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ac electrokinetic micropumps: The effect of geometrical confinement, Faradaic current injection,
and nonlinear surface capacitance
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Recent experiments have demonstrated that ac electrokinetic micropumps permit integrable, local, and fast
pumping �velocities �mm/s� with low driving voltage of a few volts only. However, they also displayed many
quantitative and qualitative discrepancies with existing theories. We therefore extend the latter theories to
account for three experimentally relevant effects: �i� vertical confinement of the pumping channel, �ii� Faradaic
currents from electrochemical reactions at the electrodes, and �iii� nonlinear surface capacitance of the Debye
layer. We report here that these effects indeed affect the pump performance in a way that we can rationalize by
physical arguments.
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I. INTRODUCTION

Lab-on-a-chip systems require micropumps and valves to
manipulate small volumes of a liquid sample �1�. Often large
external pumps, such as syringe pumps, are used to deliver
the necessary pressures, but for portable systems a number of
on-chip micropumps have been developed over the last de-
cade. The latter fall into two major categories: One category
comprises mechanical actuation and deflectable membranes
to create pumps and valves. These have proven to be versa-
tile and simple to fabricate and operate, but there are some
difficulties with further downscaling. The second category
involves no moving parts but uses electric fields to induce
electrokinetic pumping. However, classical dc electro-
osmosis requires a relatively large voltage and field strength,
which is undesirable. Moreover, when a dc current is drawn
from electrodes integrated in a microfluidic system there are
problems with bubble formation due to electrolysis.

ac electro-osmosis has recently been observed to induce
fluid motion over pairs of microelectrodes �2–4�. Based on
general symmetry arguments, Ajdari predicted that the same
mechanism would generate a net flow over an asymmetric
array of electrodes �5�, which was soon after demonstrated
experimentally by Brown et al. �6� and later by several other
groups obtaining pumping velocities �mm/s with driving
voltage of a few volts �7–14�.

Theoretically, Ramos et al. performed a more detailed lin-
ear response investigation of the pumping mechanism and
found a specific pumping direction, a pumping velocity scal-
ing as the square of the driving voltage, and a well-defined
frequency for maximal pumping �15�.

However, the above analysis is strictly valid only at low
driving voltage V0�kBT /e�25 mV, whereas experiments
are usually performed with at least a few volts. As a conse-
quence, the theory disagrees with experimental observations
in several ways: e.g., experimentally the pumping velocity
does not always compare well with the predicted V0

2 scaling,
but looks more like a linear scaling �10,11� or tends to satu-
rate at large voltage �13�. Moreover, Studer et al. found a
reversal of the pumping direction at driving frequencies well
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above that for maximal pumping in the “forward” direction
�11� and Ramos and co-workers observed reversal of the
pumping direction on a traveling-wave device for driving
voltages above 2 V at 1 kHz driving frequency �13,14�. The
existing theory does not give many clues as to the mecha-
nism for this reversal, except that in the original paper Ajdari
predicted pumping in the “reverse” direction at low fre-
quency when Faradaic electrode reactions were included in
the model �5�. Indeed, several groups have observed bubble
formation and electrode degradation at low frequency and
high voltage which indicates that electrode reactions are ac-
tually taking place �8–11,14�. Lastochkin et al. observed
fluid motion in the reverse direction of that usually expected
for ac electro-osmosis, which was attributed to strong Fara-
daic current injection �16�. However, their experiments were
performed with driving frequencies in the MHz range which
is of the order of the Debye frequency for the electrolyte,
whereas ac electro-osmosis generally occurs around the in-
verse RC time of the device.

These discrepancies between experimental observations
and existing theory demonstrate the need for a more com-
plete theoretical understanding. As a first step we here ad-
dress a few generalizations of the existing linear response
theory to the weakly nonlinear regime by taking into ac-
count, within the thin Debye layer approximation, the effect
of Faradaic currents both in a linearized scheme and using
the full nonlinear Butler-Volmer reaction kinetics. We also
include the nonlinear surface capacitance of the Debye layer
as described in Gouy-Chapman theory.

The paper is organized as follows: In Sec. II we fix the
device geometry and in Sec. III we describe our model for
the electrokinetic system. In Sec. IV we extend the linear
analysis for low driving voltage to study in more detail the
effects of the device geometry and vertical confinement of
the system, and we investigate the effect of Faradaic current
injection in a linearized scheme. This provides a firm starting
point when in Sec. V we study the nonlinear model both with
and without Faradaic current. In Sec. VI we summarize our
results and compare to experiments reported in the literature,

and finally, in Sec. VII we conclude the paper.
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II. DEVICE GEOMETRY

We consider a two-dimensional �2D� geometry like that
shown in a side view in Fig. 1, similar to devices used ex-
perimentally �6–11,14�. It consists of a substrate on which an
asymmetric array of interdigitated microelectrodes is depos-
ited. Each electrode pair in the array consists of a narrow
electrode of width W1 and a wide electrode of width W2
separated by a narrow and a wide gap G1 and G2, respec-
tively, and the full period is L=W1+G2+W2+G2. Notice that
in order to break the left-right symmetry of the array it is
necessary that both W1�W2 and G1�G2. On top of the
electrode array a microfluidic channel of height H is placed
and we assume that the device extends sufficiently far into
the third dimension that a 2D description in the xy plane is
appropriate.

The channel is filled with an electrolyte, and the narrow
and wide electrodes are biased with an ac voltage Vext
= ±V0 cos��t�, respectively; i.e., the applied voltage differ-
ence is 2V0 cos��t�. This induces the formation of a Debye
layer on the electrodes that acts to partially screen the elec-
tric field. The nonuniform partial screening gives rise to tan-
gential electric field in the Debye layer and electro-osmotic
flow. This flow takes the form of fluid rolls above the elec-
trode edges as indicated in Fig. 1.

III. ELECTROKINETIC MODEL

Our model for the electrohydrodynamics of the system is
similar to that of Ramos et al. �15� and is based on the
following classical approximations �17–20�: �i� The bulk
electrolyte is assumed to be charge neutral with uniform salt
concentration, such that the ionic transport can be described
as Ohmic current. �ii� The Debye layer is assumed to be in
local equilibrium with the electrolyte immediately outside
the layer, such that the charge distribution and potential
variation in the Debye layer can be described by Gouy-
Chapman theory. �iii� Moreover, we assume that the thick-
ness of the Debye layer is much smaller than the size of the
electrodes, and we neglect surface diffusion and migration of
charge. �iv� The bulk fluid motion is described by Stokes
flow with a slip condition on the electrodes set by the elec-

FIG. 1. Sketch of the device geometry. The interdigitated elec-
trode array is biased with an ac voltage that induces a buildup of a
Debye screening layer and electro-osmotic fluid motion.
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troosmotic flow induced in the Debye layer. �v� Finally, we
also assume that the bulk concentration of the reactants in
the Faradaic electrode reaction is constant; i.e., we neglect
the effect of mass transfer.

Upon these approximations, the only dynamical variables
we are left to consider are the potential distribution ��x ,y , t�
in the bulk and the local surface charge density q�x , t� accu-
mulated in the Debye layer on the electrodes. The instanta-
neous value of q determines the potential drop from the elec-
trode to the electrolyte immediately outside the Debye layer,
whereas the time evolution of q is determined by the balance
between the Ohmic current from the bulk and Faradaic cur-
rent from electrochemical reactions on the electrodes.

We emphasize that this simple electrokinetic model is ap-
propriate only in the weakly nonlinear regime of not-too-
high driving voltage ��125 mV�. Beyond this, the assump-
tion of uniform bulk electrolyte concentration breaks down,
the effect of mass transfer on the Faradaic reaction kinetics
cannot be neglected, and the Debye layer may be driven
out of local equilibrium. This is discussed in more detail in
Sec. VI.

A. Bulk electrolyte

In the bulk electrolyte we assume charge neutrality such
that the charge continuity equation reduces to

� · J = 0. �1�

The electric current J is described simply as the Ohmic cur-
rent J=−��� where � is the conductivity of the electrolyte.
Since we assume uniform salt concentration and conductivity
throughout the bulk, we then simply end up with a Laplace
problem for the potential ��r , t�.

B. Debye layer

The Debye layer is assumed to be in local equilibrium
with the electrolyte immediately outside the layer. This im-
plies that the driving frequency should be well below the
Debye frequency �D=� /� of the electrolyte and that the
Faradaic current injection cannot be too strong. The total
charge accumulated in the Debye layer can then be directly
related to the potential drop 	�x , t� across it �18�

q�x,t� = �
Debye layer


�x,y,t�dy �2�

=− sgn�	��2�kBT�
n

cn
*�e−zne	/kBT − 1� , �3�

where 
 is the charge density, � the permittivity of the sol-
vent, kB Boltzmann’s constant, T the temperature, cn

* the bulk
concentration �number density� of the nth ionic species, and
zn its valence. In the Debye-Hückel limit 	�kBT /ze, Eq. �3�
can be linearized to

q = −
�

�D
	 , �4�

where �D=��kBT /�ncn
*zn

2e2 is the Debye length and � /�D is

the Debye layer capacitance �per unit area� at low voltage.
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For larger potentials we focus on the simple case of a
monovalent symmetric �1:1� electrolyte where Eq. �3� re-
duces to

q = −
�

�D

2kBT

e
sinh	 e	

2kBT

 . �5�

As in the classical Gouy-Chapman-Stern model we assume
that the compact �Stern� layer on the electrode simply gives
rise to an additional surface capacitance Cs in series with the
Debye layer �18�. Alternatively Cs could model an oxide
layer grown intentionally on the electrodes to inhibit electro-
chemical reactions �4,12,20�. In either case we shall for sim-
plicity assume that Cs is independent of potential. The total
potential drop across the double layer �Debye and Stern� is

Vext − � = 	 −
1

Cs
q , �6�

where Vext is the electrode potential and � is the potential in
the electrolyte immediately outside the Debye layer. The
overall capacitance �per unit area� of the double layer is de-
fined as

C�	� = −
q

Vext − �
. �7�

In the Debye-Hückel limit this reduces to

C0 = ��D

�
+

1

Cs
�−1

=
1

1 + �

�

�D
, �8�

where we introduced the parameter �=� /�DCs for the sur-
face capacitance ratio. At larger potential the Debye layer
capacitance becomes very large and C�	� is dominated by the
Stern layer only. Notice that C�	� always satisfies C0

C�	�Cs.
The charging of the Debye layer is due to both Ohmic

current from the bulk and Faradaic current from electro-
chemical reactions at the electrode:

�tq = − n · J + jext, �9�

where n is a unit normal pointing out of the electrode, −n ·J
is the Ohmic current running into the Debye layer, and jext is
the Faradaic current from the electrode reaction. We neglect
any surface diffusion and migration of charge in the Debye
layer.

C. Insulating walls

On the channel substrate between the electrodes and on
the channel lid we assume no normal current:

n · J = 0. �10�

This is justified because the amount of charge required to
screen any field normal to the channel wall is both very small
and builds up on the Debye time scale �D=� /�.

D. Electrochemistry

For the Faradaic electrode reaction we consider a simple

one-step, one-electron redox process of the form
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O + e � R, �11�

where zO=zR+1 to ensure charge conservation. Activated-
complex theory predicts an electric current density jext from
this process given by �18�

jext = e�kR
�cR

s e�1−��e��s/kBT − kO
�cO

s e−�e��s/kBT� , �12�

where kO
� and kR

� are the forward and backward standard rate
constants for the reaction, cO

s and cR
s are the concentrations of

the oxidized and reduced species directly at the electrode
�Stern layer� surface, � is the transfer coefficient, and ��s
=−q /Cs is the potential drop across the Stern layer. Assum-
ing local equilibrium, the concentrations directly at the sur-
face are related to those immediately outside the Debye layer
by a Boltzmann factor, cn

s =cne−zne	/kBT. Then Eq. �12� can be
reexpressed as the current-overpotential equation

jext = j0e−�zO−��e	/kBT	 cR

cR
* e�1−��e�/kBT −

cO

cO
* e−�e�/kBT
 ,

�13�

where j0=ek��cR
* ���cO

* �1−� is the exchange current, k� is the
standard rate constant, cO and cR are the concentrations im-
mediately outside the Debye layer, and cO

* and cR
* are the

corresponding bulk values. �= �Vext−��− �Vext−��eq is the
difference between the actual potential drop across the
double layer and the thermal equilibrium for the given redox
process and bulk concentration; � is also termed the overpo-
tential. Appreciating that cn

s in Eq. �12� differs from cn by a
Boltzmann factor is known as the Frumkin correction to the
standard Butler-Volmer equation.

Linearization for small � and for cO and cR close to their
bulk values yields

jext = j0e−�zO−��e	eq/kBT	 cR

cR
* −

cO

cO
* +

e�

kBT

 , �14�

where 	eq is the intrinsic equilibrium potential drop across
the Debye layer.

For simplicity we shall take 	eq=0 such that �=Vext−� in
Eqs. �13� and �14�, set the transfer coefficient � equal to 1/2,
and assume that cO and cR are virtually at their bulk values;
i.e., we neglect the effect of mass transfer. Moreover, for
surface potentials outside the Debye-Hückel limit we shall
focus on a monovalent symmetric �1:1� electrolyte with zO
=zR+1=1. Then Eqs. �13� and �14� reduce to

jext = j0e−e	/2kBT2 sinh� e�Vext − ��
2kBT

� �15�

and

jext = j0
e�Vext − ��

kBT
=

Vext − �

Rct
, �16�

respectively, defining the �area specific� charge-transfer resis-
tance Rct=kBT / j0e of units ��m2�.

E. Fluid dynamics

Since we are considering a microsystem where the Rey-

nolds number is usually very low—i.e., where viscosity
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dominates over inertia—the fluid motion in the electrolyte is
described by the Stokes equation


m�tu = − �p + ��2u , �17�

together with the incompressibility constraint

� · u = 0. �18�

Here 
m is the fluid mass density, u the velocity, p the pres-
sure, and � the dynamic viscosity. On the insulating walls
the no-slip boundary condition applies, whereas on the elec-
trodes we impose a tangential slip condition based on the
Helmholtz-Smoluchowski slip velocity:

us = −
�	

�
Et, �19�

where Et=−�x� is the tangential field. This classical result
for the slip at a flat surface with an externally applied tan-
gential field also holds in general for thin Debye layers in
quasiequilibrium at a metal-electrolyte interface �21�.

The fluid flow pattern is complex with rolls above the
electrode edges as sketched in Fig. 1. However, we are
mostly concerned with the net pumping Q�=�0

Hux�dy. A
Fourier analysis shows that on average in time and space the
flow is a simple Couette flow driven by the average slip
velocity U on the bottom wall �15�

U =
1

L��x1

x2

us�dx + �
x3

x4

us�dx� , �20�

in terms of which Q�=HU /2—that is, assuming zero back-
pressure on the device. Here xi denote the positions of the
electrode edges �cf. Fig. 1� and the insulating walls do not
contribute due to the no-slip condition.

Notice that us and hence U are determined entirely by the
solution to the electrical problem. Therefore we can study
pumping without resolving any details of the actual flow
pattern above the electrodes—i.e., without solving Eq.
�17�—which is very convenient.

F. Characteristic dimensions

Before going into a detailed analysis it is convenient to
discuss the overall properties of the electrokinetic system.
Very roughly speaking the system is equivalent to the simple
RC circuit shown in Fig. 2. The characteristic length scale �0
of the device is the narrow electrode gap G1, which deter-
mines the magnitude of the electric field strength. The char-
acteristic time �0 is the RC time for charging the Debye layer
through the bulk electrolyte �0=R0C0, where R0 is the �area
specific� bulk electrolyte resistance. However, at high volt-
age the Stern layer dominates the capacitance of the double
layer and the relaxation time changes to ��=R0Cs=�0�1
+�−1�. The characteristic time for �de�charging the Debye
layer through the Faradaic reaction is �ct=RctC0. When the
electrode reaction is very facile and Rct�R0 this can be sig-
nificantly faster than the Ohmic charging, acting effectively
as a “short-circuit” on the Debye layer. Finally, the charac-
teristic fluid velocity obtained with 	�V0 / �1+�� and Et

2
�V0 /�0 is u0=�V0 /��0�1+��.
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IV. LINEAR ANALYSIS

We first study the problem in the Debye-Hückel limit 	
�kBT /ze. Here the electrokinetic problem can be linearized
which simplifies the analysis significantly. Indeed the entire
problem is characterized by only two dimensionless groups
measuring the ratios of the two relaxation times �0 and �ct
and the period of the driving voltage. Of course, the solution
also depends on the geometrical parameters W1, W2, G1, G2,
and H, of which four can be varied independently once a
characteristic length scale is fixed. We do not vary all these
parameters simultaneously, though.

In the simplest case with negligible confinement �H�L�
and no Faradaic electrode reaction we recover the earlier
results of Ramos et al. We also determine the optimal param-
eters for the geometry of the electrode array. Then with the
relative size of the electrodes fixed we consider how vertical
confinement of the fluidic channel to H�L affects the sys-
tem and we investigate the behavior when electrode reac-
tions occur. Finally, we discuss how part of the linear analy-
sis can be extended to cover systems with arbitrary intrinsic
zeta potential 	eq on the electrodes but low driving voltage
V0� �1+��kBT /ze.

A. Dimensionless form for linear analysis

In preparation of our numerical analysis of the problem
we rescale the variables based on the characteristic dimen-
sions defined in Table I, denoting dimensionless variables by
a tilde:

r = �0r̃, t = �0t̃, � = �0
−1�̃ ,

� = V0�̃, q = C0V0q̃, u = u0ũ . �21�

In terms of these, the linearized relations �4�, �6�, �9�, and
�16� for the charging of the Debye layer on the electrodes
reduce to

�t̃q̃ = n · �̃�̃ + K�Ṽext − �̃� , �22�

Ṽext − �̃ = − q̃ , �23�

where K=R0 /Rct=�0 /�ct is a measure of the facility of the

R0

C0

Rct

FIG. 2. Equivalent circuit diagram for the electrokinetic system:
R0 is the bulk electrolyte Ohmic resistance, C0 is the double-layer
capacitance, and Rct is the charge-transfer resistance for the elec-
trode reaction. The characteristic time for charging the Debye layer
through the electrolyte is �0=R0C0, and the time scale for decharg-
ing the layer through Faradaic electrode reaction is �ct=RctC0.
electrode reaction—i.e., a Faradaic conductance. The har-
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monic time dependence is most conveniently dealt with by
introducing complex variables

�̃�r̃, t̃� = 1
2 �̂�r̃�ei�̃t̃ + c.c. �24�

and similarly for Ṽext and q̃. Then q̃ in Eq. �22� can be elimi-
nated using Eq. �23� to obtain

n · �̃�̂ = �i�̃ + K���̂ − V̂ext� �25�

for the charge balance in the Debye layer. On the insulating
walls,

n · �̃�̂ = 0, �26�

whereas in the bulk Eq. �1� reduces to a Laplace problem

− �̃2�̂ = 0. �27�

The time average electro-osmotic slip velocity can be ex-
pressed as

ũs� = �Ṽext − �̃��x̃�̃� = −
1

2
�x̃�Ṽext − �̃�2� = −

1

4
�x̃�V̂ext − �̂�2,

�28�

where we used that �x̃Ṽext=0 across the electrodes. The spa-
tial average is then �15�

Ũ =
1

L̃
��

x̃1

x̃2

ũs�dx̃ + �
x̃3

x̃4

ũs�dx̃�
= −

1

4L̃
��V̂ext − �̂�x̃2

2 − �V̂ext − �̂�x̃1

2

+ �V̂ext − �̂�x̃3

2 − �V̂ext − �̂�x̃4

2 � . �29�

B. Validation of the numerical scheme

We solve Eqs. �25�–�27� numerically with the finite-

TABLE I. Characteristic dimensions of the electrokinetic system
and typical experimental values for a 10−4 M KCl working electro-
lyte, assuming �=0.1.

Geometric length �0 G1 5 �m

Debye length �D ��kBT /�ncn
*zn

2e2 30 nm

Ohmic relaxation time �0 R0C0 70 �s

at large voltage �� R0Cs 770 �s

Faradaic relax. time �ct RctC0 — s

Debye relaxation time �D � /� 0.5 �s

Double-layer cpt. C0 � /�D�1+�� 20 mF m−2

Capacitance ratio � � /�DCs 0.1 —

Bulk resistance R0 �0 /� 3.3 m� m2

Charge-transfer rst. Rct kBT / j0e — � m2

Thermal voltage — kBT /e 25 mV

Fluid velocity u0 �V0
2 /��0�1+�� — ms−1
element method, using the commercial software package
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FEMLAB. We use second-order Lagrange elements to approxi-
mate the solution and a nonuniform finite-element mesh with
increased resolution at the electrode edges.

In the simple case without any Faradaic current, the De-
bye layer is charged by Ohmic current through the bulk only.
Figure 3 shows the time average slip velocity ũs� across the

electrodes for �̃=1 and K=0 in a geometry with W̃1=1.5,

W̃2=7, G̃2=5, and H̃� L̃. The slip velocity is strongest close
to the edges of the electrodes and is always directed from the
edges towards the center of the electrodes. To understand this
behavior, notice that close to the electrode edges the electric
field and hence the Ohmic current are stronger, which makes
the charging of the Debye layer faster and the screening of

Ṽext more efficient. Then Eq. �28� clearly shows that ũs� is
always directed from regions where the screening is good

and �V̂ext− �̂�2 is large towards regions where the screening is

less efficient and �V̂ext− �̂�2 is smaller—i.e., from the elec-
trode edges towards the center.

The slip velocity on the electrodes gives rise to bulk fluid
motion with rolls above the electrode edges as sketched in
Fig. 1. However, the net pumping is determined only by the

average slip Ũ which is shown in Fig. 4 as a function of
frequency �̃. When �̃�1 the screening is almost complete at
all times. Hence, there is no tangential field and no electroos-
motic flow. Conversely, when �̃�1 the driving is too fast for
any significant screening to occur; i.e., there is no charge in
the Debye layer and no flow. As a consequence, in Fig. 4 we

see that the pumping velocity Ũ is maximized around �̃
�1, whereas it falls off as �̃2 at low frequency and slightly
faster than �̃−2 at high frequency.

In the low-frequency limit �̃�1 we can verify our nu-
merical results analytically by expanding the problem in
powers of �̃ �22�. It then turns out that the leading-order time
average slip ũs� scales as �̃2 with a corresponding pumping

velocity Ũ shown with a dashed line in Fig. 4. It is interest-
ing to note that the overall magnitude of ũs falls off only
linearly with �̃ at low frequency. This results from the uni-

0 2 4 6 8 10 12 14
−0.15

−0.1

−0.05

0

0.05

0.1

0.15

x̃

〈ũ
s
〉

FIG. 3. Time average slip velocity ũs� across the electrodes
obtained for �̃=1 and K=0 �no Faradaic current� in a geometry

with W̃1=1.5, W̃2=7, G̃2=5, and H̃� L̃.
form surface charge density to zeroth order in �̃ interacting
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with the first-order electric field, which gives rise to oscillat-
ing flow but no time average. A similar expansion in the
high-frequency limit is more difficult. Still, our numerical
results show that the magnitude of ũs falls off as �̃−2 at high
frequency for fixed x̃, but also that it remains finite in a
narrow region of width �̃−1 from the electrode edges. The
latter appears to be an artifact due to our simplified geometry
model with infinitely thin electrodes: For electrodes of finite

thickness and radius of curvature R̃ at the edges, the magni-
tude of ũs falls of as �̃−2 everywhere on the electrodes for

�̃� R̃−1; see also �23�.
One particular question that one might ask from Fig. 4 is

why the maximum net pumping velocity Ũmax�0.003 is so
low: If the chosen velocity scale u0 is appropriate, should we

not expect Ũmax�1? Starting from Fig. 3 we note that al-
ready the time average slip ũs� is less than O�1� because the

double-layer potential drop �V̂ext− �̂� in Eq. �28� is only

around half the total applied voltage V̂ext at the relaxation
frequency. The spatial average over the full period of the
array includes both positive and negative values of ũs� and
passive sections of insulating channel wall, which reduces

the value of Ũ further compared to unity. Interestingly, the
average slip across only the narrow electrode,

Ũ1 =
1

L̃
�

x̃1

x̃2

ũs�dx̃ , �30�

changes sign for �̃�1. At low frequency, Ũ1 and the corre-

sponding average Ũ2 across the wide electrode are both posi-

tive with Ũ1�0.1Ũ2��̃2. Above the relaxation frequency

we have −Ũ1� Ũ2��−1, although their sum Ũ= Ũ1+ Ũ2 falls
off as �or slightly faster than� �̃−2.

In order to further validate our numerical scheme we
compare to the results obtained by Ramos et al. using a
boundary element method based on the Greens function for a
unit charge line source �15�. This is shown in Fig. 5, where
the time average slip ũ � from both electrodes is shown on
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FIG. 4. Pumping velocity Ũ as a function of frequency �̃.

Dashed line: analytical result at low frequency where Ũ��̃2.
s
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the same graph for �̃=1.24 in a geometry with W̃1=1, W̃2

= G̃2=10/3, and H̃� L̃. The results from the two different
numerical schemes are hardly distinguishable, except close
to the electrode edges where our finite-element solution dis-
plays a slightly larger slip velocity �24�.

We also checked our results for convergence with mesh
refinement. The potential �̂�r� is everywhere smooth, but the
tangential field is singular at the electrode edges due to the
abrupt change in boundary condition between Eqs. �25� and
�26� �25�. Of course, our finite-element solution cannot rep-
resent an infinite slope, but by choosing a strongly nonuni-
form mesh with very fine resolution near the edges we obtain
fairly good quality of the solution even close to the singular-
ity. Moreover, we are mostly concerned with the net pump-

ing Ũ which is an integral quantity and therefore less sensi-
tive to the details at the electrode edges �26�.

C. Optimal device geometry

An important question in relation to actual device design
is what electrode geometry would maximize the pumping
velocity. It is immediately clear that since the characteristic
velocity u0 is inversely proportional to the characteristic
length scale �0, the pumping is increased by downscaling the
overall size of the electrodes. We focus again on the limit
H�L, where the results are independent of H. Still, there
remains four different length scales describing the electrode
geometry—namely, W1, W2, G1, and G2—of which three can
be varied independently once a characteristic length scale is
fixed.

Ramos et al. also investigated how the pumping velocity
depends on the electrode geometry �15�. They rescaled the
problem using the width of the wide electrode W2 as their
characteristic length scale, but found that the pumping veloc-
ity would increase without bounds as G1 /W2→0. Therefore
they fixed the ratio G1 /W2 at 0.1751, as in the experiment by
Brown et al. �6�, and found that the pumping velocity was
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FIG. 5. Time average slip velocity ũs� for both electrodes
against the relative position on the electrode x /Wi. Symbols: results
of Ramos et al. �15� for the narrow ��� and wide ��� electrodes,
respectively. Solid lines: our numerical solution.
then maximized when W1 /W2=0.24 and G2 /W2=0.8.
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However, the choice G1 /W2=0.1751 is arbitrary. It is
more appropriate to identify the narrow electrode gap G1 as
the characteristic length scale and look for an optimal device

geometry as a function of W̃1, W̃2, and G̃2 in the parameter

ranges 0�W̃1W̃2�� and 1 G̃2��. Notice that when

W̃2 and G̃2 attain their lower limits, the net pumping Ũ van-
ishes due to left-right symmetry; i.e., the optimum cannot be
on the parameter range boundaries. Therefore we can use a
simple unconstrained optimization algorithm such as the
MATLAB function FMINSEARCH to determine the global opti-
mum:

Ũmax = max
��̃,W̃1,W̃2,G̃2�

�Ũ��̃,K = 0,W̃1,W̃2,G̃2�� . �31�

In this way we find that the pumping velocity is maximized

for W̃1=1.51, W̃2=6.55, and G̃2=4.74, where Ũmax
=0.003 59 at �̃max=0.80.

Given that we have tracked down the global optimum, it
is natural to ask how much better this geometry performs as
compared to that suggested by Ramos et al. and those used
experimentally. This is summarized in Table II: Almost all
experimental geometries come within 10% of the maximal
pumping velocity, and the theoretical result of Ramos et al. is
less than 1% off. Yet the frequency �̃max at which pumping is
maximized for the various geometries differs by almost a
factor of 2.

The overall conclusion to be drawn is that the pumping
velocity is fairly insensitive to the particular choice of elec-
trode geometry. Henceforth, we shall therefore continue to

use a geometry with rounded numbers W̃1=1.5, W̃2=7, and

G̃2=5 which is still close to optimal; see also Fig. 6.

D. Confined geometry

In several experimental studies the height of the pumping
channel H has been comparable to the period of the electrode
array L �8,10,11�. It is not immediately clear how this would
affect the properties of the device compared to the simple
case of no confinement H�L.

Figure 7 shows the pumping velocity Ũ as a function of
frequency �̃ and degree of confinement L /H. Our previous
results correspond to the base line L /H�1, whereas the con-

TABLE II. List of geometries used experimentall
maximum pumping velocity and optimal driving fre
on the absolute size of the device through u0.

W̃1 W̃2 G̃2

Brown et al. 0.93 5.7 3.5

Studer et al. 0.67 4.33 2.67

Mpholo et al. 1.0 5.0 3.0

Debesset et al. 0.8 5.2 3.2

Ramos et al. 1.37 5.71 4.57

Global optimum 1.51 6.55 4.74
finement becomes significant for L /H�2. In particular, the

056313
pumping velocity increases by roughly a factor of 2 and the

optimal driving frequency �̃max becomes proportional to H̃
for L /H�1. The latter is easily understood from our simple
circuit model of the system in Fig. 2: While the double-layer
capacitance C0 is largely independent of confinement, the

resistance of the bulk electrolyte changes from R0 to R0 / H̃
because the cross section of the conducting channel is de-
creased. The relaxation frequency therefore becomes

H̃ /R0C0—i.e., proportional to H̃.
Our findings here are important in relation to actual de-

vice design because they indicate that working with a
strongly confined geometry does not, as one might have wor-
ried, mask the asymmetry and destroy the ability to pump.
Thus the channel height H and the period of the electrode
array L can be chosen independently. It is important to real-
ize that while the pumping velocity U does not depend much
on confinement, the maximal flow rate Qmax=HU /2 that the
pump can deliver �per unit width of the channel� and the
maximal backpressure �pmax=6�NLU /H2 it can sustain
�where N is the total number of electrode pairs� certainly do.

our linear model prediction for their dimensionless
cy. Of course, the actual pumping velocity depends

Ũmax �̃max Refs.

0.00331 1.12 �6,7,11�
0.00293 1.47 �8�
0.00332 1.12 �9�
0.00317 1.26 �10�
0.00357 0.88 �15� �theory�
0.00359 0.80 Present work
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FIG. 6. Contour plot of the maximal pumping velocity over

frequency max�̃�Ũ��̃ , . . . �� as a function of W̃1 and W̃2 for G̃2=5.

When W̃1=W̃2 the net pumping vanishes due to symmetry. There is

a unique optimum close to W̃1=1.5 and W̃2=7 with Ũmax
˜

y and
quen
=0.00358 and �max=0.8.
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E. Faradaic current injection

When we include electrode reactions and Faradaic current
in our model, one of the most important new features is that
the complete screening of the electrodes at low frequency is
unbalanced. When the reaction is slow and the Faradaic con-
ductance K=R0 /Rct��̃, the effect is small and only perturb
the result from purely Ohmic charging slightly. Conversely,
when K��̃ the reaction is fast enough to establish a steady
state where the Ohmic and Faradaic currents are balancing.
For either K�1 and/or �̃�1 the Debye layer is effectively
“short-circuited;” cf. Fig. 2. On the basis of these observa-
tions we would expect to see pumping even in the low-
frequency limit when the Faradaic reaction speed is moderate
and K�1.

Figure 8 shows the pumping velocity Ũ as a function of �̃
and K. For K��̃ we recover our previous results for pure
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FIG. 7. Contour plot of pumping velocity Ũ as a function of
frequency �̃ and degree of confinement L /H.
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Ohmic charging. However, for K��̃ we observe no pump-
ing at all, not even for K�1. Figure 9 shows the result of a
more detailed investigation in the zero-frequency limit �̃
�0, where we consider a device with asymmetric surface
properties on the electrodes, such that the Faradaic conduc-
tance takes the values K1 and K2 on the narrow and wide
electrodes, respectively. The figure shows that whenever K1
�K2 the device does actually pump: When K1�K2 it pumps
in the forward direction—i.e., in the same direction as ob-
served for purely Ohmic charging—but for K2�K1 the
pumping direction is reversed.

This reversal of the pumping direction can be understood
qualitatively by inspecting the form of the time average slip
ũs� for the four different points marked �a� to �d� in Fig. 9,
the result of which is shown in Fig. 10. When K1=K2=1 �c�
the slip velocity is clearly nonzero on both electrodes, but the
average across the narrow electrode exactly cancels that
across the wide electrode. When K1�K2=1 �d� the Debye
layer on the narrow electrode is essentially short-circuited by
the fast electrode reaction, leaving no charge and no elec-
troosmotic flow there except from in a narrow region of
width �K1

−1 from the electrode edges. Therefore the pump-

ing velocity Ũ is dominated by the contribution from the
wide electrode. Similarly, when K2�K1=1 �a� the Debye
layer on the wide electrode is essentially short-circuited and
the pumping velocity is dominated by the contribution from
the narrow electrode—which tends to be negative.

In conclusion, the absence of pumping in the low-
frequency limit when K1=K2 is a special case due to high
symmetry; whenever K1�K2 there is some pumping and this
falls off linearly with Ki for Ki�1. More generally we can
prove that for a device with spatially varying capacitance
ratio ��x̃� and Faradaic conductance K�x̃�, there can be no
pumping in the low-frequency limit when the product �1
+��x̃��K�x̃� is a constant on all electrodes. The details of the
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FIG. 9. Contour plot of Ũ in the zero-frequency limit �̃�0 with
asymmetric current injection: K1 and K2 denote the Faradaic con-
ductance on the narrow and wide electrodes, respectively. The slip
velocity ũs� at the points �a�–�d� is shown in Fig. 10.
proof are outlined in Appendix A.
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F. Linear response at nonzero intrinsic zeta potential

Many electrode-electrolyte systems spontaneously form a
Debye layer and possess an intrinsic zeta potential typically
of the order 	eq�100 mV which is well beyond the Debye-
Hückel limit 	�kBT /ze�25 mV. Hence, our foregoing lin-
ear analysis cannot be applied immediately to such systems.
But then it is standard procedure in electrochemical imped-
ance spectroscopy to study the linear response of the electro-
kinetic system to a small applied voltage �18�.

Consider a system where the electrolyte forms a Debye
layer on the electrodes with an intrinsic zeta potential 	eq. In
equilibrium there is a uniform surface charge density qeq

given by Eq. �3� on the electrodes and a constant potential
�eq=−	eq+qeq/Cs in the bulk. If the electrode array is biased
with a small-amplitude ac voltage Vext= ±V0 cos��t�, we can

linearize around equilibrium and writing �= 1
2 ��eq+ �̂�ei�t�

+c.c. and similarly for q and 	 we recover the form of Eqs.
�26� and �27� for the linear response �̂�. Only now the char-
acteristic time used for the rescaling in Eq. �21� becomes

�0 = R0Cd, �32�

where Cd�	eq� is the differential capacitance of the double
layer:

Cd = −
dq

d�Vext − ��
. �33�

For a symmetric z :z electrolyte this can be written as

Cd =
�

�D�� + sech�ze	eq/2kBT��
. �34�

The relaxation time for the Faradaic electrode reaction be-
comes

�ct = RctCd, �35�

where Rct�	eq� is the differential charge-transfer resistance
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−0.15

−0.1

−0.05

0

0.05

0.1

0.15

2 4 6 8 10 12

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

x̃ x̃

〈ũ
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FIG. 10. Time average slip velocity ũs� on the electrodes for the
parameter values marked in Fig. 9: �a� K1=1, K2=102; �b� K1

=K2=102; �c� K1=K2=1; �d� K1=102, K2=1.
given by
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1

Rct
=

djext

d�Vext − ��
=

j0e

kBT
e−�zO−��e	eq/kBT, �36�

and the Faradaic conductance is redefined as K=R0 /Rct�	eq�
accordingly. The interaction of the linear response tangential
field with the equilibrium Debye layer charge gives rise to a
linear response slip velocity

us� =
�	eq

�
�x��. �37�

However, because �� is harmonic in time, this does not give
rise to any net pumping. The leading-order time average slip
is to second order in V0, where the interaction of the induced
charge to first order with the tangential field gives rise to a
slip velocity of

us�� =
�

�
	��x��� = −

�

4�

d	

d�Vext − ��
�x�V̂ext − �̂��2. �38�

This is fully equivalent to Eq. �28�, and the net pumping
produced can be obtained directly from the analysis pre-
sented earlier in the text. Only now the characteristic fluid
velocity becomes

u0 =
�V0

2

��0

d	

d�Vext − ��
, �39�

where, for a symmetric z :z electrolyte,

d	

d�Vext − ��
=

1

1 + � cosh�ze	eq/2kBT�
. �40�

Notice that u0�	eq� falls off exponentially with 	eq because 	�
becomes negligible.

The linear response dominates over the higher-order com-
ponents only at low applied voltage. Specifically, we must
require that both V0�Cd / �dCd /d�Vext−��� and V0

�Rct / �dRct /d�Vext−���, and a sufficient condition for this is
V0� �1+��kBT /ze. However, because the time average slip
velocity vanishes to first order in V0, one cannot neglect the
second-order tangential field −�x��, which gives rise to an
additional component ūs�� to the slip velocity given by

ūs�� =
�	eq

�
�x��� . �41�

In the absence of Faradaic currents, the time average poten-
tial �� vanishes to second and all higher orders within our
simple electrokinetic model, as is easily seen by taking the
time average of Eq. �9�. Otherwise, ��� is determined as a
solution to the Laplace equation with the boundary condition

0 = �n · ���� −
1

Rct
��� +

1

4

d2jext

d�Vext − ��2 �V̂ext − �̂��2

�42�

at the electrodes, where
-9
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d2jext

d�Vext − ��2 = −
e

kBT

2

Rct
��zO − ��

d	

d�Vext − ��
+ � −

1

2
� .

�43�

This demonstrates that when Faradaic electrode reactions oc-
cur, the actual computation of the time average fluid flow and
net pumping for finite intrinsic zeta potential �on the elec-
trodes and/or the insulating channel walls� requires a sepa-
rate and more elaborate study, which we have to leave open
despite its experimental relevance.

V. NONLINEAR ANALYSIS

While theoretically it is convenient to work in the low-
voltage limit where the system can be characterized by rela-
tively few dimensionless parameters, most experimental
work has been done with driving voltages of a few volts in
order to obtain an appreciable fluid motion. However, even
with the simple nonlinear model we consider here, the pa-
rameter space is large, and we therefore focus on the case of
a monovalent symmetric �1:1� electrolyte with no intrinsic
zeta potential formed on the electrodes—i.e., 	eq=0. More-
over, for the Faradaic electrode reaction we take zO=zR+1
=1 and assume a symmetric transfer coefficient �=1/2.

We first investigate the system behavior without the pres-
ence of the electrode reaction so that the only nonlinearity in
our model arises from the nonlinear capacitance of the De-
bye layer. Then we turn on the electrode reaction and study
the full nonlinear model.

A. Dimensionless form for nonlinear analysis

Beyond the Debye-Hückel limit, the smallest characteris-
tic voltage of the electrokinetic system is the thermal voltage
kBT /e�25 mV and not the driving voltage V0. We therefore
introduce a new rescaling for the electrical part of the prob-
lem:

� =
kBT

e
�̃, V0 =

kBT

e
Ṽ0, q = C0

kBT

e
q̃ . �44�

Apart from this, the scaling remains as in Eq. �21�; in par-
ticular, we retain u0=�V0

2 /��0�1+�� for the characteristic
fluid velocity. Then Eqs. �5�, �6�, �9�, and �15�, governing the
charging of the Debye layer on the electrodes, reduce to

Ṽext − �̃ = 	̃ − q̃�/�1 + �� , �45�

�t̃q̃ = n · �̃�̃ + j̃ext, �46�

where j̃ext is the dimensionless Faradaic current given by

j̃ext = 2Ke−	̃/2 sinh��Ṽext − �̃�/2� , �47�

with K=R0 /Rct as before, and where the zeta potential is
directly related to the Debye layer charge by

	̃�q̃� = − 2 sinh−1�q̃/2�1 + ��� . �48�

On the insulating walls we have again
056313-
n · �̃�̃ = 0 �49�

and, in the bulk,

− �̃2�̃ = 0. �50�

The problem, Eqs. �45�–�50�, is solved numerically with the
finite-element method using FEMLAB. Due to the nonlinear-
ity, it is not possible to solve the problem with a single com-
plex variable for the base frequency component. Instead we
employ a relaxation method, where we represent the periodic
solution by a set of equispaced points over one period in
time, and calculate the time derivative in Eq. �46� using the
leapfrog finite-difference scheme; see Appendix B for de-
tails.

B. Nonlinear Debye layer capacitance

In the absence of Faradaic electrode reactions the only
nonlinearity in the model arises from the nonlinear surface
capacitance in the Debye layer. Figure 11 shows the pumping

velocity Ũ as a function of the driving frequency �̃ and

voltage Ṽ0 for �=0.1 and K=0. At the base line for Ṽ0�1

we recover the results from the linear analysis with Ũ peak-
ing for �̃�1. However, at higher voltage when the double-
layer capacitance is dominated by the Stern layer, the fre-

quency at which Ũ is maximized drops to �̃� �̃�, where
�̃�=�0 /��=� / �1+�� is the relaxation frequency at high volt-
age; cf. Table I.

Figure 11 also shows that the �dimensionless� pumping

velocity Ũ falls off at high voltage. This is simply due to the
fact that the �physical� electro-osmotic slip velocity us
�	�x� no longer scales as V0

2. When the driving frequency is
not too large, Eqs. �45� and �48� allow us to estimate the zeta
potential from

Ṽ0 � 	̃ + 2 sinh�	̃/2�� . �51�

At low voltage this reduces to 	̃�V0 / �1+�� whereas at high

voltage 	̃�2 log�Ṽ0 /��. The transition between the two re-

gimes occurs for Ṽ0�� when ��1 and for Ṽ0�−2 log �

when ��1. Hence, for Ṽ0��−2 log � we expect us to scale
as V0 log V0 rather than V0

2. This is confirmed by Fig. 12,

which shows Ũmax as a function of Ṽ0; the data are scaled

with Ṽ0
2 to recover the voltage dependence of the physical

pumping velocity:

U =
�

��0�1 + ��
	 kBT

e

2

ŨṼ0
2. �52�

We must emphasize at this point that the upper voltage limit

Ṽ0=103 in Figs. 11 and 12, corresponding to V0=25 V, is far
outside the range of validity of our simple electrokinetic
model: In Sec. VI we discuss a number of strongly nonlinear
phenomena that become significant for V0�125 mV in a
typical experiment. Beyond this voltage our results can
therefore only provide some characteristic features of the
system and should not be regarded as an accurate descrip-

tion.
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C. Nonlinear Faradaic current injection

While the nonlinearity induced by the Debye layer capaci-
tance manifests itself relatively slowly as the voltage is in-
creased, we expect a more dramatic effect from the Faradaic
current due to the exponential voltage dependence in Eq.

�47�. Figure 13 shows the pumping velocity Ũ as a function

of driving frequency �̃ and voltage Ṽ0 for �=0.1 and K

=0.1. At the base line for Ṽ0�1 we recover the results from
the linear analysis in Fig. 8 for K=0.1—i.e., no pumping in
the low-frequency limit and maximal pumping for �̃�1,
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=0.1 and no Faradaic current, K=0. The white dashed line shows
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with a peak value of Ũ less than 0.003. However, for Ṽ0

�1 we do observe pumping at low frequency, whereas Ũ

falls off rapidly for all �̃ when Ṽ0�10. The figure also
shows that at low voltage the optimal driving frequency �̃max

follows the same pattern as in Fig. 11, but for Ṽ0�10 it
bends sharply up towards higher frequency.

Qualitatively it is not so difficult to see how the pumping
at low frequency arises: At low voltage the �magnitude of
the� charge density in the Debye layer on the narrow elec-
trode is a factor of W2 /W1 larger than on the wide electrode
to ensure overall charge conservation. Correspondingly, also

the double-layer potential drop Ṽext− �̃ is larger on the nar-
row electrode, such that the exponential increase in the Fara-
daic current �cf. Eq. �47�� starts off earlier there. Effectively,
this makes the Faradaic conductance larger on the narrow
electrode than on the wide one, and according to Fig. 9 from
our linear analysis this should indeed give rise to pumping in
the forward direction at low frequency.

Figure 14 shows in more detail the voltage dependence of

the pumping velocity at low frequency �̃�1. For Ṽ0�1 the

net pumping grows rapidly with Ṽ0. Apart from the intrinsic

Ṽ0
2 scaling, the time average asymmetry in effective Faradaic

conductance between the two electrodes grows roughly as Ṽ0
2

as well, yielding an overall Ṽ0
4 voltage dependence. At larger

voltage we find that the pumping levels off to become almost

independent of Ṽ0. This behavior can be partially understood

by considering the scaling of 	̃ and the tangential field in this
limit: When the frequency is low enough that a steady state
is established with the Ohmic and Faradaic currents balanc-

ing, we can write the applied voltage Ṽ0 as the sum of the

potential drop across the double layer Ṽ − �̃ and the poten-
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of driving frequency �̃ and voltage Ṽ0 with capacitance ratio �
=0.1 and Faradaic conductance K=0.1. The dashed line shows the

optimum driving frequency �̃max as a function of Ṽ0. Notice the

pumping in the low-frequency limit for Ṽ0�1.
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tial drop across the bulk electrolyte when an Ohmic current
equal to j̃ext is passed through it—i.e.,

Ṽ0 � �Ṽext − �̃� + j̃ext � �Ṽext − �̃� + 2Ke−	̃/2

�sinh��Ṽext − �̃�/2� . �53�

If we neglect for simplicity the 	̃-dependent exponential

prefactor, we find immediately that Ṽext− �̃� Ṽ0 / �1+K� at

low voltage Ṽ0�K−2 log K, changing to Ṽext− �̃

�2 log�Ṽ0 /K� at higher voltage. In effect, both the tangential

field �x̃�̃=−�x̃�Ṽext− �̃� and the zeta potential 	̃��Ṽext

−�� / �1+�� go as log Ṽ0 at large voltage, and we would ex-
pect the �physical� electro-osmotic slip velocity us�	�x� to
grow as slowly as �log V0�2 with driving voltage.

Finally, we note that since the electrode reaction is very
fast at large voltage, the “low-frequency” limit where the
Faradaic and Ohmic currents balance extends higher and
higher in frequency as the driving voltage is increased.
Therefore, the characteristic behavior from Fig. 14 with the
pumping velocity leveling off dominates even for �̃�1

when Ṽ0�102. And when the optimal driving frequency in

Fig. 13 shifts towards higher frequency for Ṽ0�10, it is
essentially a trace of the point at which the Faradaic current
starts to dominate.

VI. DISCUSSION

Our numerical study of the simple electrokinetic model
has brought about a number of interesting theoretical predic-
tions that we briefly summarize below and compare to ex-
perimental observations reported in the literature. In particu-
lar, we comment on the extent to which our results agree or
disagree with the experiments and discuss a number of �non-
linear� effects not included in our model that could account
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FIG. 14. Pumping velocity Ũ as a function of Ṽ0 in the low-

frequency limit �̃�1. The data are scaled with Ṽ0
2 to recover the

physical dependence on driving voltage.
for some of the more exotic experimental observations.
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A. Confinement

Our analysis has shown that vertical confinement of the
pumping channel does not mask the asymmetry of the device
and destroy the ability to pump, as one might have worried,
but instead enhances the pumping velocity by roughly a fac-
tor of 2 and causes the optimal driving frequency to shift
down inversely proportional to L /H. In all experimental
studies to date, the confinement has been relatively weak
with L /H�2, whereas our results indicate that confinement
becomes significant only for L /H�2. It is important to keep
in mind, though, that while the pumping velocity U does not
depend much on confinement, the maximal flow rate Qmax
=HU /2 that the pump can deliver and the maximal back-
pressure �pmax�U /H2 it can sustain certainly do. The opti-
mal choice of channel height therefore depends strongly on
whether the pump is intended to work as a pressure or cur-
rent generator �27�.

B. Nonlinear double-layer capacitance

In the absence of Faradaic electrode reactions, where the
sole nonlinearity in our model is due to the nonlinear capaci-
tance of the Debye layer, we find that as the driving voltage
V0 is increased well beyond the thermal voltage kBT /e, the
relaxation frequency for the electrokinetic system, and hence
also the optimal frequency for pumping, drops from �0
=1/R0C0 to ��=1/R0Cs=�0� / �1+��, where �=� /�DCs is
the surface capacitance ratio. At the same time, the scaling of
the pumping velocity with driving voltage changes from V0

2

to V0 log V0 because the zeta potential entering the
Helmholtz-Smoluchowski slip velocity becomes only a small
fraction of the overall potential drop across the double layer.

Experimentally, Brown et al. reported that the optimal
driving frequency fmax dropped from 3 kHz at
0.2 Vrms to 1 kHz at 1.2 Vrms �6�. For their particular elec-
trolyte and electrode geometry the relaxation frequency at
low voltage was expected to be f0=�0 /2���1+��
�2 kHz. The observed downshift in optimal frequency
therefore fits well with our model predictions if we assume a
capacitance ratio of ��0.5. Likewise, Studer et al. found the
optimal driving frequency around 1 kHz for driving voltages
larger than 1 Vrms with similar electrolyte and electrode ge-
ometry �11�. The electrode material in those experimental
studies was uncoated gold and platinum, respectively, con-
sistent with a large Stern layer capacitance and hence small
�.

Green et al. mapped out the entire fluid velocity field over
a single pair of gold electrodes with titanium coating �4�. The
titanium spontaneously forms a thin oxide layer which was
intended to inhibit Faradaic electrode reactions in the experi-
ment. The observed velocity magnitude and frequency de-
pendence at 500 mV driving voltage was matched with lin-
ear theory predictions by assuming a capacitance ratio of �
=3. It is remarkable that this value was obtained for both a
0.15 mM and a 0.6 mM KCl solution: Naively, assuming a
constant value for the Stern layer capacitance Cs one would
expect �=� /�DCs to depend on the electrolyte concentration
through �D �28�.

Cahill et al. observed ac electroosmotic fluid motion due

to traveling-wave electric fields induced on a four-phase in-
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terdigitated electrode array and found an accurate V0
2 scaling

for 100−500 mV driving voltage, although the pumping ve-
locity peak position and magnitude were smaller than the
linear theory predictions �12�. In their experiments the elec-
trodes were coated with a 50-nm-thick Teflon-like insulating
layer, yielding a capacitance ratio of �=75–150 depending
on the electrolyte concentration. Hence, they remained in the
linear regime over the entire voltage range applied. Ramos et
al. performed a similar study using titanium-coated gold
electrodes �13�. Their optimal driving frequency around
2 kHz was matched with the linear theory by assuming �
=1.5, while the maximum pumping velocity at low fre-
quency was an order of magnitude below the prediction from
linear theory.

Generally, the experimentally observed pumping veloci-
ties tend to be smaller than the linear theory prediction and
sometimes resemble more an affine dependence than a qua-
dratic scaling with V0 �10,11�. This is at least in qualitative
agreement with our nonlinear model results because it is dif-
ficult to distinguish V0 from V0 log V0 over the limited volt-
age range used experimentally.

C. Faradaic current injection

Our linear analysis at low driving voltage shows that
when Faradaic electrode reactions occur, the pumping is
strongly suppressed for Rct�R0 due to “short-circuiting” of
the double layer, where Rct is the charge-transfer resistance
characterizing the electrode reaction and R0 is the bulk elec-
trolyte Ohmic resistance. When Rct�R0 the Faradaic current
injection merely imbalances the otherwise perfect screening
at low frequency and therefore induces electro-osmotic fluid
motion. Moreover, we predict that the direction of the pump-
ing in the low-frequency limit depends on the relative mag-
nitude of Rct on the narrow and wide electrodes, respectively:
If Rct is smaller on the narrow electrodes than on the wide
ones, the pumping at low frequency is in the forward direc-
tion, whereas it is in the reverse direction otherwise. In the
symmetric special case when Rct is equal on both electrodes
there is no net pumping at low frequency.

When the driving voltage is increased, the nonlinearity in
the Faradaic current injection induces an effective asymme-
try in the charge-transfer resistance and we obtain pumping
in the forward direction at low frequency, even if the intrin-
sic surface properties are symmetric. Moreover, at even
larger voltage our nonlinear analysis shows that the pumping
velocity levels off to a constant value. Using the typical pa-
rameter values from Table I and R0 /Rct=0.1 as in Fig. 14, the
magnitude of the pumping velocity at this plateau is roughly
U�100 �m/s.

The observation of electrode degradation and bubble for-
mation from electrolysis is experimental evidence that Fara-
daic reactions do occur above 1.5–4.0 Vrms, depending on
the driving frequency and electrode material �8–11,14�.
Moreover, Studer et al. observed that the pumping direction
was reversed when the driving frequency was increased
above 20 kHz and the voltage above 3 Vrms �11�. Ramos et
al. also found reversal of the pumping direction on an asym-
metric electrode array, as well as a similar reversal on a
056313-
traveling-wave array for driving voltages above 2 V and fre-
quencies around 1 kHz �13,14�. And Lastochkin et al. re-
ported that the direction of the time average slip velocity on
an array of T-shaped electrodes was reversed as compared to
the direction usually expected for ac electroosmosis �16�.

We note that the reversal of the pumping direction that we
predict at low frequency is essentially due to an imbalance
between net pumping contributions of opposite signs from
the two electrodes. We never find reversal of the time aver-
age slip direction within our simple electrokinetic model. It
is possible that the pumping reversal observed by Studer et
al. could be due to imbalance between the net pumping con-
tributions from the two electrodes: Although our nonlinear
analysis predicts pumping in the forward direction, there
could be other nonlinear effects leading to imbalance into the
reverse direction. However, Ramos et al. observed pumping
reversal on a traveling-wave array where all the electrodes
are identical—this rules out any imbalance between the con-
tributions from individual electrodes in their setup. And the
reversal of the time average slip direction observed by Las-
tochkin et al. is certainly a different phenomenon.

Lastochkin et al. argued that strong Faradaic current in-
jection in their system would reverse the polarity of the
charge in the Debye layer and hence the direction of the slip.
Based on the simple circuit model for the electrokinetic sys-
tem from Fig. 2, it is difficult to see how the potential drop
across �and hence the charge in� the double layer could
change sign, regardless of how small Rct becomes. However,
since the driving frequency in their experiments was in the
MHz range, which is of the order of the Debye frequency for
the electrolyte, the Debye layer cannot be assumed to be in
local equilibrium and Eqs. �4� and �16� are no longer valid.

Finally, we recall that for simplicity we have been focus-
ing here on the case with no intrinsic zeta potential 	eq on the
electrodes and/or the insulating channel walls. Our analysis
in Sec. IV F indicates that when Faradaic electrode reactions
are present, the behavior for nonzero 	eq needs to be studied
more carefully, especially in the nonlinear regime.

D. Effect of mass transfer on reaction kinetics

One important effect that we have neglected in our model
is the influence of mass transfer on the electrode reaction
kinetics. When the oxidized and reduced species O and R are
consumed or produced at the electrode by the Faradaic reac-
tion, their local concentrations cO and cR become different
from the bulk concentrations cO

* and cR
* , respectively. Now,

the lower cO drops at the electrode, the more difficult it be-
comes to run the reaction forward, and vice versa for cR.
This can be modeled as an additional impedance Z���, called
the Warburg impedance, in series with the charge-transfer
resistance Rct in Fig. 2 �18�. The transport of O and R from
the bulk to the surface is by diffusion, and the characteristic
distance that the nth species can diffuse over one cycle of the
driving voltage is �n���=�Dn /�, where Dn is the diffusion
constant. If this distance is small compared to the character-
istic dimension of the electrodes �0, the diffusion process is
essentially one dimensional and the �area specific� Warburg
impedance takes the form
13
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Z��� =
kBT
�2e2� 1

cO
* �DO

+
1

cR
* �DR

�1 − i
��

. �54�

Notice that Z��� increases at low frequency because the re-
actants need to diffuse longer. However, at very low fre-
quency when ������0—i.e., ��D /�0

2—the diffusion layer
extends much longer than the separation between the elec-
trodes and the Warburg impedance levels off to a constant

Z0 �
kBT

e2 � �0

cO
* DO

+
�0

cR
* DR

� . �55�

We note that Z0�R0=�0 /�, where the electrolyte conductiv-
ity is given by �=�nDicn

*zn
2e2 /kBT. Therefore, even if Rct

�R0, it is not possible to short-circuit the double layer for
��D /�0

2, because it is the larger of Rct and Z0 that domi-
nates. More generally, the effect of mass transfer is to make
the short-circuiting of the double layer discussed in Secs.
IV E and V C less dramatic. Still, we do expect the predic-
tion of the pumping direction based on Fig. 9 to hold for �̃
��0 and Rct�R0.

As the driving voltage is increased, the Faradaic current
can become so strong that the concentrations of the reactants
at the electrodes differ significantly from their equilibrium
values. Ultimately, as one of them approaches zero, the re-
action stagnates. The current at which this occurs is termed
the limiting current �18�, and it is given by the maximal rate
at which the reactants can be transported from the bulk to the
electrodes by diffusion. Hence, for the forward reaction the
limiting current is jO

lim�eDOcO
* /�O���. Assuming the fre-

quency is low enough that the Ohmic and Faradaic currents
are balancing—i.e., jext��V0 /�0—we find that the limiting
current is reached around V0�eDOcO

* �0 /��O���. For the
typical parameter values from Table I and ���0, DO
�10−9 m2/s, and cO

* �0.1 mM, this corresponds to V0
�100 mV. Beyond this voltage, the concentration cO tends
to zero at the electrode and the Faradaic current levels off at
the limiting value. If there is no supporting electrolyte, this
makes the conductivity in the diffusion layer differ signifi-
cantly from the bulk value and the Debye layer is driven out
of local equilibrium and expands in width to ��0

1/3�D
2/3

�30,31�. However, if there is an excess of supporting electro-
lyte that does not participate in the electrode reaction, the
diffusion layer should remain charge neutral and the conduc-
tivity largely unaffected. In this case the system will be
dominated by capacitive charging and behave as if no Fara-
daic reaction is taking place. This underlines the potential
role of the specifics of the electrolyte and electrode material,
known to play a decisive role in a few electrically generated
phenomena �32,33�.

E. Surface conduction in the Debye layer

At large voltage the Debye layer can accumulate enough
charge that the mean ion density, and hence the conductivity,
becomes significantly larger than in the bulk electrolyte. In
this case one cannot neglect lateral surface currents in Eq.
�9�. This is quantified by the Dukhin number Du=�s /��0,
where �s is the surface conductivity in the Debye layer, in-

corporating both migration and electro-osmotic convection
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of charge, � is the bulk conductivity, and �0 is the character-
istic geometrical length scale. For a symmetric monovalent
�1:1� electrolyte the Dukhin number can be expressed as �17�

Du = �1 + 	 kBT

e

2 2�

�D
��D

�0
4 sinh2	 e	

4kBT

 . �56�

Taking 	�V0 / �1+�� and using typical parameter values
from Table I, we find that surface conductance becomes sig-
nificant and Du�1 for V0�250 mV. Generally, we expect
surface currents to smear out the charge distribution across
the electrodes, reducing the tangential field and hence the
electroosmotic slip and pumping velocity. We do not antici-
pate that this alone could be the mechanism responsible for
reversal of the time average slip velocity or the direction of
net pumping.

F. Local salt depletion at electrodes

Another issue relating to the massive accumulation of
ions in the Debye layer at large voltage is discussed by Ba-
zant et al. �19�—namely, that of where those ions come
from. For a symmetric monovalent �1:1� electrolyte we de-
fine the excess amount of neutral salt absorbed in the Debye
layer as

w�x,t� =
1

2
�

Debye layer
�c+ + c− − 2c*�dy �57�

=c*�D4 sinh2	 e	

4kBT

 . �58�

This salt is periodically taken up and released again between
the Debye layer and a diffusion zone of width ����=�D /�.
However, when the amount of salt absorbed in the Debye
layer approaches the total amount c*���� available in the
diffusion zone, we get local depletion of salt and our as-
sumption of uniform electrolyte concentration throughout the
bulk breaks down. This occurs for

	 �
kBT

e
2 log�����/�D� =

kBT

e
log��D/�� , �59�

where we wrote �D=D /�D
2 . Taking again 	�V0 / �1+�� and

using typical parameter values from Table I, we find that salt
depletion around the relaxation frequency �0 becomes an
issue for V0�125 mV.

There are several interesting phenomena arising when the
approximation of uniform bulk electrolyte concentration and
conductivity breaks down. Among other things, this would
change the local Debye length as seen from the electrode
surface and give rise to space charge like 
���y��y log���
in the diffusion layer �32�. While the amount of space charge
in the diffusion layer would typically be much smaller than
in the Debye layer, it interacts with the fluid in a place more
remotely from the wall and is therefore more efficient in
setting the fluid in motion globally. We are currently study-
ing in more detail the role of this nonlinear mechanism for

inducing fluid motion.
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VII. CONCLUSION

We have extended existing theory for ac electrokinetic
pumping to account for vertical confinement of the pumping
channel, nonlinear surface capacitance of the double layer,
and current injection from Faradaic electrode reactions in
both a linear and a nonlinear scheme. For our particular
model system of an asymmetric electrode array micropump
we have obtained a number of results that we subsequently
have interpreted using simple physical arguments. As these
arguments are more general than the specific model, we ex-
pect our results to hold with some generality for other similar
electrokinetic systems. We therefore believe that our work
will be useful for design of electrokinetic micropumps.

Our results compare well with experiments in many as-
pects but there still remains unexplained phenomena—e.g.,
the reversal of the net pumping or the time average slip di-
rection. This points out the need for further studies of �other�
nonlinear phenomena to fully understand the complex elec-
trohydrodynamic system.

APPENDIX A

We give here a proof that there can be no net pumping at
low frequency when the electrode surface properties are
symmetric and we stay within the Debye-Hückel limit. Con-
sider a device where the capacitance ratio ��x̃� and inverse
charge-transfer resistance K�x̃� vary across the electrodes.
The electro-osmotic slip velocity becomes

ũs =
1 + �0

1 + ��x̃�
�Ṽext − �̃��x̃�̃ , �A1�

where �0 is the capacitance ratio used in the rescaling of the
problem, and Eq. �25� describing the charge balance in the
Debye layer generalizes to

n · �̃�̂ = 	i�̃
1 + �0

1 + ��x̃�
+ K�x̃�
��̂ − V̂ext� . �A2�

Combining these we can write the time average slip as

ũs� =
1 + �0

1 + ��x̃�
1

2
Re��V̂ext − �̂��x̃�̂

*�

= −
1

2
Re� n · �̃�̂

i�̃ + ��x̃�
�x̃�̂

*� , �A3�

where ��x̃�=K�x̃��1+��x̃�� / �1+�0�. In the high-symmetry
case where ��x̃� is a constant independent of x̃, the net pump-

ing velocity Ũ can be manipulated as follows:

Ũ =
1

L̃
�

electrodes
ũs�dx̃ =

1

2L̃
�

�V
− Re�n · �̃�̂

i�̃ + �
�x̃�̂

*�ds̃ ,

�A4�

where �V denotes the boundary of the computational domain

and we used the fact that n · �̃�̂ vanishes on insulating walls
and cancels over periodic boundaries. Then, using Gauss’
law and recalling that n is a unit normal pointing out of the

electrodes and into V, we find
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Ũ =
1

2L̃
Re� 1

i�̃ + �
�
V

�̃ · ��̃�̂�x̃�̂
*�dr̃� �A5�

=
1

2L̃
Re� 1

i�̃ + �
�
V

�̃�̂ · �̃��x̃�̂
*�dr̃� �A6�

=
1

2L̃
�
V

1

2
��x̃��̃�̂ · �̃�̂*� + �̃ Im��̃�̂ · �̃��x̃�̂

*��

�2 + �̃2
dr̃ �A7�

=
1

2L̃

�̃

�2 + �̃2 Im��
V

�̃�̂ · �̃��x̃�̂
*�dr̃� . �A8�

Here Eq. �A6� follows from �̃2�̂=0, Eq. �A7� follows from
simple complex arithmetics, and finally, Eq. �A8� holds be-

cause the integral of the term �x̃��̃�̂ ·��̂*� cancels out due to
periodicity.

The final result in Eq. �A8� clearly shows that regardless

of �, the net pumping Ũ goes to zero in the low-frequency
limit �̃→0. The apparent singular behavior for �=0 is only

apparent because the screening is then complete and �̃�̂ zero
in the bulk. Hence, our analysis rules out any net pumping in
the low-frequency limit of our simple model when the elec-
trode surface properties are symmetric in the sense of mak-
ing the parameter � independent of x̃.

APPENDIX B

The nonlinear problem is converted to weak form by mul-
tiplying a test function ��r̃� for �̃ on Eq. �50�, integrating
over the computational domain V, and using Gauss’ law with

Eqs. �46� and �49� to eliminate n · �̃�̃. Hence, for �̃ to be a
weak solution we require that

�
V

�̃� · ��̃dr̃ + �
electrodes

���t̃q̃ − j̃ext�q̃��dx̃ = 0 �B1�

for all � and at all times. The constraint, Eq. �45�, on the
potential drop across the double layer is satisfied by multi-
plying a test function ��x̃� for q̃ and requiring that

�
electrodes

��Ṽext − �̃ − 	̃�q̃� + q̃�/�1 + ���dx̃ = 0 �B2�

for all � and at all times. The weak problem is discretized
using the Galerkin method; i.e., we expand �̃ on a finite set
of basis functions ��n�r̃��n=1

N� as

�̃�r̃, t̃� � �
n=1

N�

�̃n�t̃��n�r̃� �B3�

and similarly for q̃ on ��n�x̃��n=1
Nq , and we use those same

basis sets as test functions in Eqs. �B1� and �B2�. Further, the
solution is periodic in time, so we discretize on a set of M
equispaced points t̃m=m�t̃, m=1,2 , . . . ,M, over one period,
and use the leapfrog finite-difference scheme �t̃q̃n�t̃m�
��q̃n�t̃m+1�− q̃n�t̃m−1�� /2�t̃ to evaluate the time derivative in

Eq. �B1�.
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The full coupled problem for all M time steps is solved
numerically by damped Newton iterations, using the com-
mercial finite-element software FEMLAB to define the basis
functions �n�r̃� and �n�x̃� and to evaluate the Jacobian ma-
trix of the discretized problem. In the frequency-voltage
maps in Figs. 11 and 13 there are five data points per decade
for both frequency and voltage. The convergence of the
Newton iterations is accelerated by a continuation scheme
where the converged solution at one frequency is used as
initial guess for the next solution at higher frequency and the
same voltage; at the lowest frequency, we use the solution
from lower voltage as initial guess when stepping to higher
voltage.

With nonlinear Debye layer capacitance but no Faradaic

currents, we obtain fairly accurate results with a coarse time

11, 263 �2001�.
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resolution of M =16: When compared to a fine resolution

result at M =64, the maximal relative error on Ũ is less than

1% �3%� for Ṽ0101 �103�, whereas the maximal relative
error on q̃ is about twice as large. Figures 11 and 12 show the
results for M =64. With Faradaic current injection, the charg-
ing and decharging of the Debye layer becomes very rapid at
high voltage, which makes the solution more demanding:
Comparing results for M =64 and M =128 we find that the

maximal relative error on Ũ is less than 0.1% �1.5%� for

Ṽ0101 �103�, but that the corresponding error on q̃ is as
large as 0.5% �20%�. However, one should keep in mind that
at high voltage our weakly nonlinear model also becomes
physically inadequate for reasons discussed in Secs.
VI D–VI F. Figures 13 and 14 show results for M =128.
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