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In this study of catalytic microfluidic reactors we show that, when optimally structured, these reactors share
underlying scaling properties. The scaling is predicted theoretically and verified numerically. Furthermore, we
show how to increase the reaction rate significantly by distributing the active porous material within the reactor
using a high-level implementation of topology optimization.
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Chemical processes play a key role for the production and
analysis of many substances and materials needed in industry
and health care. Generally, the optimization of these pro-
cesses is an important goal, and with the introduction of
microfluidic reactors involving laminar flows, the resulting
concentration distributions mean better control and utiliza-
tion of the reactors �1�. These conditions make it possible to
design reactors using the method of topology optimization
�2�, which recently has been applied to fluidic design of
increasing complexity �3–5�.

First, we report the finding of scaling properties of such
optimal reactors. To illustrate the method we study a simple
model of a chemical reactor, in which the desired product
arises from a single first-order catalytic reaction due to a
catalyst immobilized on a porous medium filling large
regions of the reactor.

Next, we show that topology optimization can be em-
ployed to design optimal chemical microreactors. The goal
of the optimization is to maximize the mean reaction rate of
the microreactor by finding the optimal porosity distribution
of the porous catalytic support. Despite the simplicity of the
model, our work shows that topology optimization of the
design of the porous support inside the reactor can increase
the reaction rate significantly.

Our model system is a first-order catalytic reaction,
A→B

C
, taking place inside a microfluidic reactor of length L,

containing a porous medium of spatially varying porosity
��r� and a buffer fluid filling the pores. The porosity � is
defined as the local volume fraction occupied by the buffer
fluid �6�, and it can vary continuously from zero to unity,
where �=0 is the limit of dense material �vanishingly small
pores� and �=1 is the limit of pure fluid �no porous
material�. The reactant A and the product B exist only in
dissolved form with concentrations a and b, respectively,
in the buffer fluid, which is driven through the reactor by a
constant, externally applied pressure difference �p between
an inlet and outlet channel. The catalyst C is immobilized
with concentration c on the porous support.

The working principle of the reactor is quite simple. The
buffer fluid feeds pure reactant A to the porous medium sup-
porting the catalyst C. The reaction rate is high if at the same
time the reactant A is supplied at a high rate and the amount
of immobilized catalyst C is large. However, these two con-
ditions are contradictory. For a given pressure drop �p the
supply rate of A is high if � is high, allowing for a large flow

rate of the buffer fluid. Conversely, the amount of catalyst C
is high if � is low, corresponding to a dense porous support
with a large active region. Consequently, an optimal design
of the porous support must exist involving intermediate
values of the porosity. Besides, the optimal design may in-
volve an intricate distribution of porous support within the
reactor, and to find this we employ the method of topology
optimization in the implementation of Ref. �5�.

In the steady-state limit, the reaction kinetics is given by
the following advection-diffusion-reaction equation for the
reactant concentration a,

�u��� · ��a = D�2a − k���a . �1�

Here u��� is the velocity field of the buffer fluid, D is the
diffusion constant of the reactant in the buffer, and −k���a is
the reaction term of the first order isothermal reaction, which
depends on the concentration of the catalyst C through ��r�.
In this problem three characteristic time scales �A, �R, and �D
naturally arise,

�A =
L

u
, �D =

L2

D
, �R =

1

k�

, �2�

which correspond directly to the advection, diffusion, and
reaction term in Eq. �1�, respectively. These time scales will
be used in the following theoretical analysis. Note that the
index of � generally denotes an average over the design
region, e.g., k�= �k�����.

The porosity field ��r� uniquely characterizes the reactor
design since it determines both the distribution of the catalyst
and the flow of the buffer. In the Navier-Stokes equation,
governing the flow of the buffer, the presence of the porous
support can be modeled by a Darcy damping force density
−����u, where � is the local, porosity-dependent, inverse
permeability �7�. Assuming further that the buffer fluid is an
incompressible liquid of density � and dynamic viscosity �,
the governing equations of the buffer in steady-state become

��u · ��u = − �p + ��2u − ����u , �3a�

� · u = 0. �3b�

The coupling between � and � is given by the function

������max

q�1−��

q+� , where �max is determined by the nondi-
mensional Darcy number Da= �

�maxL2 , and q is a positive
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parameter used to ensure global convergence of the topology
optimization method �3,5�. In this work Da is typically
around 10−5, resulting in a strong damping of the buffer flow
inside the porous support. The model is solved for a given
��r� by first finding u��� from Eqs. �3a� and �3b� and then
a�r� from Eq. �1�.

Our aim is to optimize the average reaction-rate (k���a)�

of the reactor by finding the optimal porosity field ��r�. We
therefore introduce the following objective function 	���,
which by convention has to be minimized,

	��� = − „k���a…�. �4�

To better characterize the performance of the reactor and
to introduce the related quantities, we first analyze a simple
one-dimensional �1D� model defined on the x axis. The po-
rous medium is placed in the reaction region � extending
from x=0 to x=L. Equation �3b� leads to a constant flow
velocity u, and as the complete pressure drop occurs in the
porous medium, we have p�0�= p0+�p and p�L�= p0. In
this case the boundary conditions for the advection-
diffusion-reaction equation �1� are a�−
�=a0, a��−
�=0,
and a��
�=0, where the primes indicate x derivatives. We
denote the outlet concentration a�
�=aL. From Eqs. �1� and
�4�, we then derive the following expression of the objective
function:

	��� = − �k���a� =
1

L
�

0

L

�u���a� − Da��dx

=
u���

L
�aL − a0� −

D

L
�a��L� − a��0�� . �5�

For simplicity, we now limit the analysis to the nondiffu-
sive case �D=0�, and from Eq. �5� we obtain the objective
function defined in terns of the reaction conversion C,

	��� = −
u���a0

L
C, with C � 1 −

aL

a0
. �6�

With an explicit x dependence of the reaction rate
coefficient k�x�, we obtain u���a�=−k�x�a with the solution

a�x� = a0e−K�x�/u���, with K�x� � �
0

x

k�x̃�dx̃ . �7�

This leads to the following expression of the conversion:

C = 1 − e−K�L�/u��� = 1 − e−�k�/u����L = 1 − e−�, �8�

where we have introduced the dimensionless Damköhler
number � �8�

� �
�A

�R
=

k�

u���
L , �9�

having the physical interpretation of the ratio between the
advection and the reaction time scale.

To derive the flow speed u��� in the 1D model we first let
q→
, resulting in ����=�max�1−��, and then by integrating
Eq. �3a�, 0=−p�−�max�1−��u, we obtain

u =
�p

�max�1 − ���L
=

Da

1 − ��

�pL

�
. �10�

To solve the 1D optimization problem analytically, we
chose to abandon the spatial variations of � in the 1D model.
We have to find the solutions to �	

���
�0, and from Eqs. �6�

and �8�, we end up by having to solve the following
equation:

1 − e� + ��1 + �� = 0, �11�

where we have assumed that k���� �1−����. The specific
properties of the catalytic reaction determines the value of �,
e.g., if the full volume of the porous medium is active then
�=1, while if only the surface is active then �=2/3. Solving
Eq. �11� gives the optimal value of ��, where the reference to
� now is explicit.

All numerical solutions are found using the commercial
numerical modeling tools MATLAB �9� and COMSOL �10�. To
validate numerically the analytic results of the 1D model, we
solve Eqs. �1� and �10� for a given homogeneous design
variable �� and find the optimal value using a brute-force
optimization method �11�.

To obtain a general scaling parameter for the problem
defined in Eq. �1� we reintroduce diffusion. However, to
minimize the trivial influence from the inlet and outlet, we
only study the limit of low diffusion, e.g., �D��A ,�R. In this
limit the optimal reactors involve a balance between the ad-
vection and reaction processes, and consequently we expect
that �A and �R should enter on equal footing in the scaling
parameter. We are therefore led to propose the following
dimensionless form of the scaling parameter:

	�A�R

�D
=

D
	k����u����L3

. �12�

Figure 1 shows that the measured values of �� and C� for
optimal porosity both scale with respect to 	�A�R /�D. The
simulations cover 512 optimal reactors in a wide and dense
parameter scan �12�, and as they collapse almost perfectly on
single curves, we have not distinguished the data points fur-
ther. In the nondiffusive case D=0 and 	�A�R /�D=0, exact
values of �� and C� are determined by Eqs. �8� and �11�, and
they match exactly with the numerical results, as seen in Fig.
1, where they are marked by circles on the ordinate.

We now introduce three types of 2D reactors: the uniform
reactors, Fig. 2�a�, the membrane reactors, Fig. 2�b�, and the
topology optimized reactors, for which a few are shown in
Fig. 3. First we optimize the simple reactors in Fig. 2. They
both depend only on one variable, which for the uniform
reactor is the uniform porosity �̃, and for the membrane re-
actor is the width � of a porous membrane of porosity
�*�0 �11�. Because of mirror symmetry in the xz plane,
only the upper half of the reactors are solved in all the
following work.

In the third type of 2D reactors we let the porosity ��r�
vary freely within the same design region as for the uniform
reactor. The optimal design is found using the topology op-
timization method, described in detail in Ref. �5�. This is an
iterative method, in which, starting from an initial guess �0
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of the design variable, the nth iteration consists of first
solving the systems for the given design variable �n, then
evaluating the sensitivities �	

�� by solving a corresponding
adjoint problem, and finally obtaining an improved updated
�n+1 by use of the “method of moving asymptotes” �MMA�
�13,14�. In Fig. 3 is shown a representative collection of
topology optimized designs together with the corresponding
flow speed u, concentration a, reaction rate k���a, and pa-
rameter values. In the large parameter space under investiga-
tion, our work shows a systematic decrease of pore sizes and
the emergence of finer structures in the topology optimized
reactors as the scaling parameter 	�A�R /�D is decreased.

In Fig. 4 the conversion C is plotted as a function of
	�A�R /�D for all optimal reactors of this work. It shows that
all reactors collapse on curves similar to the 1D reactors,
although the topology optimized reactors exhibit a larger
spread. We believe that this scaling is a signature of a general
property of optimal immobilized catalytic reactors. Note that
the conversion of the uniform reactor in the low diffusion
limit is a few percent higher than the theoretical estimate, an
effect caused by low convection in the corners, resulting in
“dead zones.”

In terms of the objective function 	, the topologically

optimized reactors are significantly improved compared to
the simple 2D reactors. To investigate the nature behind this
improvement, we show in Fig. 5 a log-log plot of the flow
rate Q and the conversion C normalized by the values Cunif
and Qunif of the uniform reactors at the same parameters.
Because Eq. �6� gives the following scaling of the objective
function 	
QC, the rate of improvement with respect to the

FIG. 1. Plot of 1D results showing �a� Damköhler number � and
�b� conversion C, both as a function of 	�A�R /�D and for optimal
choices of porosity. In both cases �=2/3 ,1 and the parameter scan
of each choice consists of 512 optimizations �12�, which collapse
nicely. For zero difffusion, 	�A�R /�D=0, Eqs. �11� and �8� give the
exact results �2/3=0.9474, �1=1.2564, C2/3=0.6122, and
C1=0.7153, which are marked by circles on the ordinate axis.

FIG. 2. Illustration of the two simple 2D reactor setups, �a� the
uniform reactor with porosity �̃ and �b� the membrane reactor of
width � and with porosity �*�0. The horizontal dashed line is a
symmetry line.

FIG. 3. �Color online� Representative collection of topology op-
timized reactor designs for deceasing values of 	�A�R /�D.
�Left column� The distribution � of porous material in black
together with a color-grading indication of the flow speed u.
�Right column� The concentration a on top with the reaction
rate k���a below. Parameters �in SI units� L=10−3 and the
following values of �Da ,D ,�p ,ka�: �a� �10−4 ,3�10−8 ,0.25,0.25�,
�b� �10−4 ,3�10−8 ,0.25,1�, �c� �10−5 ,10−8 ,0.5,1�, and �d�
�10−4 ,10−8 ,0.25,0.5�.

FIG. 4. Overall scaling of the conversion C as a function of
	�A�R /�D for the different optimal reactors. The abscissa is loga-
rithmic to emphasize the common scaling behavior. The dashed line
indicates the theoretical value C1 for zero diffusion in the 1D case.
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uniform reactors can be read off directly, as the contours of
the improvement factors of 	 become straight lines, as
shown by the dashed lines labeled by the corresponding fac-
tors in Fig. 5. It is seen that topology optimization can in-
crease the reaction rate of the optimal reactors by nearly a
factor of 20, and furthermore it does so by increasing the
flow rate at the expense of lower conversions. The important
insight thus gained is that the distribution of the advected
reactant by the microfluidic channel network over a large

area at minimal pressure loss plays a significant role when
optimizing microreactors.

To conclude, we have analyzed a single first-order cata-
lytic reaction in a laminar microfluidic reactor with optimal
distribution of porous catalyst. The flow is pressure driven
and the flow through the porous medium is modeled using a
simple Darcy damping force. Our goal has solely been to
optimize the average reaction rate, with no constraints on the
conversion or the catalytic properties. A characterization of
the optimal configuration has been derived theoretically and
validated numerically. It shows a general scaling behavior,
depending only on the reaction properties of the catalyst. The
analysis is based on a very simple reaction since this empha-
sizes the point that the optimization of even simple reactions
result in nontrivial scaling properties and complex optimal
designs. Using topology optimization to design optimal reac-
tors gives rise to reaction rate improvements of close to a
factor of 20, compared to an corresponding optimal uniform
reactor, and the improvement originates mainly due to an
improved transport and distribution of the reactant. Further-
more, for the topology optimized reactors, we have found a
systematic decrease of pore sizes and the emergence of finer
structures as the scaling parameter is decreased. Our work
points out a general and potentially very powerful method of
improving microfluidic reactors.
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FIG. 5. Log-log plot of the relation between convection C
and flow rate Q for the different reactors, when normalized with
values Cunif and Qunif of the uniform reactors. The reaction rate
improvements are shown at the top �see text�.
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