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SUMMARY

We present a versatile high-level programming-language implementation of non-linear topology opti-
mization. Our implementation is based on the commercial software package FEMLAB, and it allows
a wide range of optimization objectives to be dealt with easily. We exemplify our method by studies
of steady-state Navier–Stokes flow problems, thus extending the work by Borrvall and Petersson on
topology optimization of fluids in Stokes flow (Int. J. Num. Meth. Fluids 2003; 41:77–107). We
analyse the physical aspects of the solutions and how they are affected by different parameters of the
optimization algorithm. A complete example of our implementation is included as FEMLAB code in
an appendix. Copyright � 2005 John Wiley & Sons, Ltd.
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1. INTRODUCTION

The material distribution method in topology optimization was originally developed for stiffness
design of mechanical structures [1] but has now been extended to a multitude of design
problems in structural mechanics as well as to optics and acoustics [2–5]. Recently Borrvall
and Petersson introduced the method for fluids in Stokes flow [6]. However, it is desirable to
extend the method to fluids described in a full Navier–Stokes flow; a direction pioneered by
the work of Sigmund and Gersborg-Hansen [7–9].

In the present work we present such an extension by introducing a versatile high-level
programming-language implementation of non-linear topology optimization, based on the com-
mercial software package FEMLAB. It has a wider range of applicability than the Navier–Stokes
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problems studied here, and moreover it allows a wide range of optimization objectives to be
dealt with easily.

Extending the topology optimization method to new physical domains generally involves
some rethinking of the design problem and some ‘trial and error’ to determine suitable design
objectives. It also requires the numerical analysis and implementation of the problem, e.g.
using the finite element method (FEM). This process is accelerated a lot by using a high-level
FEM library or package that allows different physical models to be joined and eases the tasks
of geometry setup, mesh generation, and postprocessing. The disadvantage is that high-level
packages tend to have rather complex data structure, not easily accessible to the user. This
can complicate the actual implementation of the problem because the sensitivity analysis is
traditionally formulated in a low-level manner.

In this work we have used the commercial finite-element package FEMLAB both for the
solution of the flow problem and for the sensitivity analysis required by the optimization
algorithm. We show how this sensitivity analysis can be performed in a simple way that is
almost independent of the particular physical problem studied. This approach proves even more
useful for multi-field extensions, where the flow problem is coupled to, e.g. heat conduction,
convection–diffusion of solutes, and deformation of elastic channel walls in valves and flow
rectifiers [10].

The paper is organized as follows: In Section 2 we introduce the topology optimization
method for fluids in Navier–Stokes flow, and discuss the objective of designing fluidic devices
or channel networks for which the power dissipation is minimized. In Section 3 we express
the Navier–Stokes equations in a generic divergence form that allows them to be solved with
FEMLAB. This form encompasses a wide range of physical problems. We also work out the
sensitivity analysis for a class of integral-type optimization objectives in such a way that the
built-in symbolic differentiation tools of FEMLAB can be exploited. In Section 4 we present our
two numerical examples that illustrates different aspects and problems to consider: The first
example deals with designing a structure that can guide the flow in the reverse direction of an
applied pressure drop. The general outcome of the optimization is an S-shaped channel, but
the example illustrates how the detailed structure depends on the choice of the parameters of
the algorithm. The second example deals with a four terminal device where the fluidic channel
design that minimizes the power dissipation shows a Reynolds number dependence. As the
Reynolds number is increased a transition occurs between two topologically different solutions,
and we discuss how the position of the transition depends on the choice of initial conditions.
Finally in the appendix we include a transcript of our FEMLAB code required for solving
the second numerical example. The code amounts to 111 lines—excluding the optimization
algorithm that can be obtained by contacting Svanberg [11–13].

2. TOPOLOGY OPTIMIZATION FOR NAVIER–STOKES FLOW IN STEADY STATE

Although our high-level programming-language implementation is generally applicable we have
chosen to start on the concrete level by treating the basic equations for our main example: the
full steady-state Navier–Stokes flow problem for incompressible fluids.

We consider a given computational domain � with appropriate boundary conditions for the
flow given on the domain boundary ��. The goal of the optimization is to distribute a certain
amount of solid material inside � such that the material layout defines a fluidic device or
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channel network that is optimal with respect to some objective, formulated as a function of
the variables, e.g. minimization of the power dissipated inside the domain.

The basic principle in the material distribution method for topology optimization is to replace
the original discrete design problem with a continuous one where the material density is allowed
to vary continuously between solid and void [2]. Thus in our flow problem we assume the design
domain to be filled with some idealized porous material of spatially varying permeability. Solid
wall and open channels then correspond to the limits of very low and very high permeability,
respectively.

In the final design there should preferably be no regions at intermediate permeability since
otherwise it cannot be interpreted as a solution to the original discrete problem. Alternatively it
may be possible to fabricate the device from polymeric materials such as PDMS that naturally
have a finite permeability to the fluid [14].
2.1. Governing equations for flow in idealized porous media

We assume that the fluid flowing in the idealized porous medium is subject to a friction force f
which is proportional to the fluid velocity v, c.f. Darcy’s law. Thus f = − �v, where �(r) is
the inverse of the local permeability of the medium at position r. These properties of the
idealized porous medium may only be approximately valid for an actual medium. However,
the assumptions are not in conflict with any fundamental physical law, and since the converged
solutions contain only solid walls and open channels, the specific nature of the idealized porous
medium is of no consequence.

The flow problem is described in terms of the fluid velocity field v(r) and pressure p(r).
The governing equations are the steady state Navier–Stokes equation and the incompressibility
constraint

�(v · ∇)v = ∇ · � − �v (1)

∇ · v = 0 (2)

where � is the mass density of the fluid. For an incompressible Newtonian fluid the compo-
nents �ij of the Cauchy stress tensor � are given by

�ij = − p�ij + �

(
�vi

�xj

+ �vj

�xi

)
(3)

where � is the dynamic viscosity. The formalism is valid in three dimensions, but for simplicity
we shall consider only two-dimensional problems, i.e. we assume translational invariance in
the third dimension and set r = (x1, x2) and v = (v1(r), v2(r)). The boundary conditions will
typically be either Dirichlet type specifying the velocity field v on the boundary or Neumann
type specifying the external forces n · �.

It is convenient to introduce a design variable field �(r) controlling the local permeability
of the medium. We let � vary between zero and unity, with � = 0 corresponding to solid
material and � = 1 to no material. Following Reference [6] we then relate the local inverse
permeability �(r) to the design field �(r) by the convex interpolation

�(�) ≡ �min + (�max − �min)
q[1 − �]
q + �

(4)
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where q is a real and positive parameter used to tune the shape of �(�). Ideally, impermeable
solid walls would be obtained with �max = ∞, but for numerical reasons we need to choose a
finite value for �max. For the minimal value we choose �min = 0.‡

For a given material distribution �(r) there are two dimensionless numbers characterizing
the flow, namely the Reynolds number

Re = ��v

�
(5)

describing the ratio between inertia and viscous forces, and the Darcy number

Da = �

�max�2 (6)

describing the ratio between viscous and porous friction forces. Here � is a characteristic length
scale of the system and v a characteristic velocity.

Almost impermeable solid material is obtained for very low Darcy numbers, in practice
Da � 10−5. Further insight into the meaning of the Darcy number is gained by considering
Poiseuille flow in a channel or slit of width � between two infinite parallel plates of porous
material. In this case the fluid velocity inside the porous walls decays on a length scale �Da ,
where �Da = √

Da � = √
�/�max. See also Section 4.1.1 for details on how the flow depends

on Da.

2.2. Power dissipation

In the pioneering work by Borrvall and Petersson [6] the main focus was on minimizing the
power dissipation in the fluid. The total power � dissipated inside the fluidic system (per unit
length in the third dimension) is given by [15]

�(v, p, �) =
∫

�

[
1

2
�
∑
i, j

(
�vi

�xj

+ �vj

�xi

)2

+∑
i

�(�)v2
i

]
dr (7a)

In steady-state this is equal to the sum of the work done on the system by the external forces
and the kinetic energy convected into it

�(v, p, �) =
∫

��

∑
i, j

[
ni�ij vj − nivi

(
1
2 �v2

j

)]
ds (7b)

Here n is a unit outward normal vector such that n ·� is the external force acting on the system
boundary and n · � · v is the work done on the system by this force. Moreover, in the common
case where the geometry and boundary conditions are such that the no-slip condition v = 0

‡Borrvall and Petersson suggest a model for plane flow between two parallel surfaces of varying separation h(r).
The power dissipation due to out-of-plane shears is modelled by an absorption term −�v, where v(r)
is the average velocity between the surfaces and �(r) = 12�/h(r)2. In their model it is therefore natural to
operate with a non-zero �min = 12�/h2

max in Equation (4).
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applies on all external solid walls, while on the inlet and outlet boundaries v is parallel to n
and (n · ∇) v = 0,� Equation (7b) reduces to

�(v, p, �) =
∫

��
−n · v

(
p + 1

2�v2) ds (7c)

Borrvall and Petersson showed that for Stokes flow with Dirichlet boundary conditions
everywhere on the boundary ��, the problem of minimizing the total power dissipation inside
the fluidic device subject to a volume constraint on the material distribution is mathematically
well-posed. Moreover it was proven that in the case where �(�) is a linear function, the optimal
material distribution is fully discrete-valued.

When �(�) is not linear but convex then the solid/void interfaces in the optimal solution
are not discrete zero/unity transitions but slightly smeared out. Convexity implies that the
(negative value of the) slope of � at � = 0 is larger than at � = 1; therefore there will be a
neighbourhood around the discrete interface where it pays to move material from the solid side
to the void. Using the interpolation in Equation (4) we have �′(0) = (�min − �max)(1 + q)/q

and �′(1) = (�min − �max)q/(1 + q). For large values of q the interpolation is almost linear and
we expect almost discrete interfaces, whereas for small q we expect smeared out interfaces in
the optimized solution.

Consider the case when Equation (7c) applies. If the system is driven with a prescribed
flow rate then minimizing the total power dissipation is clearly equivalent to minimizing the
pressure drop across the system. Conversely, if the system is driven at a prescribed pressure
drop, then the natural design objective will be to maximize the flow rate which is equivalent
to maximizing the dissipated power, c.f. Equation (7c). In either case the objective can be
described as minimizing the hydraulic resistance of the system.

For problems with more complex design objectives, such as a minimax problem for the
flow rate through several different outlets, there will typically be no analog in terms of total
dissipated power. In such cases there is no guarantee for the existence of a unique optimal
solution and one has to be extra careful when formulating the design problem.

3. GENERALIZED FORMULATION OF THE OPTIMIZATION PROBLEM

For a given material distribution we solve the Navier–Stokes flow problem using the commercial
finite element software FEMLAB. It provides both a graphical front-end and a library of high-
level scripting tools based on the MATLAB programming language, and it allows the user to
solve a wide range of physical problems by simply typing in the strong form of the governing
equations as text expressions. The equations must then comply with a generic divergence form
that eases the conversion to weak form required for the finite element solution. However, that
is not a severe constraint since this is the natural way of expressing most partial differential
equations originating from conservation laws.

Since we have chosen fluidics as our main example, we begin by expressing the incompress-
ible Navier–Stokes flow problem in divergence form. Then we state the optimization problem

�In particular this is the case when the inlets and outlets are chosen as straight channels sufficiently long that
prescribing a parabolic Poiseuille profile can be justified, see Figures 1 and 6.
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with a general form of the design objective function and perform the discretization and sen-
sitivity analysis based on this generalized formulation. We stress that although for clarity our
examples are formulated in two dimensions only, the method is fully applicable for 3D systems.

3.1. The flow problem in divergence form

We first introduce the velocity–pressure vector u = [v1, v2, p] and define for i = 1, 2, 3 the quan-
tities �i and Fi as

�1 ≡
[

�11

�21

]
, �2 ≡

[
�12

�22

]
, �3 ≡

[
0

0

]
(8)

and

F1 ≡ �(v · ∇)v1 + �(�)v1, F2 ≡ �(v · ∇)v2 + �(�)v2, F3 ≡ ∇ · v (9)

Using this, Equations (1) and (2) can be written in divergence form as

∇ · �i = Fi in �, Governing equations (10a)

Ri = 0 on ��, Dirichlet b.c. (10b)

−n · �i = Gi +
3∑

j=1

�Rj

�ui

�j on ��, Neumann b.c. (10c)

where �i and Fi are understood to be functions of the solution u, its gradient ∇u, and of the
design variable �. The quantity Ri(u, �) in Equation (10b) describes Dirichlet type boundary
conditions. For example, fluid no-slip boundary conditions are obtained by defining R1 ≡ v1 and
R2 ≡ v2 on the external solid walls. The quantity Gi(u, �) in Equation (10c) describe Neumann
type boundary conditions, and �i denote the Lagrange multiplier necessary to enforce the
constraint Ri = 0, e.g. the force with which the solid wall has to act upon the fluid to enforce
the no-slip boundary condition. Of course, it is not possible to enforce both Dirichlet and
Neumann boundary conditions for the same variable simultaneously. Only when the variable ui

is not fixed by any of the Dirichlet constraints Rj does the Neumann condition Gi come into
play, as all �Rj/�ui vanish and the Lagrange multipliers �j are decoupled from Equation (10c).
Inactive Dirichlet constraints can be obtained simply by specifying the zero-function Ri ≡ 0,
that also satisfies Equation (10b) trivially.

3.2. The objective function

In general the design objective for the optimization is stated as the minimization of a certain
objective function �(u, �). We shall consider a generic integral-type objective function of the
form

�(u, �) =
∫

�
A(u, �) dr +

∫
��

B(u, �) ds (11)
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In particular, we can treat the design objective of minimizing the power dissipation inside the
fluidic domain by taking, c.f. Equation (7a)

A ≡ 1

2
�
∑
i, j

(
�vi

�xj

+ �vj

�xi

)2

+∑
i

�(�)v2
i in � and B ≡ 0 on �� (12)

Alternatively, the objective of maximizing the flow out through a particular boundary seg-
ment ��o is obtained by choosing

A ≡ 0 in � and B ≡
{−n · v on ��o

0 on ��\��o

(13)

and objectives related to N discrete points rk can be treated using Dirac delta functions as

A ≡
N∑

k=1
Ak(u, �)�(r − rk) in � and B ≡ 0 on �� (14)

Finally we stress that not all optimization objectives lend themselves to be expressed in the form
of Equation (11)—an example of which is the problem of maximizing the lowest vibrational
eigenfrequency in structural mechanics.

3.3. Optimization problem

The optimal design problem can now be stated as a continuous constrained non-linear opti-
mization problem

min
�

�(u, �) (15a)

subject to :
∫

�
�(r)dr − �|�| � 0, Volume constraint (15b)

: 0 � �(r) � 1, Design variable bounds (15c)

: Equations (10a)–(10c), Governing equations (15d)

With the volume constraint we require that at least a fraction 1 − � of the total volume |�|
should be filled with porous material.

The very reason for replacing the original discrete design problem with a continuous one by
assuming a porous and permeable material, is that it allows the use of efficient mathematical
programming methods for smooth problems. We have chosen the popular method of moving
asymptotes (MMA) [11, 12], which is designed for problems with a large number of degrees-
of-freedom and thus well-suited for topology optimization [2]. It is a gradient-based algorithm
requiring information about the derivative with respect to � of both the objective function �
and the constraints. Notice that for any � the governing equations allow us to solve for u;
therefore in effect they define u[�] as an implicit function. The gradient of � is then obtained
using the chain rule

d

d�
[�(u[�], �)] = ��

��
+
∫

�

��

�u
· �u

��
dr (16)
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However, because u[�] is implicit, it is impractical to evaluate the derivative �u/�� directly.
Instead, we use the adjoint method to eliminate it from Equation (16) by computing a set of
Lagrange multipliers for Equations (10a)–(10c) considered as constraints [16]. For details see
Section 3.4.

The optimization process is iterative and the kth iteration consists of three steps:

(i) Given a guess �(k) for the optimal material distribution we first solve Equations
(10a)–(10b) for u(k) as a finite element problem using FEMLAB.

(ii) Next, the sensitivity analysis is performed where the gradient of the objective and con-
straints with respect to � is evaluated. In order to eliminate �u/�� from Equation (16)
we solve the adjoint problem of Equations (10a)–(10c) for the Lagrange multip-
liers ũ(k), also using FEMLAB.

(iii) Finally, we use MMA to obtain a new guess �(k+1) for the optimal design based on
the gradient information and the past iteration history.

Of the three steps, (i) is the most expensive computationalwise since it involves the solution
of a non-linear partial differential equation.

3.4. Discretization and sensitivity analysis

The starting point of the finite element analysis is to approximate the solution component ui

on a set of finite element basis functions {	i,n(r)}
ui(r) =∑

n

ui,n 	i,n(r) (17)

where ui,n are the expansion coefficients. Similiarly, the design variable field �(r) is expressed
as

�(r) =∑
n

�n 	4,n(r) (18)

For our incompressible Navier–Stokes problem we use the standard Taylor–Hood element pair
with quadratic velocity approximation and linear pressure. For the design variable we have
chosen the linear Lagrange element.¶

The problem Equations (10a)–(10c) is discretized by the Galerkin method and takes the
form

Li (U, �) −
3∑

j=1
NT

ji�j = 0 and Mi (U, �) = 0 (19)

where Ui , �i , and � are column vectors holding the expansion coefficients for the solution ui,n,
the Lagrange multipliers �i,n, and the design variable field �n, respectively. The column vec-
tor Li contains the projection of Equation (10c) onto 	i,n which upon partial integration

¶Another common choice is the discontinuous and piecewise constant element for the design variable. Notice
that for second and higher order Lagrange elements the condition 0 � �n � 1 does not imply 0 � �(r)� 1 for
all r because of overshoot at sharp zero-to-unity transitions in �. This in turn can result in negative �, c.f.
Equation (4), which is unphysical and also destroys the convergence of the algorithm.

Copyright � 2005 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2006; 65:975–1001



TOPOLOGY OPTIMIZATION OF STEADY-STATE NAVIER–STOKES FLOW 983

is given by

Li,n =
∫

�
(	i,nFi + ∇	i,n · �i ) dr +

∫
��

	i,nGi ds (20)

The column vector Mi contains the pointwise enforcement of the Dirichlet constraint
Equation (10b)

Mi,n = Ri(u(ri,n)) (21)

Finally, the matrix Nij = − �Mi/�Uj describes the coupling to the Lagrange multipliers in
Equation (10c). The solution of the non-linear system in Equation (19) above corresponds to
step (i) in kth iteration. The sensitivity analysis in step (ii) requires us to compute

d

d�
[�(U(�), �)] = ��

��
+

3∑
i=1

��

�Ui

�Ui

��
(22a)

which is done using the standard adjoint method [16]. By construction we have for any �
that Li (U(�), �) −∑3

j = 1 NT
ji�j (�) = 0 and Mi (U(�), �) = 0. Therefore also the derivative of

those quantities with respect to � is zero, and adding any multiple, say Ũi and �̃i , of them to
Equation (22a) does not change the result

d

d�
[�(U(�), �)] = ��

��
+

3∑
i=1

��

�Ui

�Ui

��
+

3∑
i=1

[
ŨT

i

�
��

(
Li −

3∑
j=1

NT
ji�j

)
− �̃

T
i

�
��

(Mi )

]

= ��

��
+

3∑
i=1

(
ŨT

i

�Li

��
− �̃

T
i

�Mi

��

)
+

3∑
i=1

[
��

�Ui

+
3∑

j=1

(
ŨT

j

�Lj

�Ui

+ �̃
T
j Nji

)]
�Ui

��

−
3∑

i=1

[
3∑

j=1
ŨT

j NT
ij

]
��i

��
(22b)

Here we see that the derivatives �Ui/�� and ��i/�� of the implicit functions can be eliminated
by choosing Ũi and �̃i such that

3∑
j=1

(KT
jiŨj − NT

ji�̃j ) = ��

�Ui

and
3∑

j=1
Nij Ũj = 0 (23)

where we introduced Kij = − �Li/�Uj . This problem is the adjoint of Equation (19) and Ũ
and �̃ are the corresponding Lagrange multipliers.

In deriving Equation (22b) we implicitly assumed that Nij is independent of �, i.e. that the
constraint Ri(u, �) is a linear function. If this is not true then the gradient ��/�� computed from
Equation (22b) is not exact, which may lead to poor performance of the optimization algorithm
if the constraints are strongly non-linear. In order to avoid such problems it is necessary to
include the non-linear parts of the constraint vector M into L and move the corresponding
Lagrange multipliers from � into U. While this is beyond the scope of the divergence form

Copyright � 2005 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2006; 65:975–1001



984 L. H. OLESEN, F. OKKELS AND H. BRUUS

discussed in Section 3.1, it is certainly possible to deal with such problems in FEMLAB.
Also the sensitivity analysis above remains valid since it relies only on the basic form of
Equation (19) for the discretized problem.

3.5. Implementation aspects

We end this section by discussing a few issues on the implementation of topology optimization
using FEMLAB.

Firstly there is the question of how to represent the design variable �(r). The governing
equations as expressed by �i and Fi in Equation (10a) depend not only on the solution u
but also on �, and the implementation should allow for this dependence in an efficient way.
Here our simple and straightforward approach is to include � as an extra dependent variable
on equal footing with the velocity field and pressure, i.e. we append it to the velocity–pressure
vector, redefining u as

u ≡ [v1, v2, p, �] (24)

This was already anticipated when we denoted the basis set for � by {
4,n(r)}. By making �
available as a field variable we can take full advantage of all the symbolic differentiation, matrix,
and postprocessing tools for analysing and displaying the material distribution. Appending � to
the list of dependent variables we are required to define a fourth governing equation. However,
since we are never actually going to solve this equation, but rather update � based on the
MMA step, we simply define

�4 ≡
[

0

0

]
, F4 ≡ 0, G4 ≡ 0, R4 ≡ 0. (25)

It is crucial then that the finite element solver allows different parts of the problem to be
solved in a decoupled manner, i.e. it must be possible to solve Equations (10a)–(10c) for ui

for i = 1, 2, 3 while keeping u4, i.e. �, fixed.
In FEMLAB the non-linear problem Equation (19) is solved using damped Newton itera-

tions [17]. Therefore, the matrices Kij = − �Li/�Uj and Nij = − �Mi/�Uj appearing in the
adjoint problem Equation (23) are computed automatically as part of the solution process and
can be obtained directly as MATLAB sparse matrices. They are given by

Kij,nm = −
∫

�

(
	i,n

[
�Fi

�uj

	j,m + �Fi

�∇uj

· ∇	j,m

]
+ ∇	i,n

·
[
��i

�uj

	j,m + ��i

�∇uj

· ∇	j,m

])
dr −

∫
��

	i,n

�Gi

�uj

	j,m ds (26)

and

Nij,nm = − �Ri

�uj

∣∣∣∣
ri, n

	j,m(ri,n) (27)
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Regarding the right-hand side vector ��/�Ui in Equation (23), notice that for a general objective
as Equation (11), it has the form

��

�ui,n

=
∫

�

(
�A
�ui

+ �A
�∇ui

· ∇
)

	i,n dr +
∫

��

�B

�ui

	i,n ds (28)

It is not in the spirit of a high-level finite element package to program the assembly of this
vector by hand. Instead we employ the built-in assembly subroutine of FEMLAB. We construct a
copy of the original problem sharing the geometry, finite element mesh, and degree-of-freedom
numbering with the original. Only we replace the original fields �i , Fi , and Gi with

�̃i ≡ �A
�∇ui

, F̃i ≡ �A
�ui

and G̃i ≡ �B

�ui

(29)

Assembling the right-hand-side vector L̃i with this definition yields exactly Equation (28), c.f.
Equation (20). An extra convenience in FEMLAB is that we can rely on the built-in symbolic
differentiation tools to compute the derivatives �A/�ui , etc. In order to try out a new objective
for the optimization problem, the user essentially only needs to change the text expressions
defining the quantities A and B.

After solving the adjoint problem Equation (23) for Ũi and �̃i to eliminate �Ui/��
and ��i/�� for i = 1, 2, 3 in Equation (22b) we can evaluate the sensitivity

d

d�
[�(U, �)] = ��

��
+

3∑
j=1

(
�Lj

��

)T

Ũj −
(

�Mj

��

)T

�̃j

= L̃4 −
3∑

j=1
(KT

j4Ũj − NT
j4�̃j ) (30)

where Ki4 = − �Li/��, Ni,4 = − �Mi/��, and L̃4 = ��/�� in accordance with U4 ≡ �. Since
the fourth variable � is treated on equal footing with the other three variables, all expressions
required to compute the matrices Ki,4 and Ni,4 come out of the standard linearization of the
problem. This is yet another advantage of including � as an extra dependent variable.

When dealing with a problem with a volume constraint as in Equation (15b), it is necessary
to compute the derivative of the constraint with respect to �

�
��n

[
1

|�|
∫

�
�(r) dr − �

]
= 1

|�|
∫

�
	n,4(r) dr (31)

which can be obtained by assembling L̂4 with �̂4 ≡ 0, F̂4 ≡ 1, and Ĝ4 ≡ 0. In the appendix we
have included a transcript of the code required to set up and solve the example from Section 4.2
below with FEMLAB. It amounts to 111 lines of code, of which the majority are spent on setting
up the actual Navier–Stokes flow problem. Only a minor part goes to set up the adjoint problem
and perform the sensitivity analysis. Moreover, this part contains almost no reference to the
actual physical problem being solved, and therefore it should apply for any multi-field problem
expressed in the divergence form Equations (10a)–(10c) with an objective function of the form
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of Equation (11). The code example employs, but does not include, a MATLAB implementation
of the MMA optimization algorithm [11–13].

3.5.1. Mesh dependence and regularization techniques. It is well known that many topology
optimization problems have trouble with mesh dependence, e.g. in stiffness design of mechanical
structures it often pays to replace a thick beam with two thinner beams for a given amount of
material. As the finite element mesh is refined, smaller and smaller features can be resolved and
therefore appear in the optimized structure. In that sense the flow problem that we consider
here is atypical because it is generally unfavourable to replace a wide channel with two
narrower channels; hence the proof for the existence of a unique optimal solution with respect
to minimization of the total power dissipation in Reference [6].

The problem with mesh dependence can be overcome by various regularization techniques
based on filtering of either the design variable �(r) or the sensitivity d�/d� [2]. The regular-
ization works by defining a certain length scale r0 below which any features in �(r) or d�/d�
are smeared out by the filter; in both cases this results in optimized structures with a minimal
feature size ∼ r0 independent of the mesh refinement. Unfortunately FEMLAB does not come
with such a filter, and hence its implementation is an issue that has to be dealt with before
our methodology here can be successfully applied to problems that display mesh dependence.

One strategy is to implement the convolution operation of the filter directly [2]. If the
computational domain is rectangular and discretized by square finite elements this is both
efficient and fairly easy to program, if not one simply uses a standard filter from the MATLAB

Image Processing Toolbox. For an unstructured mesh of triangular elements the programming
is more involved and slow in MATLAB due to the need to loop over the design variable nodes
and searching the mesh for neighbouring nodes within the filter radius. Therefore an explicit
matrix representation of the filter would often be preferred [18].

Another possible strategy is to solve an artificial diffusion problem for the design variable �(r)
over some period in ‘time’ �t = r2

0 /k where k is the ‘diffusion’ constant. The diffusion equation
could be included into the fields of Equation (29) that are otherwise unused, and the ‘time’
evolution solved using the built-in timestepper in FEMLAB. This procedure is equivalent to
the action of a filter with Gaussian kernel of width r0, and it conserves the total amount of
material during the filter action. The same approach could be used to smooth out the sensitivity.
However, because d�/d�n is sensitive to the local element size one would need to rescale it
with

∫
� 
4,n(r) dr before application of the filter—actually this is true for any filter acting

on d�/d� whenever the mesh is irregular and
∫
� 
4,n(r) dr not constant for all n.

The major disadvantage of this strategy is that it involves solving a time evolution problem
in each design iteration which could easily turn out to be the most time-consuming step.
Alternatively the timestepping algorithm could be implemented by hand, e.g. deciding on the
Crank–Nicholson algorithm with a fixed stepsize �t ��t . The mass and stiffness matrices for
the diffusion problem can be obtained from FEMLAB, and the corresponding iteration matrix
need only be factorized once for the given stepsize and could thus be reused in all subsequent
design iterations, making this approach relatively cheap, although more cumbersome than using
the built-in timestepper.

3.5.2. Large-scale problems. For large-scale problems and three-dimensional modelling it is
often necessary to resort to iterative linear solvers because the memory requirements of a
direct matrix factorization becomes prohibitive. In that case the strategy we have outlined
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here of obtaining the K and N matrices directly as sparse matrices in MATLAB and simply
transposing K before the solution of the adjoint problem may not be practical. Alternatively, if
the original physical problem is expressed in divergence form then the FEMLAB representation
of that problem contains the symbolic derivatives of �i , Fi , and Gi appearing in Equation (26).
These fields can be transposed and set in the auxiliary copy of the original problem such that it
effectively defines K̃ij = KT

ji , while retaining the definitions in Equation (29) for the right-hand

side vector L̃i . Then the adjoint problem Equation (23) can be solved without direct handling
of the matrices in MATLAB, and using the same iterative solver algorithm as would be employed
for the original physical problem. Ultimately we still require an explicit representation of the
matrices Ki,4 and Ni,4 to evaluate the sensitivity d�/d� in Equation (30).

From our point of view the major advantage of using FEMLAB in its present stage of
development for topology optimization is not in solving large scale problems, though, but
rather in the ease of implementation and the ability to handle problems with coupling between
several physical processes.

4. NUMERICAL EXAMPLES

In this section we present our results for topology optimization of Navier–Stokes flow for
two particular model systems that we have studied. These systems have been chosen because
they illustrate the dependence of the solution on the two dimensionless numbers Re and Da,
measuring the importance of the inertia of the fluid and the permeability of the porous medium,
respectively, relative to viscosity. Moreover we discuss the dependence of the solution on the
initial condition for the material distribution.

For simplicity and clarity we have chosen to consider only two-dimensional model systems.
We note that the dimensionality of the problems has no fundamental consequence for the method
and the numerics, but only affects computer memory requirements and the demand for CPU
time. Our 2D examples can therefore be viewed as idealized test cases for our implementation
of topology optimization. Yet, the 2D models are not entirely of academic interest only as they
represent two limits of actual 3D systems. Due to planar process technology many contemporary
lab-on-a-chip systems have a flat geometry with typical channel heights of about 10 �m and
widths of 1 mm, i.e. an aspect ratio of 1:100 [14]. One limit is the case where the channel
width is constant and the channel substrate and lid are patterned with a profile that is translation
invariant in the transverse (width) direction. In the limit of infinitely wide channels the 2D-
flow in the plane perpendicular to the width-direction is an exact solution, while it remains
an excellent approximation in a 1:100 aspect ratio channel. This is the model system we have
adopted for the numerical examples in the present work. The other important limit is when
the channel width is not constant, but the channel height is sufficiently slowly varying that
the vertical component of the fluid velocity can be neglected. Then writing the Navier–Stokes
equation for the velocity averaged in the vertical (height) direction, the out-of-plane shear
imposed by the channel substrate and lid gives rise to an absorption term −�v. This approach
was studied by Borrvall and Petersson [6], see also the footnote in Section 2.1. Thus, if
one is interested in optimizing the height-averaged flow field in a flat channel the 2D model
is sufficient.

When solving the Navier–Stokes flow problem we use the standard direct linear solver
in FEMLAB in the Newton iterations. Typically we have around 6000 elements in the mesh,
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corresponding to 30 000 degrees-of-freedom. The constrained optimization problem is solved
using a MATLAB implementation of the MMA algorithm kindly provided by Svanberg [11, 13],
except that we modified the code to use the globally convergent scheme described in
Reference [12]. The example script included in the appendix employs only the basic algo-
rithm mmasub, though. The design iterations are stopped when the maximal change in the
design field is ‖�(k+1)−�(k)‖∞ � 0.01, at which point we typically have |�(k+1)−�(k)| < 10−5.

4.1. Example: a channel with reverse flow

Our first numerical example deals with the design of a structure that at a particular point inside
a long straight channel can guide the flow in the opposite direction of the applied pressure drop.
The corresponding problem with a prescribed flow rate was first suggested and investigated
by Gersborg-Hansen [8]. We elaborate on it here to illustrate the importance of the choice of
permeability for the porous medium.

The computational domain is shown in Figure 1. It consists of a long straight channel of
height � and length L = 10�; the actual design domain, inside which the porous material is
distributed, is limited to the central part of length 5�. The boundary conditions prescribe a
pressure drop of �p from the inlet (left) to the outlet (right), and no-slip for the fluid on the
channel side walls.

The optimization problem is stated as a minimization of the horizontal fluid velocity at the
point r∗ at the centre of the channel, i.e. the design objective is

� = v1(r∗) (32)

In terms of the general objective Equation (11) this is obtained with A ≡ v1(r)�(r − r∗) and
B≡0. There is no explicit need for a volume constraint because neither of the extreme solutions
of completely filled or empty can be optimal. When the design domain is completely filled
with porous material we expect a flat flow profile with magnitude below �p/(5��max). In the
other extreme case when the channel is completely devoid of porous material the solution is
simply a parabolic Poiseuille profile with maximum

v0 = �2

8�

�p

L
(33)

However, a structure that reverses the flow such that v1(r∗) becomes negative will be superior
to both these extreme cases in the sense of minimizing �.

�

2.5� 5� 2.5�

p0+∆p p0

r∗

Figure 1. Computational domain for the reverse flow example. The design domain (grey) has length 5�
and height �, and the fluid enters and leaves the design domain through leads of length 2.5�. The
boundary conditions prescribe a pressure drop of �p across the system, and the design objective is

to reverse the flow direction at the point r∗ at centre of the channel.
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4.1.1. Reverse flow in the Stokes limit, Re = 0. We first consider the Stokes flow limit of
small �p where the inertial term becomes negligible. The problem is then linear and the
solution is characterized by a single dimensionless parameter, namely the Darcy number Da,
Equation (6). We have solved the topology optimization problem for different values of Da.
The initial condition for the material distribution was �(0) = 1, and the parameter q determining
the shape of �(�) in Equation (4) was set to q = 0.1. Anticipating that the structural details
close to r∗ should be more important than those further away we chose a non-uniform finite
element mesh with increased resolution around r∗.

Figure 2 shows the optimal structures obtained for Da = 10−3, 10−4, 10−5 and 10−6. They
all consist of two barriers defining an S-shaped channel that guides the fluid in the reverse
direction of the applied pressure drop. At Da = 10−3 the two barriers are rather thick but leaky
with almost all the streamlines penetrating them; as the Darcy number is decreased the optimal
structures become thinner and less penetrable. This result can be interpreted as a trade-off
between having either thick barriers or wide channels. Thick barriers are necessary to force the
fluid into the S-turn, while at the same time the open channel should be as wide as possible
in order to minimize the hydraulic resistance and maximize the fluid flow at the prescribed
pressure drop.

Notice that if we had chosen to prescribe the flow rate through the device rather than the
pressure drop, then the optimal solution would have been somewhat different. When the flow
rate is prescribed, it pays to make the gap between the barriers very small and the barriers
very thick in order to force the fixed amount of fluid flow through the narrow contraction. The
optimal structure is therefore one with a very large hydraulic resistance. In Reference [8], this
problem was circumvented by adding a constraint on the maximal power dissipation allowed
at the given flow rate.

Figure 2. Optimized structures (black) and streamlines at 5% intervals for Stokes flow (Re = 0) at
Darcy numbers decreasing from 10−3 to 10−6. Only the central part of length 3� of the design
domain is shown. The structures consist of two barriers defining an S-shaped channel that reverses
the flow at the central point r∗. As the Darcy number is decreased, the optimized structures become

thinner and less permeable: (a) Da=10−3; (b) Da=10−4; (c) Da=10−5; and (d) Da=10−6.
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In order to validate the optimality of the structures computed by the topology optimization
we do as follows: For each of the optimized structures from Figure 2 we freeze the material
distribution and solve the flow problem for a range of Darcy numbers. The resulting family of
curves for v1(r∗) vs Da is shown in Figure 3 where it is seen that each of the four structures
from Figure 2 do indeed perform better in minimizing v1(r∗) than the others at the value
of Da for which they are optimized.

For Da � 10−5 the optimal value of v1(r∗) tends to saturate because the thin barriers are
then almost completely impermeable and the open channel cannot get much wider. In this
limit the thickness of the optimized barrier structures approach the mesh resolution as seen in
Figure 2(d). When the optimal barrier thickness gets below the mesh size we have observed
the appearance of artificial local optima for the barrier structure. The problem is that the thin
barriers cannot continuously deform into another position without going through an intermediate
structure with barriers that are thicker by at least one mesh element. Depending on the initial
condition, the optimization algorithm can therefore end up with a sub-optimal structure. We
have tried to work around this problem by decreasing the value of q in order to smear out the
solid/void interfaces and thus reduce the cost of going through the intermediate structure. This
did not work out well; the reason may be that the smearing property of a convex �(�) was
derived for the objective of minimizing the power dissipation subject to a volume constraint. In
the present example we are dealing with a different objective and have no volume constraint.
However, when the barrier structures are resolved with at least a few elements across them the
artificial local optima tend to be insignificant. Thus the problem can be avoided by choosing
a sufficiently fine mesh, or by adaptively refining the mesh at the solid/void interfaces.

Returning to Figure 3 we notice that as Da increases all the structures perform poorly in
minimizing v1(r∗), as they all approach v0. Extrapolating this trend one might suspect that
the S-turn topology will cease to be optimal somewhere above Da = 10−3 simply because the

Figure 3. Comparing the performance of the structures from Figure 2 optimized
at Daopt for different values of Da. The objective v1(r∗) is normalized with the

velocity in an empty channel, v0, c.f. Equation (33).
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Figure 4. Optimized structure (black) and streamlines for Stokes flow at Da = 10−2; only the central
part of length 3�. The design domain is completely filled with porous material, except immediately
above and below r∗ where two empty regions emerge. These voids divert the flow away from r∗,

resulting in a low velocity v1(r∗) = 0.1v0.

porous material becomes too permeable to make reversal of the flow direction possible. We have
tested this hypothesis by performing an optimization at Da = 10−2, resulting in the structure
shown in Figure 4 where the value of the objective is v1(r∗) = 0.1v0. It is seen to display a
different topology from those of Figure 2, with the design domain is almost completely filled
with porous material blocking the flow through the channel. Only immediately above and below
the point r∗ we see two empty regions emerging that act to guide the flow away from r∗.

Actually, in all four cases from Figure 2, starting from an empty channel the design iterations
initially converge towards a symmetric structure blocking the flow like that in Figure 4. However,
at a certain point in the iterations an asymmetry in the horizontal plane is excited and the
structure quickly changes to the two-barrier S-geometry. Whether the optimization converge to
an S- or an inverted S-turn depends on how the asymmetry is excited from numerical noise
or irregularity in the finite element mesh; in fact the structure in Figure 2(b) originally came
out as an inverted S but was mirrored by hand before plotting it to facilitate comparison with
the three other structures.

4.1.2. Reverse flow at finite Reynolds number. We now consider flow at finite Reynolds number,
characterized by the two dimensionless numbers Re and Da. The geometry and boundary
conditions remain unchanged, for convenience we introduce a non-dimensional pressure drop
�p̃ = �p � �2/�2, and finally we fix the Darcy number at Da = 10−5. We note from Figure 2
that this Darcy number allows some but not much fluid to penetrate the walls. We have
nevertheless chosen this Darcy number for practical reasons, as the walls are ‘solid’ enough
and a lower value (more ‘solid’ wall) would increase the calculation time.

We have solved the topology optimization problem for different values of �p̃, always using an
empty channel as initial condition. The results are shown in Figures 5(a)–(c) for �p̃ = 0.2, 0.5,

and 1.0 × 105, where only a few streamlines are seen to penetrate the barriers. For comparison
we also consider the flow field obtained when the structure optimized for Stokes flow at
Da = 10−5 is frozen and exposed to the three different elevated pressure drops. This is shown
in Figures 5(d)–(f): As the pressure drop is increased, more and more streamlines penetrate the
barriers. Moreover, we find a recirculation region emerging behind the second barrier which
reduces the pressure drop over the neck between the barriers.

Returning to Figures 5(a)–(c), we find that the structures that have been optimized for the
corresponding pressure drops are generally thicker than that optimized for Stokes flow, which
reduces the number of streamlines penetrating them. Also a beak-like tip grows on the second
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Figure 5. Optimized structures (black) and streamlines for Navier–Stokes flow; only a part of
length 3.25� near the centre of the channel is shown. Panels (a)–(c) to the left show the optimized
structures for different values of the control parameter �p̃ = �p��2/�2. For comparison the flow field
when the optimized structure from Figure 2(c) is frozen and exposed to the elevated pressure drops is
shown in panels (d)–(f) to the right. The Reynolds number is defined as Re = ��vmax/� where vmax
is the maximal velocity measured at the inlet; note that for a particular value of �p̃, the Reynolds
number is not fixed but differs slightly between left and right column: (a) �p̃ = 0.2 × 105 [Re = 23];
(b) �p̃ = 0.5 × 105 [Re = 42]; (c) �p̃ = 1.0 × 105 [Re = 64]; (d) �p̃ = 0.2 × 105 [Re = 26];

(e) �p̃ = 0.5 × 105 [Re = 47]; and (f) �p̃ = 1.0 × 105 [Re = 71].

barrier that acts to bend the fluid stream down. Finally, on the back of the second barrier a
wing- or spoiler-like structure appears that removes the recirculation.

In summary, our first example has demonstrated that our implementation of topology opti-
mization works, but that the optimal design and performance may depend strongly on the choice
of the Darcy number. In particular, the zero Da limit solution contains zero thickness and yet
impermeable barriers deflecting the fluid. In order to approximate this solution at finite Da and
on a finite resolution mesh it is important to choose the Darcy number small enough that even
thin barriers can be almost impermeable, but large enough to avoid difficulties with artificial
local optima in the discretized problem when the barrier thickness decreases below the mesh
resolution.

4.2. Example: a four-terminal device

Our second numerical example deals with minimization of the power dissipation in a four-
terminal device subject to a volume constraint. The problem is found to exhibit a discrete
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Figure 6. Schematic illustration of the four-terminal device. Two inlet and two outlet leads
(white areas) of height � and length 2� are attached to the design domain (grey) of height 5�
and length L. The flow is characterized by the Reynolds number Re = ��vmax/�, where vmax is

the maximal velocity at the inlets.

change in optimal topology driven by the inertial term. The four-terminal device is related to
one considered by Borrvall and Petersson for Stokes flow in Reference [6]; the present example
demonstrates that the optimization algorithm has difficulties in finding the optimal topology
when there are two strong candidates for the global optimum.

The computational domain, shown in Figure 6, consists of a rectangular design domain (grey)
to which two inlet and two outlet leads (white) are attached symmetrically. The boundary
conditions prescribe parabolic profiles for the flow at the inlets, zero pressure and normal flow
at the outlets, and no-slip on all other external boundaries. Choosing the height � of the leads as
our characteristic length scale, we define the Reynolds number as Re = ��vmax/�, where vmax
is the maximal velocity at the inlets. The Darcy number is fixed at Da = 10−4 to obtain
reasonably small leakage through the porous walls.

The optimization problem is stated as a minimization of the total power dissipation inside
the computational domain, given by Equation (7a), subject to the constraint that at most a
fraction � = 0.4 of the design domain should be without porous material, c.f. Equation (15b).

Figures 7(a) and (b) shows the two optimal structures obtained for Re = 20 and 200, respec-
tively, in a geometry with L = 3.5�. At Re = 20 the optimal structure turns out to be a pair of
U -turns connecting the inlets to the outlets on the same side of the design domain, while at
Re = 200 the optimal structure is a pair of parallel channels. In order to minimize the power
dissipation at low Re, the channel segments should be as short and as wide as possible, which
favours the U -turns in Figure 7(a). However, as the Reynolds number is increased, the cost
of bending the fluid stream grows. When inertia dominates, larger velocity gradients appear in
the long ‘outer lane’ of the U -turn. This increases the dissipation compared to low Re, where
more fluid flows in the shorter ‘inner lane’. At a certain point it will exceed the dissipation in
the parallel channels solution

�0 = 96

9

(
4 + L

�

)
�v2

max (34)
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Figure 7. Optimal structures (black) and streamlines at 10% intervals for the
four-terminal device at Reynolds number Re = 20 and 200, respectively, in a

geometry with L = 3.5�: (a) Re = 20; and (b) Re = 200.

as estimated from Poiseuille flow in two straight channels, each of length L+ 4� and height �.
This number is independent of inertia due to translation symmetry, and we use �0 as a natural
unit of power dissipation (per unit length in the third dimension) in the following.

Clearly the Reynolds number at which the transition between the two classes of solutions
occurs will depend strongly on the ratio L/�. For short lengths L � 2� the parallel channels
solution is expected to be optimal at all Re, whereas for long lengths L � 3� the U -turn
solution should be significantly better than the parallel channels solution at low Re.

4.2.1. Dependence on the Reynolds number. In the following we investigate more closely the
transition between the U -turns and the parallel channels solution as a function of the Reynolds
number for the particular geometry L = 3�. The topology optimization problem is solved for
different Re in the range 0–200, using a homogeneous material distribution �(0) = 0.4 as initial
condition. For the parameter q determining the shape of �(�) in Equation (4) we use a two-step
solution procedure as suggested in Reference [1]. First the problem is solved with q = 0.01
in order to obtain a solution with slightly smeared-out solid/void interfaces. Next this material
distribution is used as initial guess for an optimization with q = 0.1 which generates fully
discrete solid/void interfaces at the resolution of our finite element mesh.

Figure 8(a) shows the result for the normalized power dissipation �/�0 obtained as a
function of Re. At low Reynolds numbers the optimized solutions correctly come out as
U -turns with a power dissipation � that is clearly less than �0. However, at high Reynolds
numbers Re > 90 the method fails because the optimized solutions continue to come out as
U -turns even though this yields �/�0 > 1. For Re � 160 the solution jumps from the simple
U -turns to a hybrid structure, as shown in the inset. The full lines in Figure 8(a) show the
result when the material distributions optimized for Re = 0, 50, and 180, respectively, are frozen
and the power dissipation evaluated at different Re. It is seen that the optimized solutions,
marked (◦), all fall on or below the full lines which confirms that they are indeed superior to
the other solutions of the U -turn family. This also holds for Re > 90, except for the hybrid
structures at Re � 160, that are actually inferior to the U -turns. Moreover, at Re = 160 the
optimized solution falls slightly above that optimized at Re = 180. This could be an indication
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Figure 8. Power dissipation � in structures optimized for different Reynolds numbers; normalized
with the Poiseuille flow result �0 (dashed line): (a) markers (◦) show results when �(0) = 0.4 is used
as initial condition, failing to find the optimal solution for Re > 90. Full lines show the performance
of the structures optimized at Re = 0, 50, and 180, when evaluated at different Reynolds numbers.
As expected, all points fall on or below the full lines, except the hybrid solutions for Re � 160; and
(b) comparison between the two different initial conditions �(0) = 0.4 (◦) and �(0) = 1 (×), showing
the success of the empty channel initial condition in finding the optimal solution. The crosses (×) fall

slightly below �/�0 = 1 due to leakage through the porous walls (see the text).

that the hybrid structures are not local optima in design space after all, but rather a very narrow
saddle point that the optimization algorithm has a hard time getting away from.

The difficulty is that the two families of solutions, the U -turns and the parallel channels, are
both deep local minima for the power dissipation in design space. Using �(0) = 0.4 as initial
condition, the initial permeability is everywhere very low, such that the porous friction almost
completely dominates the inertia and viscous friction in the fluid. Therefore the iteration path
in design space is biased towards low Reynolds numbers and the U -turns solution.

In order to circumvent this problem we have tried using a completely empty design domain
with �(0) = 1 as initial condition. This should remove the bias towards the U -turns and allow
the optimization algorithm to take inertia into account from iteration one. The result is shown
in Figure 8(b). For Re � 80 the solutions are still U -turns, whereas for Re � 90 they come out
as parallel channels. Notice that �/�0 for the parallel channels solution is actually slightly less
than unity, namely 0.98. This is due to a small amount of fluid seeping through the porous
walls defining the device, which lowers the hydraulic resistance compared to the Poiseuille
flow result derived for solid walls.‖

Strictly speaking the initial condition �(0) = 1 is not a feasible solution because it violates
the volume constraint that at least a fraction 1 − � = 0.6 of the design domain should be filled

‖The flow in a straight channel of height � bounded by two porous walls of thickness � can easily be found
analytically. At Da = 10−4 the hydraulic resistance of this system is 94% of that for a channel of height �

bounded by solid walls, and it approaches this zero Da limit only as
√

Da. When L = 3� we therefore expect
a power dissipation �/�0 = (3×0.94+4)/7 = 0.97 for the parallel channels solution, including the leads. This
is close to the observed 0.98.
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Figure 9. Comparison between structures optimized with the initially non-feasible material distribution
�(0) = 1 for different penalty parameters in the MMA optimization algorithm, revealing the difficulty in
choosing the condition for finding the global optimum. Full line: the successful result from Figure 8(b)
with moderate penalty; (+) lower penalty yielding wrong result for 40 < Re < 80; (�) higher

penalty yielding wrong results for 80 < Re < 190.

with porous material. However, the MMA optimization algorithm penalizes this and reaches
a feasible solution after a few iterations. This is controlled by choosing a penalty parameter.
If the penalty for violating the constraint is small, the material is added slowly and only where
it does not disturb the flow much. If the penalty is large, the material is added quickly and
almost homogeneously until the constraint is satisfied. The successful result from Figure 8(b)
was obtained with a moderate penalty. In Figure 9 this is compared with results for smaller
and larger penalty parameters, respectively. The figure shows that with the small penalization,
the solution jumps to the parallel channels already at Re = 50 which is not optimal. For the
large penalization, the solution does not jump until Re � 190. Also we observe hybrid structures
similar to those in Figure 8(a) for Re � 130. We have thus not full control over the convergence
towards the global optimum.

4.2.2. Discussion of problems with local optima. Further insight into the problem of local versus
global optima is gained by inspecting the flow field in the initial material distribution �(0). This
is shown in Figure 10 for the Stokes flow limit, Re = 0. The streamlines are drawn as 10%
contours of the streamfunction, and Figure 10(a) shows that for �(0) = 0.4 the streamline density
is largest between the two leads on the same side of the design domain. Based on the sensitivity
d�/d� the optimization algorithm therefore decides to remove material from these strong-flow
regions in order to reduce the porous friction. The iteration path in design space is therefore
biased towards the U -turn solution. This remains true even at finite Reynolds numbers as long
as the porous friction initially dominates inertia.

Figure 10(b) shows that when �(0) = 1 the streamline density is largest between the leads
on the opposite side of the design domain. Because the volume constraint is violated the
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Figure 10. Flow distributions at Re = 0, L = 3� and q = 0.01: (a) initial design field �(0) = 0.4;
(b) initial design field �(0) = 0.4; and (c) the optimal design field �(∗) obtained at Da = 10−2.

optimization algorithm has to place material somewhere, which it does in the weak-flow regions.
The solution is therefore biased towards the parallel channels. Indeed if the penalty is chosen
very small, the optimized solution comes out as parallel channels even for Stokes flow at
L = 3�, which is far from optimal. When the penalty is larger and the material is added faster,
we move away from this adiabatic solution and closer to the situation for �(0) = 0.4.

The additional complexity associated with making a proper choice of the penalty parameter
is somewhat inconvenient. We have therefore attempted to construct a more convex problem by
increasing the initial permeability. This can be done either by increasing the Darcy number, or
by decreasing the parameter q, c.f. Equation (4). Figure 10(c) shows the optimal solution �(∗)

obtained for Da = 10−2 and q = 0.01 at Re = 0. At this level the problem is convex because
the solution is independent of the initial condition. Using this material distribution as initial
guess and gradually decreasing the permeability to Da = 10−4 and q = 0.1 we correctly end
up in the U -turn solution. However, it is evident from Figure 10(c) that �(∗) has a fair amount
of parallel channels nature. Using the same procedure of gradually decreasing the permeability
at higher Reynolds numbers therefore result in a transition to the parallel channels solution
already for Re � 30, which is not optimal. Moreover, when the Reynolds number is increased
and the inertia starts to play in, the system tends to loose convexity even at the initial high
permeability.

In summary, the topology optimization has difficulties in finding the global optimum for
the problem. There are two strong candidates for the optimal structure, and the solution found
is sensitive to the initial condition for the material distribution. Using an empty channel as
initial condition, the method is able to find the correct solution for all Reynolds numbers.
However, this successful result depends on a particular choice of the penalty parameter in the
MMA algorithm. By using a high initial permeability of the porous medium, it is possible to
convexify the problem at low Reynolds numbers, but continuation of this solution to the desired
low permeability does not generally lead to the global minimum of the non-convex problem.

In the original paper Reference [6] it was argued that in Stokes flow the true optimal design
should be rather insensitive to the choice of the Darcy number, although the dissipated power
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may deviate quite a lot from the zero Da limit. In our work we have observed that the
actual solution found by the topology optimization may depend a great deal on the choice of
the Darcy number, whereas the dissipated power should approach the zero Da limit roughly
as

√
Da.

5. CONCLUSION

Based on the work of Borrvall and Petersson [6] we have extended the topology optimization
of fluid networks to cover the full incompressible Navier–Stokes equations in steady-state. Our
implementation of the method is based on the commercial finite element package FEMLAB,
which reduces the programming effort required to a minimum. Formulating the problem in
terms of a general integral-type objective function and expressing the governing equations
in divergence form makes the implementation very compact and transparent. Moreover, the
code for performing the sensitivity analysis should remain almost the same for any problem
expressed in this way, whereas that required for describing the physical problem of course
changes. Topology optimization of multi-field problems can therefore be dealt with almost as
easy as a single realization of the underlying physical problem.

We would like to mention that our methodology is not as such restricted to the (large) class
of physical problems that can be expressed in divergence form. FEMLAB also allows problems
to be stated directly in weak form, e.g. for systems with dynamics at the boundaries. This
does in fact not invalidate the sensitivity analysis worked out in Section 3.4, since this analysis
only relies on the basic structure of the discretized non-linear problem and the availability of
the Jacobian matrix. It is therefore possible to apply our methodology to even larger classes
of physical problems than the ones comprised by the divergence form.

Our implementation of topology optimization has been tested on two fluidics examples in 2D,
both illustrating the influence of different quantities and conditions on the efficiency of the
optimization method.

The first example, a channel with reversed flow, illustrates the influence of the Reynolds
number Re and the Darcy number Da on the solutions. We have shown that the choice of Da

has a strong impact on the solution when the structure contains barriers to deflect the fluid
stream.

The second example, minimization of the power dissipation in a four-terminal device, reveals
the problems of determining the global minimum when two strong minima are competing. This
problem is highly non-convex, and we have shown that the solution depends on the initial
condition. For an initial homogeneous material distribution, the porous friction dominates and
the solution does not come out as the global optimum in all cases. Using an empty channel
as the initial state, inertia plays a role from the beginning, and better results can be obtained.
However, this initial condition in fact violates the volume constraint, and the part of the
optimization routine correcting this depends on a penalty factor. Unfortunately, the particular
value chosen for this factor strongly influences the results. Increasing the Darcy number makes
the problem more convex, but continuation from large to small Da, i.e. from high to low
permeability of the porous material, does not generally end up in the global optimum.

In conclusion, we have shown that our implementation of topology optimization is a useful
tool for designing fluidic devices.
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APPENDIX

% FEMLAB CODE FOR THE 4-TERMINAL DEVICE EXAMPLE OF SECTION 4.2
clear fem femadj
% DEFINE REYNOLDS NUMBER, DARCY NUMBER, LENGTH OF DESIGN DOMAIN, AND VOLUME FRACTION
Re = 50;
Da = 1e-4;
L0 = 3.0;
beta = 0.4;
% DEFINE GEOMETRY, MESH, AND SUBDOMAIN/BOUNDARY GROUPS [SEE FIGURE 6]
fem.geom = rect2(0,L0,0,5) + rect2(-2,0,1,2) + rect2(-2,0,3,4) + rect2(L0,L0+2,1,2) ...

+ rect2(L0,L0+2,3,4);
fem.mesh = meshinit(fem,’Hmaxsub’,[3 0.125]);
% subdomain groups 1:design domain 2:inlet/outlet leads
fem.equ.ind = {[3] [1 2 4 5]};
% boundary groups 1:walls 2:inlets 3:outlets 4:interior
fem.bnd.ind = {[2:3 5:8 10 12:14 16:18 20:22] [4 23] [1 24] [9 11 15 19]};
% DEFINE SPACE CO-ORDINATES, DEPENDENT VARIABLES, AND SHAPE FUNCTIONS
fem.sdim = {’x’ ’y’};
fem.dim = {’u’ ’v’ ’p’ ’gamma’};
fem.shape = [2 2 1 1];
% DEFINE CONSTANTS
fem.const.rho = 1;
fem.const.eta = 1;
fem.const.umax = Re;
fem.const.alphamin = 0;
fem.const.alphamax = 1/Da;
fem.const.q = 0.1;
Phi0 = 96*fem.const.eta*(L0+4)*fem.const.umaxˆ2/9;
% DEFINE EXPRESSIONS ON SUBDOMAIN AND BOUNDARY GROUPS
fem.equ.expr = {’A’ ’eta*(2*ux*ux+2*vy*vy+(uy+vx)*(uy+vx))+alpha*(u*u+v*v)’ ...

’alpha’ {’alphamin+(alphamax-alphamin)*q*(1-gamma)/(q+gamma)’ ’0’}};
fem.bnd.expr = {’B’ ’0’};

% DEFINE GOVERNING EQUATIONS AND INITIAL CONDITIONS [SEE EQUATIONS (8) AND (9)]
fem.form = ’general’;
fem.equ.shape = {[1:4] [1:3]}; % only define gamma on subdomain group 1
fem.equ.ga = {{{’-p+2*eta*ux’ ’eta*(uy+vx)’} {’eta*(uy+vx)’ ’-p+2*eta*vy’} {0 0} {0 0}}};
fem.equ.f = {{’rho*(u*ux+v*uy)+alpha*u’ ’rho*(u*vx+v*vy)+alpha*v’ ’ux+vy’ 1}};
fem.equ.init = {{0 0 0 beta}};
% DEFINE BOUNDARY CONDITIONS
fem.bnd.shape = {[1:3]}; % do not define gamma on any boundaries
fem.bnd.r = {{’u’ ’v’ 0 0} ... % walls: no-slip

{’u*nx+4*umax*s*(1-s)’ ’v’ 0 0} ... % inlets: parabolic profile
{0 ’v’ 0 0} ... % outlets: normal flow
{0 0 0 0}}; % interior: nothing

fem.bnd.g = {{0 0 0 0}}; % zero prescribed external forces everywhere
% PERFORM LINEARIZATION, DEGREE-OF-FREEDOM ASSIGNMENT, AND ASSEMBLE INITIAL CONDITION
fem = femdiff(fem);
fem.xmesh = meshextend(fem);
fem.sol = asseminit(fem);

% DEFINE STRUCTURE FOR COMPUTING RIGHT-HAND-SIDE IN ADJOINT PROBLEM [SEE EQUATION (29)]
femadj = fem;
femadj.equ.ga = {{{’diff(A,ux)’ ’diff(A,uy)’} {’diff(A,vx)’ ’diff(A,vy)’} ...

{’diff(A,px)’ ’diff(A,py)’} {’diff(A,gammax)’ ’diff(A,gammay)’}}};
femadj.equ.f = {{’diff(A,u)’ ’diff(A,v)’ ’diff(A,p)’ ’diff(A,gamma)’}};
femadj.bnd.g = {{’diff(B,u)’ ’diff(B,v)’ ’diff(B,p)’ ’diff(B,gamma)’}};
femadj.xmesh = meshextend(femadj);
% GET INDICES OF DESIGN VARIABLE IN THE GLOBAL SOLUTION VECTOR (fem.sol.u)
i4 = find(asseminit(fem,’Init’,{’gamma’ 1},’Out’,’U’));
% COMPUTE VOLUME BELOW DESIGN VARIABLE BASIS FUNCTIONS
L = assemble(fem,’Out’,{’L’});
Vgamma = L(i4);
Vdomain = sum(Vgamma);
% GET INDICES OF VELOCITY-PRESSURE VARIABLES
i123 = find(asseminit(fem,’Init’,{’u’ 1 ’v’ 1 ’p’ 1},’Out’,’U’));

% DEFINE VARIABLES AND PARAMETERS FOR MMA OPTIMIZATION ALGORITHM [SEE REFERENCES [11,12,13]]
a0 = 1;
a = 0;
c = 20;
d = 0;
xmin = 0;
xmax = 1;
xold = fem.sol.u(i4);
xolder = xold;
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low = 0;
upp = 1;

% DESIGN LOOP FOR THE ACTUAL TOPOLOGY OPTIMIZATION
for iter = 1:100

% SOLVE NAVIER-STOKES FLOW PROBLEM TO UPDATE VELOCITY AND PRESSURE
fem.sol = femnlin(fem,’Solcomp’,{’u’ ’v’ ’p’},’U’,fem.sol.u);
% SOLVE ADJOINT PROBLEM FOR LAGRANGE MULTIPLIERS
[K N] = assemble(fem,’Out’,{’K’ ’N’},’U’,fem.sol.u);
[L M] = assemble(femadj,’Out’,{’L’ ’M’},’U’,fem.sol.u);
femadj.sol = femlin(’In’,{’K’ K(i123,i123)’ ’L’ L(i123) ’M’ zeros(size(M)) ’N’ N(:,i123)});
% SENSITIVITY ANALYSIS
gamma = fem.sol.u(i4);
Phi = postint(fem,’A’,’Edim’,2) + postint(fem,’B’,’Edim’,1);
dPhidgamma = L(i4) - K(i123,i4)’*femadj.sol.u;
% PERFORM MMA STEP TO UPDATE DESIGN FIELD
x = gamma;
f = Phi/Phi0; g = gamma’*Vgamma/Vdomain - beta;
dfdx = dPhidgamma/Phi0; dgdx = Vgamma’/Vdomain;
d2fdx2 = zeros(size(gamma)); d2gdx2 = zeros(size(gamma’));
[xnew,y,z,lambda,ksi,eta,mu,zeta,s,low,upp] = mmasub(1,length(gamma),iter, ...

x,xmin,xmax,xold,xolder,f,dfdx,d2fdx2,g,dgdx,d2gdx2,low,upp,a0,a,c,d);
xolder = xold; xold = x; gamma = xnew;
% TEST CONVERGENCE
if iter >= 100 | max(abs(gamma-xold)) < 0.01

break
end
% UPDATE DESIGN VARIABLE
u0 = fem.sol.u; u0(i4) = gamma;
fem.sol = femsol(u0);
% DISPLAY RESULTS FOR EACH ITERATION STEP
disp(sprintf(’Iter.:%3d Obj.: %8.4f Vol.: %6.3f Change: %6.3f’, ...

iter,f,xold’*Vgamma,max(abs(xnew-xold))))
postplot(fem,’arrowdata’,{’u’ ’v’},’tridata’,’gamma’,’trimap’,’gray’)
axis equal; shg; pause(0.1)

end
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