respectively.

Faced with such a size dispersion it is very useful to have
a simple method for predicting its effect. In the following
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Figure 4. Relative numbers r0, r1 and rd of particles following the zigzag path, the displacement path and neither of these two paths,
respectively, plotted as a function of the normalized, average particle diameter d/dc, where dc = 118 nm. The parameters of the bumper
array are taken from [6]: N = 100, λ = 8 µm, wg = 1 µm, L = 20Nλ = 16 mm and u0 = 250 µm s−1. The buffer liquid is water at room
temperature. Neglecting diffusion (solid symbols), the particles follow the zigzag path if d < dc and the displacement path if d > dc.
Including diffusion (open symbols), with D given by equation (7), the small particles are not influenced by the bumpers. For d > 2.1dc the
influence of the bumpers sets in, and for d > 3.4dc the particles follow the displacement path. The full black curves are the predictions using
the results in sections 3.4.1 and 3.4.2, while the thick black vertical lines indicate the particle size when small particles stop behaving purely
diffusive (left-most lines) and when large particles begin a purely deterministic displacement (right-most lines).

we therefore introduce a discrete model of the transport of
particles with different diameters d in an N-periodic bumper
array taking convection, diffusion and size dispersion into
account. The model allows us to study the relative influence
of all three phenomena on the separation efficiency in a fast
and simple manner. We illustrate our model by using the
specific parameters from the bumper device presented in [6],
see figure 4. In particular our results suggest that the critical
size for separation or displacement, studied above, must be
supplemented by a smaller critical size below which pure
diffusion governs the motion of the particles in the bumper
array. This prediction has not yet been tested experimentally.

3.1. Definition of the discrete model

At any instant, a particle is assumed to be positioned in the
center of a flow lane l of gap g in some column c of the array.
For simplicity we further assume that the size distribution of
any given set of particles is a normal distribution with a mean
value given by the size quoted by the manufacturer and a
relative standard deviation of 10%.

By convection any given particle moves from one column
to the next. If it ends up in the last lane (l = N − 1) in one
gap, it will be shifted to the first lane (l = 0) in the subsequent
gap. Otherwise it will stay in the current gap and move up one

lane. In our model pure convection is therefore described by
the discrete map

(c, g, l) �→
{

(c + 1, g + 1, 0), if l = N − 1,

(c + 1, g, l + 1), otherwise.
(10)

Because of the finite diameter d of the particle there is a
minimum and a maximum lane number that it can occupy. The
minimum lane number is the smallest integer lmin that satisfies

lmin∑
l=0

w
(l)
l >

d

2
. (11a)

Similarly, the maximum lane number lmax is the largest integer
that satisfies

N−1∑
l=lmax

w
(l)
l >

d

2
. (11b)

Consequently, the simple convection mapping from
equation (10) needs to be modified to account for the finite
size of the particles

(c, g, l) �→

⎧⎪⎨
⎪⎩

(c + 1, g + 1, lmin), if l = N − 1,

(c + 1, g, l + 1), if l < lmax − 1,

(c + 1, g, lmax), otherwise.

(12)

The above convection scheme accounts for the separation
of particles in deterministic lateral displacement devices
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according to size. The critical particle diameter predicted
by this model is

dc = 2w
(0)
l (13)

in accordance with the geometric arguments of [3].
To characterize the separation quantitatively, we define

the relative particle numbers r0, r1 and rd as

r0 = relative number of particles

following the zigzag path, (14a)

r1 = relative number of particles following

the displacement path, (14b)

rd = relative number of all other particles. (14c)

With these definitions the sum r0 + r1 + rd is always unity. If
r0 = 1 all particles follow the zigzag path and if r1 = 1 all
particles follow the displacement path. If rd �= some of the
particles end up at positions not explained by the deterministic
analysis of the separation process. In figure 4 we have plotted
the relative particle numbers r0, r1 and rd as a function of the
average particle diameter d.

3.2. Pure mono-disperse convection

For mono-disperse and non-diffusing particles, the model
results, as expected, in two modes: the zigzag mode and the
displacement mode, see the closed circles in figure 4. For
d < dc we have r0 = 1, and for d � dc we have r1 = 1, while
we always have rd = 0. The relative particle numbers can
therefore be written as

(r0, rd, r1) =
{

(1, 0, 0) for d < dc,

(0, 0, 1) for d � dc.
(15)

3.3. Influence of size dispersion

If we assume that the particles are not mono-disperse, but
are distributed around a mean size d with standard deviation
	d, the shift as a function of d from the zigzag mode to the
displacement mode happens gradually instead of abruptly at a
certain critical size dc (figure 4, closed squares). The relative
number of particles following the zigzag path r0 can be found
by integrating over all particle sizes smaller than the critical
diameter given by the array geometry

r0 =
∫ dc

−∞

1√
2π(	d)2

exp

(−(s − d)2

2(	d)2

)
ds. (16a)

Similarly, the relative number of particles following the
displacement path r1 can be found by integrating over all
particle sizes larger than dc

r1 =
∫ ∞

dc

1√
2π(	d)2

exp

(−(s − d)2

2(	d)2

)
ds. (16b)

The system is still a bi-modal system because rd = 0 for all
particle sizes.

3.4. Influence of diffusion

In 1D during the time step τ a particle diffuses the distance
�, the average of which is the size-dependent diffusion length
σ(d) given by

σ(d) = 〈�〉 =
√

2Dτ =
√

2
kBT

3πηd

λ

u0
. (17)

In our model we discretize the transverse diffusion as the
properly rounded number njump of flow lanes crossed by the
particle during diffusion,

njump = N

λ
�. (18)

The addition of diffusion smears out the displacement of the
particles and causes the critical diameter to be larger than in
the diffusion-less case (figure 4, open symbols).

3.4.1. Bumping criterion for small particles. Very small
particles are completely dominated by diffusion, and the
particle distribution at the end of the array is simply given by
the transverse diffusion of the particles during the time L/u0 it
takes for the particle to be convected all the way L through the
array, see figure 2(a). For small particles we therefore have

r0 =
∫ 3

2
λ
N

− 3
2

λ
N

1√
2πσ 2

exp

(−x2

2σ 2

)
dx, (19)

where σ 2 = 2DL/u0. In figure 4 we have plotted r0 versus
d/dc and rd = 1 − r0 as the thick black curves in the interval
0 < d/dc < 2.1.

As the particle diameter d is increased, the bumpers
begin to become important as the diffusion length σ(d),
equation (17), is decreased and becomes equal to the
displacement length �disp, equation (5). Using the criterion
σ(d1) = �disp, with the parameter values used in figure 4,
we find that particles stop behaving as small diffusion-
dominated particles and start interacting with the bumpers
when d1 = 2.1dc. This cross-over value is indicated by the
left-most vertical lines in figure 4, and it fits well with the
simulation data. Note that the specific value of the pre-factor
is determined for dc = 118 nm.

3.4.2. Bumping criterion for large particles. Large particles
will interact with the bumpers at every row in the array and
their position is thus reset at every bump to be �disp, see
figure 2(b). Diffusion can therefore be neglected for such
particles, they all follow the displacement path, and r1 = 1.

As the particle diameter is lowered, the probability pesc

that a particle escapes the displacement path can be estimated
by the probability of diffusing from the displaced position to
the last flow lane in the gap, i.e. the distance �disp − λ

N
. This

probability pesc is given by equation (8). In figure 4 we have
plotted rd = pesc and r1 = 1 − rd as thick black curves in the
interval 3.4 < d/dc < 6.

In order to follow the displacement path, a particle must
bump at each row in the array. If we consider an N-periodic
array with m full periods, the particles will have mN bumping
opportunities as they pass through the entire array. If a particle
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Figure 5. Schematics of a N = 5 bumper array (black dots) in
which a large particle (light gray) moves along the displacement
path (lower thick dashed line) without diffusion, and another
particle of the same size (dark gray) moves partially along the
displacement path (upper thick dashed line) under the influence of
diffusion. The corresponding displacement path without diffusion is
also shown (thin dashed line). Two diffusion-induced jumping
events, each causing the particle to jump to a neigboring lane, are
marked by the vertical arrows. The upward event induces a shift in
the gap number by one, while the downward event does not induce a
shift in the gap number. The diffusing particle thus exits the bumper
array one gap above its diffusionless counter part.

evades bumping at a bumper, it will be convected by the
flow through a full period of the array before bumping is
possible again. Because of the escape, it will miss N bumping
opportunities and end up one gap from the displacement path,
see figure 5. Consequently, if a particle escapes one time,
it will only have (m − 1)N bumping opportunities and has
therefore escaped bumping with a probability of 1/[(m−1)N ].
The upper critical particle size d2 for convection-induced
displacement is defined using equation (8) as

pesc(d2) = 1

(m − 1)N
. (20)

For the device used in the experiments by Larsen [6] we
find d2 = 3.4dc. The predicted upper limit for diffusion
dominated motion and the lower limit for convection-induced
displacement compares well with the experimental observation
by Larsen [6] that some particles end up in a transition
region between the displacement path and the zigzag path
(figure 3, gray triangles). Based on the data for 1/N = 1/100
in figure 3 the experimentally observed transition region begins
at d1 = 0.16wg = 1.4dc (the highest lying gray triangle) and
ends at d2 = 0.40wg = 3.4dc (the lowest lying white triangle).
Considering the simplicity of the discrete model this is in
fair agreement with our model predictions, d1 = 2.1dc and
d2 = 3.4dc.

4. Conclusion

Experimental data on separation of particles in bumper arrays
all show a systematic deviation from predictions made from
the bifurcating flow-lane model [1, 3, 6]. Application of the
model presented in this paper to the available data suggests that

this systematic deviation may be explained by diffusion. In
addition, we have proposed a simple discrete model for quickly
simulating particle separation in bumper arrays. In contrast to
the single critical particle size found in earlier analyses based
solely on the deterministic separation processes, our work
including diffusion identifies two particle sizes characteristic
for the separation in bumper arrays: a small particle size d1

below which diffusion dominates and a larger particle size d2

above which the deterministic processes govern the sorting.
Particles of intermediate sizes will neither follow the average
flow direction nor the direction set by the array geometry. If
bumper devices are scaled down both d1 and d2 are larger than
the critical size predicted in the existing literature.

The presented model takes particle diffusion and size
dispersion into account and has been validated against
experimental data for a bumper device with period N =
100. In this example the transition from zigzag paths to
displacement paths happens at particle sizes in the interval
from 2.1 to 3.4 times the critical particle size predicted
from geometrical arguments. This transition interval is in
qualitative correspondence with the experimental observations
from Larsen [6]. Our discrete model and the estimates
presented in this paper suggest that particles smaller than
twice the geometrical critical size of the N = 100 bumper
device behave diffusively and are not affected by the bumpers
because the small diffusive particles rarely come into contact
with the bumpers due to random Brownian motion. We believe
that our discrete model will be useful for design and evaluation
of bumper arrays with any given specification.
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