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Abstract
We present the design and theoretical analysis of a novel electro-osmotic
(EO) pump for pumping nonconducting liquids. Such liquids cannot be
pumped by conventional EO pumps. The novel type of pump, which we
term the two-liquid viscous EO pump, is designed to use a thin layer of
conducting pumping liquid driven by electro-osmosis to drag a
nonconducting working liquid by viscous forces. Based on computational
fluid dynamics, our analysis predicts a characteristic flow rate of the order
nL/s/V and a pressure capability of the pump in the hPa/V range depending
on, of course, achievable geometries and surface chemistry. The stability of
the pump is analyzed in terms of the three instability mechanisms that result
from shear-flow effects, electrohydrodynamic interactions and capillary
effects. Our linear stability analysis shows that the interface is stabilized by
the applied electric field and by the small dimensions of the micropump.

1. Introduction

Electro-osmotic (EO) pumps are suitable for microfluidic
applications due to their integrability and compatibility with
conventional microtechnology, and moreover they can produce
a pulse-free flow without containing any moving parts [1–3].
In EO pumps a liquid is pumped by applying an electric field
to the Debye layer. This is formed by the ions in the liquid
due to electric screening of the immobile charges on the walls
of the pump. In order for such a Debye layer to form, the
liquid needs to have significant electrical conductivity, i.e., a
sufficiently high concentration of dissociated ions. Nonpolar
liquids with very low conductivity (<10−6 S m−1), such as oil,
cannot form the necessary double layer and therefore cannot
be pumped in this way [4]. However, as analyzed below,
this problem is circumvented in our design by introducing a
conducting secondary liquid. By presenting our design and
the theoretical analysis of it, we hope to inspire experimental
groups to test our ideas and fabricate a device.

The paper is organized in the following way. In section 2,
we introduce the general concept of the pump and its novel
features. In sections 3 and 4, we turn to a particular, realizable
pump geometry and analyze it in terms of flow rate–pressure
(Q–p) characteristics by means of CFD simulations and
equivalent circuit theory. Then, in section 5, we assess the
stability of the pump by performing a linear stability analysis
of the two-liquid interface. Finally, we draw conclusions in
section 6.

2. General concept

There are two main types of inline EO pumping schemes in use
today. In direct EO pumping, [5, 6], electrodes are in direct
contact with a conducting buffer. The buffer enables both
the driving force in an electric field, and, due to the charge
separation at the walls of a channel, also a bulk-liquid motion,
the actual electro-osmotic flow.
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Figure 1. (a) The top half of a symmetric channel containing a conducting liquid (light gray), where the EO mobility on the top wall
changes step-wise from zero (thin line) in the first section to αeo (thick line) in the middle section and back to zero (thin line) in the last
section. The pressure drops and hydraulic resistances in the three sections are 0 − p1 and R1, p1 − p2 and R, and p2 − pext and R2,
respectively. The flow profile is shown in each of the sections. (b) A nonconducting working liquid (dark gray) of flow rate Q flowing
through the three-section channel of panel (a), but in addition a conducting pumping liquid (light gray) of flow rate q enters and exits from
two side-channels with hydraulic resistances r1 and r2. In both panels are shown the applied voltage V that generates the EO flow. The
symmetry plane is indicated by the dashed horizontal line in the bottom.
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Figure 2. Top view of a possible design of the two-liquid viscous pump. The nonconducting working liquid (dark gray) is being dragged by
the EO-driven pumping liquid (light gray) that flows along the edge of the main channel. The pump is mirror-symmetric around the central
vertical plane, and only one half is shown. The following specific parameters are chosen to predict the performance of the pump. The
displayed microchannels are all 40 µm deep. The main channel where the working liquid flows is 150 µm long and 10 µm wide. The
narrow valve channels are 1 µm wide and 42 µm long. The un-coated walls are marked as the thick edges of the main channel. Coated
walls are marked with thin edges. In inlet A and outlet A the flow is parabolic, while in the valves and in the main channel it is a
superposition of parabolic and an EO-induced plug flow.

In the so-called indirect EO pumping the liquid in which
the electrodes are separated by some barriers from the liquid
where the EO flow takes place. The barriers allow ions
but not bulk liquid to pass from the electrode chamber to
the EO flow region. The barriers between the two regions
can be achieved in several ways. (i) A channel filled with
a conducting gel with a large hydrodynamic resistance [2].
(ii) An ion-exchange membrane allowing only positive or
negative ions to pass [3]. (iii) A nanometer-sized gap (to
allow for the Debye layer overlap) in which bulk EO flow
can be suppressed allowing practically only flow of ions [7].
Common for these separation methods is that they are based
on the Donnan exclusion principle.

Our novel two-liquid viscous pump can be regarded as
a hybrid of the two types of EO pumping. There is still a
direct contact between the driving and the bulk layers but
they now originate from two different liquids. EO flow is
used indirectly as it drives layers of conducting secondary
liquids, introduced from some side-channels, to pump a
nonconducting liquid through the main channel by viscous
forces, see figure 1. Such an arrangement, resembling a
conveyor belt, allows the pump to be conveniently positioned
anywhere within a microfluidic circuit. To our knowledge it is
the only EO pumping mechanism that enables inline pumping
of nonconducting liquids. In the following subsections we
highlight general principles for the operation of the pump:

pressure valves, under-pressure induced by spatial variations
in EO mobility and optimized potential drop. These principles
are sketched in figure 2.

2.1. Ideal EO flow and pressure valves

In the case of an infinitely thin Debye layer the EO flow rate
in a rectangular microchannel of length L, height D, and width
a is given by

Qeo = ueoDa = αeoVeff
Da

L
∝ a. (1)

Here ueo is the electro-osmotic velocity, αeo is the electro-
osmotic mobility and Veff is the electric potential drop inside
the channel. We refer to this situation as ideal EO flow. The
associated EO pressure peo is given by

�peo = QeoRhyd = αeoVeff
aD

L
Rhyd. (2)

For high aspect ratios D � a, the hydraulic resistance is

Rhyd = 12µL

a3D

1

1 − 0.63 a
D

, (3)

where µ is the dynamic viscosity. The pressure-driven flow
rate Qp through the channel is given by

Qp = �p

Rhyd
∝ a3, (4)

where �p is the pressure drop along the channel.
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From equations (1) and (4) it follows that the pressure-
driven flow will be negligible compared to the EO flow for
small values of a. This can be used to obtain a kind of pressure
valves in the two-liquid viscous pump: if narrow channels are
placed on the sides of the main channel, their large hydraulic
resistance prevents a significant loss of the pressure from the
pump into the sides, while at the same time allows the driving
EO flow to pass through them. The pressure valves offer
two additional advantages. The electrode reservoirs separated
by the valves can be exposed to atmospheric pressure. Thus
bubble formation from electrolysis will not enter the pump
and cause problems. Furthermore, this allows for placing the
pump anywhere in a fluidic network.

2.2. Under-pressure due to changes in EO flow rate

In order for a nonconducting liquid to enter the pump an under-
pressure needs to be induced at the entrance of the pump. This
can be achieved by allowing for spatial variation in the EO
flow rate Qeo. Mass conservation ensures that the total flow
rate Q = Qeo + Qp is constant, so a change in Qeo implies a
change in Qp and hence a change in pressure. The change in
Qeo can be obtained either by variations in the EO mobility or
by variations in the channel width a large enough to induce a
varying degree of the Debye layer overlap. In this paper we
will focus on the first method.

The EO flow given in equation (1) corresponds to a
constant EO mobility, in which case no under-pressure is
generated inside the channel. If, however, the EO mobility is
allowed to change along the channel, a more complex pressure
field is obtained. To simplify the discussion without loosing
the main physics, we study the three-section channel shown
in figure 1(a), where the EO mobility changes from zero to
αeo and back to zero. It is the inhomogeneity of the EO
mobility that is important, not its specific functional form.
The hydraulic resistances of the three sections are R1, R and
R2, respectively. The pressure changes from 0 to p1, from
p1 to p2, and from p2 to pext along the first, second and third
section, respectively. Thus the EO pump is set up to work
against an external backpressure pext. The expressions for the
total constant flow rate Q in each of the three sections are

Q = (0 − p1)

R1
= (p1 − p2)

R
+ Qeo = (p2 − pext)

R2
. (5)

By straightforward algebra this yields

Q = RQeo − pext

R1 + R + R2
, (6)

p1 = R1

R1 + R + R2
(pext − RQeo), (7)

implying that a positive flow rate will be induced once RQeo is
larger than the backpressure pext. Moreover, an under-pressure
p1 is induced over the first section of the pump, which ensures
that liquid is sucked into the pump.

In figure 1(b) this principle of generating an under-
pressure is applied to the two-liquid viscous pump. We study
the case of immiscible liquids with a stable interface pinned
at the corners of the side-channels. In this case the individual
flow rates of the pumping and working liquids are constant.
For the sake of simplicity we neglect the curvature effects due

to surface tension and postpone this study until sections 4.1
and 5.

The nonconducting working liquid (dark gray) enters the
first section of the large, three-section main channel of the
hydraulic resistance R1 and leaves the section of the hydraulic
resistance R2 with the same flow rate Q given by

1

R1
(0 − p1) = Q,

1

R2
(p2 − pext) = Q. (8)

The conducting pumping liquid (light gray) enters with the
flow rate q through the inlet side-channel having the hydraulic
resistance r1, and exits with the same flow rate q through the
outlet side-channel having the hydraulic resistance r2. Since
we are neglecting the Young–Laplace pressure drops from the
curved interfaces the pressures p1 and p2 are as above, and
the flow rate q is seen to be

1

r1
(0 − p1) = q,

1

r2
(p2 − 0) = q. (9)

In the active part of the pump, the middle section with the
hydraulic resistance R, the expression for the total flow rate
is simplified, if we assume that the two liquids have the
same viscosity (this assumption is easily relaxed in numerical
simulations):

1

R
(p1 − p2) + Qeo = Q + q. (10)

The expressions for Q,p1 and q become

Q = RQeo − pext

R1 +
(
1 + R1

r1

)
R + R2

, (11)

p1 = −R1Q, (12)

q = R1

r1
Q. (13)

Like for the simple channel equation (6), a positive flow
rate Q appears once RQeo > pext, and in this case an under-
pressure p1 is generated thus making it possible to suck the
nonconducting working liquid into the EO pump. A simulation
of the induced under-pressure in the regions below the pressure
valves is shown in section 4. In the limit of very high
resistance of the side-channel, r1 � R1, equation (11) reduces
to equation (6). Note, that because we have neglected the
Young–Laplace pressure drops, and assumed a stable interface,
the external pressure is fixed to be pext = [R1(r2/r1) − R2]Q.
Once the full dynamics of the free interface is introduced, the
interfaces will adjust its shape to a given pext, see section 4.1.

As mentioned, a favorable under-pressure can also be
achieved for constant EO mobility by reducing the cross
section of the valve region compared to the main channel
if the reduction is so large that the Debye layer overlap occurs.
The overlap will reduce the EO velocity in the valves and
change the flow profile from a plug-like to a parabolic-like
one [8]. Since typically the Debye layers are 1–100 nm
wide, the pressure valves in this case consist of nanochannels.
Depending on the fabrication techniques, the nanochannels can
be realized as channels with very high aspect ratio [9], very
shallow channels [4], or as parts of nanoporous frits [10].

Regardless of the pump realization, the flow profiles
will have some common characteristics. Due to the induced
pressures the valve regions and the inlet/outlet regions of the
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Figure 3. (a) The geometry used in the simulation of the immiscible case, were edges with arrows indicate an EO slip velocity
ueo = 2mm s−1, (b) The pressure p = p∗µcond ueo/a, (c) the interface position ξ and (d) velocity profile across the channel. Viscosities are
µcond = 1.0 × 10−3 Pa s and µnoncond = 300 × µcond. The pressure is plotted along the symmetry axis. The deflection of interface is
multiplied by a factor 100 for the purpose of visualization. The velocity profile is taken along x = L/2 + a.

main channel of the pump will have parabolic flow profiles.
In the active part of the main channel the resulting flow
is a superposition of an EO flow and an adverse pressure-
driven flow, the latter resulting from the mass conservation
given in equation (10). Schematic flow profiles are shown in
figures 1(b) and 2, while a simulated one is shown in figure 3.

2.3. Optimized potential drop

A larger potential drop is needed in the main channel of the
pump as compared to the valves in order to generate a higher
pressure, equation (2). A single narrow valve channel has
a large flow resistance but also a large electrical resistance.
This means that the main potential drop would occur in the
valve channels and thus not contribute to any pressure build
up. The electrical resistance is inversely proportional to the
area of the cross section. So, by making many short and
narrow channels a low electrical resistance and high hydraulic
resistance is obtained. However if the potential drop in the
main channel is too large, it could cause instabilities of the
two-liquid interface, see section 5.

2.4. Priming of the pump

In order for the pump to work an initial positioning of the liquid
streams must be taken care of. This is termed as priming of the
pump. The priming could happen in different ways depending
on the viscosities, surface tensions and the surrounding fluidic
network. One way of doing it would be to apply a pressure-
driven flow to the side-channels q and the main channel Q
simultaneously. This would generate a stream of focused
nonconducting liquid along the main channel. If the driving
pressures are then relaxed at the same time, the interface
moves to the pinning points on the side-channels. Computer
simulations or experiments may suggest other methods.

3. An example of a possible realization

A possible realization with realistic length scales of the two-
liquid viscous pump is shown in figure 2. Two sets of four
narrow channels are introduced from each side of the main
channel as pressure valves. In figure 2 only one side with

inlet/outlet valves is shown, since the device is symmetric
around the center plane. Reactive ion etching systems can
deliver narrow and deep channels with the aspect ratio as
high as 40. So if a valve channel is 1 µm wide it can be
40 µm deep. The overall hydraulic resistance of the valves,
equation (3), is 26 times larger than that of the EO section.

The Reynolds number is Re ∼ 0.01 and in this creeping
flow regime inertia can be neglected. A characteristic feature
for creeping flow is that it is free of vorticity. This means
that the valve channels may be positioned perpendicular to
the main channel without generating any eddies. For a more
detailed discussion see [11].

The Debye layer is roughly 104 times smaller than the
total width of the main channel so we do not resolve it in the
following modeling of the pump. The EO velocity appears
simply as a nonzero slip velocity ueo at the walls. The reduced
EO flow in the valves is, therefore, realized by a reduction in
the EO mobility as discussed in section 2.2.

4. Theoretical and computational analysis

We have analyzed the performance of the pump described
in section 3 using computational fluid dynamics (CFD)
simulations and equivalent circuit theory.

4.1. Computational fluid dynamics

The simulation effort is divided into two parts: (1) simulations
with immiscible liquids, simplified geometry, free surface
and velocity boundary conditions, and (2) simulations with
miscible liquids, full geometry and EO mobility boundary
conditions.

The problem depicted in figure 2 is simulated including the
full free surface dynamics. The model is based on the FemLab
3.1 FEM solver and an in-house MatLab based free surface
code [12]. The model solves the 2D Stokes equation while
enforcing the full free surface stress condition including the
Young–Laplace contribution to the pressure. As the problem
is very complex only two side-channels are considered, in
order to reduce computational time, which still ended to be
of the order 24 h on a high performance computer. At the
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Figure 4. (a) The equivalent electric circuit of the two-liquid viscous EO pump. Note that the whole pump/circuit is depicted. The overall
resistance is calculated as Rtotal = 2Rab + R4, where Rab is the resistance between node point a and b. R4 is the resistance of the EO section.
(b) The calculated pressure distribution inside the pump obtained by numerical simulation in the miscible case with the uniform viscosity
µ = 1 × 10−3 Pa s. The inset floating above the pump shows how the pressure varies linearly in the main channel between the pressure
valves, implying uniform flow. There is no external pressure difference, but note the pressure drop in the pressure valve region (i1 − i4)
which sucks the working liquid into the main channel. Parameters: the dimensions are as in figure 2, while αlow

eo = 0.005 mm2 V−1 s−1,

α
high
eo = 0.05 mm2 V−1 s−1, pin = pout = 0, V = 10 V. The peak pressure levels are p = ±10 Pa.

walls we use velocity boundary conditions to account for
the electro-osmotic effects. Figure 3 depicts the simulated
geometry with boundary conditions.

The insets (a), (b) and (c) in figure 3 show the
dimensionless pressure p∗ along the symmetry axis, the
interface position ξ , and a velocity profile along the vertical
symmetry line, respectively. From the results we see that
the interface is only slightly deformed and has a thickness
comparable to the inlet valve dimensions. The curved shape is
a result of the pressure balance including the Young–Laplace
pressure. Moreover, we notice that the slip velocity at the
interface is about 10% of the wall velocity.

CFD simulations with miscible liquids were made using
Coventor 2001.3. The program solves the Laplace equation for
the electrical potential and the Navier–Stokes equation for the
velocity field. These simulations are complementary to the
more complicated free surface simulations. If the pumping
liquid is chosen to be water the EO mobility along un-coated
walls is typically αeo = 0.05 mm2 V−1 s−1. In the valve
channels the walls are coated to lower the EO mobility by
a factor 10. With these parameters numerical simulations
yield a maximal flow rate per volt of 0.03 nL s−1 V−1 and a
backpressure capacity of 3 Pa V−1. The value for the flow rate
is specific for the given geometry. According to equations (2)
and (3) the backpressure is independent of the length of the
pump but strongly dependent on the width of the main channel
and the viscosities in the two liquid case. Visualization of
the pressure distribution is shown in figure 4(b). Note the
under-pressure in the region between valve i1 and i4. The
pressure distribution from the immiscible (figure 3(a)) and the
miscible case (figure 4(b)) agree qualitatively. Note, that in
the miscible case the liquids will mix due to diffusion. Two
time scales are involved: (1) the time it takes for the liquid to
pass through the pump Tpump = L/ueo, (2) and time it takes
for the two miscible streams to mix Tdiff = D2

b

/
D, where D is

the diffusion constant. The ratio Tpump/Tdiff = 1.5 indicates
that the liquids will be completely mixed downstream of the
pump.

4.2. Equivalent circuit model

The aim is to establish a model that can predict the Q–p
characteristic of the pump. The creeping flow regime allows
us to analyze the flow by the equivalent circuit method. We
only give an outline here as the detailed procedure is described
in [13].

The first step is to find the effective potential drop across
the EO section by analyzing the circuit in figure 4(a). In the
miscible case with uniform conductivity the result is that 52%
of the applied voltage is dropped over the EO section, R4 in
figure 4(a). This value represents a worst case since the main
channel is full of conducting liquid leading to a lower voltage
drop. In the immiscible case the analysis is complicated by
the fact that the resistance R4 is dependent on the position of
the free interface, and an exact result is not obtainable due to
lack of computational power. However, our simulations in the
two-channel case, section 4.1, indicate that the width of the
conducting layer is the same as the width of the side-channels.
Since most of the electric field is inside the conducting layer,
it is easy to obtain a rough estimate, and we find that 90% of
the voltage is dropped over the EO section.

The next step in the equivalent circuit model procedure
is to find the hydraulic resistance Rhyd of each of the channel
segments. Since the channel cross sections are all rectangular
we make use of equation (3). We then find the backpressure
analogous to the treatment in section 2.2.

5. Stability analysis

The interface between the two immiscible liquids in the two-
liquid viscous pump is generally prone to instabilities. Small
perturbations can grow and eventually break-up the surface and
disrupt the pumping operation. As sketched in figure 5 there
are altogether three types of instability mechanisms at play:
shear-flow, electrohydrodynamic and capillary instability. In
the following we shall describe and assess the most relevant
aspects of each mechanism.
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Figure 5. A schematic diagram of instabilities in the two-liquid
viscous pump. Three main mechanisms of instability are at play:
shear-flow and electrohydrodynamic instability are relevant in the
main channel and in the outlet valve, while capillary instability
plays a role below the valves where the interface curves to
compensate for the induced pressures. In the case of break-up of the
interphase q1 and q2 as well as Qin and Qout may differ in contrast to
the case of figure 1(b).

5.1. Approximations and methods

As long as the conducting layers are thin compared to the
nonconducting region, the (in)stability modes on the two
interfaces of the symmetric pump from figure 2 will be
decoupled from each other. In addition, the symmetric pump
can sustain larger adverse pressures known to stabilize the
flow [14]. Thus, it suffices to determine the instability
window of the simpler asymmetric configuration containing
only one interface, i.e., a pump with only one conveyor
belt. We further notice that for the high aspect ratio channels
under consideration the problem is effectively reduced to two
dimensions.

Perturbations of the interface are assumed to be small, and
we subject the governing equations and boundary conditions
to the usual hydrodynamic linear stability analysis, [15]. The
unperturbed interface lies in the xy plane given by z = 0.
Any slight disturbance of the interface is described as a
displacement z = ζ(x, y). We expand all perturbed field
f (velocity u, pressure p, electric potential φ and vector
n normal to the interface) in terms of the small interface
position ζ

f = f0 + αf1 + α2f2 + · · · , (14)

where f0 represents the unperturbed steady-state solution, α

is the perturbation strength, and f1 is the first-order solution.
Putting the perturbed variables f into the governing equations
and boundary conditions, the steady-state solution cancels out,
and by maintaining only terms up to linear order in α we arrive
at the linearized equations which govern the perturbations. The
first-order solutions are further expressed in terms of normal
modes with the wave vector k = (kx, ky) and frequency ωk

f1(x, y, z, t) = f̂ 1(z) exp[i(kxx + kyy) − iωkt]. (15)

By inserting the normal modes back into the linearized
equations, the problem is eventually transformed into an
eigenvalue problem for the frequency ωk, generally a complex
number of the form ωk = Re(ωk) + i Im(ωk). It is seen from
equation (15) that

f1 ∝ exp[−i Re(ωk)t] exp[+Im(ωk)t]. (16)

Therefore, an instability (exponential growth in time) is present
when Im(ωk) > 0. In some cases ωk is real for a while before
developing a positive imaginary part. In other cases the onset
of instability is right at ωk = 0. The former case is known as
overstability while the latter as static instability.

z

x
Da

Db

µa, σa, εa
µb, σb, εb

E0

U0

ζ
small

perturbation

interface

Figure 6. The simplified model with a single interface (a single
‘conveyor belt’) used to assess the instability regimes of our pump.
Two shearing liquids are confined between two large (high aspect
ratio) parallel plates in a Couette–Poiseuille flow. The liquids differ
in dynamic viscosities, dielectric constants and conductivities. They
are further exposed to a tangential electric field. The Debye layer is
assumed negligibly thin so the driving EO velocity appears only as a
boundary condition.

5.2. Shear-flow instability

Shear-flow instability is particularly relevant in the active
part of the main channel, where the liquids are exposed
to mutual stresses. Microfluidic shear flows between two
viscous, immiscible liquids can result in a variety of regular
droplet patterns, as the shear force (constant for a given relative
velocity and a fixed geometry) overcomes the cohesive surface
tension force, [16].

In our case, due to the conveyor-belt action, the two liquids
flow between two large parallel plates in a Couette–Poiseuille
setup, figure 6. In each liquid the governing equations are the
Navier–Stokes equation and the continuity equation

ρ(i)(∂tu(i) + u(i) · ∇u(i)) = −∇p(i) + µ(i)∇2u(i), (17)

∇ · u(i) = 0, (18)

where i = a, b indicates liquid a and b, ρ is the density, p
is the pressure, µ is the dynamic viscosity, and u(x, y, z) =
(u, v,w) is the velocity field. Note that we did not include the
gravitational body force as it is negligible in our microfluidic
system1.

When the linear stability analysis is performed on
equations (17) and (18), we arrive at the Orr–Sommerfeld
equations for two liquids, [17], and a set of eight boundary
conditions. These include the no-slip velocity conditions at
rigid boundaries and fairly complicated interface conditions—
continuity of velocities and tangential stresses, and balance
of normal stresses. The whole system is then solved
for eigenfrequencies as mentioned earlier. The analytical
procedure is rather involved. Here we apply the full
description, found in [18–21], in the relevant limits.

An important conclusion from the analysis is that a
difference between the viscosities of the two liquids cause
the instability in shear flows at low Reynolds number. Once
the viscosities differ, the relative thickness of the liquid layers
becomes important, too.

We have estimated the onset of instability in the long-
wavelength limit for the water–oil (a–b) system of figure 6. In
figure 7 Im(ωk) is shown as a function of the viscosity ratio
µb/µa . The graphs are shown for three different thickness

1 The ratio between gravitational and capillary force in the system is the
Bond number, Bo = (ρ(2) − ρ(1))ga2/γ . If we consider oil and water, and
a = 10 µm is the width of the main channel in the pump, we get Bo ∼ 10−6.
This allows the liquids in the pump to flow sidewise.
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Figure 7. A shear-flow stability study of a water–oil system (liquids
a and b, respectively, in figure 6). For three different values of the
thickness ratio Db/Da the imaginary part of the frequency Im[ωk] is
plotted as a function of the viscosity ratio µb/µa for an EO velocity
ueo = 1 mm s−1, a surface tension γ = 18 × 10−3 N m−1, and a zero
counter-pressure. For Db/Da = 1.5, instability sets in for
µb/µa > 20 where Im[ωk] > 0. This is an example how an increase
in viscosity actually enhances instability. Increasing the oil
thickness, the window of stability is increased.

ratios Db/Da . Keeping Da constant, stability increases with
increasing thickness ratio, while it decreases with increasing
viscosity ratio, except that in the limit of very large viscosity
ratios the system becomes stable again.

The above results can be used to operate the pump within a
given stability window. If Da is as thin as a few Debye lengths,
the pump will practically always be stable with respect to the
shear flow.

5.3. Electrohydrodynamic (EHD) instability

Another important aspect is electrohydrodynamic (EHD)
instability present when liquids of different dielectric constants
and conductivities are exposed to electric fields. Numerous
studies of EHD instability have been published over the years,
e.g. [22–27], and more recently with special attention to
microfluidics [18, 19, 28].

In this brief account of EHD instability we use the
formalism from [18, 25], and apply it in the relevant limits
with regard to our pump. Essentially, the equations governing
electric fields and charge transport in each liquid need to be
added to equations (17) and (18)

∇ · (ε(i)E(i)) = ρ
el
(i), (19)

∇ × E(i) = 0, (20)

∇ · (
σ(i)E(i) + ρ

el
(i)v(i)

)
+ ∂tρ

el
(i) = 0, (21)

where ε is the dielectric constant, σ is the conductivity, ρel is
the free charge density and E is the electric field in each liquid.
In equations (19)–(21) it is assumed that magnetic effects are
negligible and that Ohm’s law of conduction is valid. The
interface boundary conditions are expanded to account for
electric stresses and conservation of free charge.

There are two main effects which influence the behavior
of the interface between two liquids in an electric field.
First, there are polarization forces that act normally on the
interface, due to a difference in the dielectric constants. And
second, there are tangential shear forces resulting from the free
charges that relax at the interface, due to a difference in the
conductivities. Relevant in microfluidics are effects involving

z

x

µa, σa � σb

µb � µa, σb
E

Figure 8. Overstability mechanism in the pump. A perturbation of
the interface between a conducting and a nonconducting liquid
results in the accumulation of free surface charge. As it screens the
imposed field from the conducting region, the charge is shifted in
phase with respect to the perturbation [25]. Charge motion in a
tangential field induces shear stresses in the liquids above and
below, which can either stabilize or further destabilize the interface.
In the depicted case µb � µa and σa � σb ≈ 0, so the interface
will be stabilized.

Debye layers, but these are out of the scope of this preliminary
account.

In our pump a thin layer of conducting liquid drags a
viscous nonconducting dielectric liquid. There is a huge
difference in conductivities and the liquids are exposed to
a tangential electric field. Therefore, the shear forces due to
free charges will play the most important role, possibly causing
overstability or oscillatory instability, which we now assess.

In equilibrium no current passes through the unperturbed
interface and no free charges accumulate on it. However,
interface perturbations cause a change in the fields which in
turn attract free charges at the interface. The charges position
themselves to shield out the imposed field from the high
conductivity region. As the charges move under the influence
of electric field, shear stresses are passed onto the liquids below
and above the interface, creating fluid cells, figure 8. If the
liquids have the same viscosity these effects will cancel each
other, but a difference in viscosities will make these cells to
further deform or possibly suppress the perturbations.

We now make a use of the general eigenvalue solution
(equation (34) in [25]) applicable to our problem sketched
in figure 6. In the two-liquid viscous pump the two liquids
are such that the conductivities σa � σb which results in a
very short charge relaxation time τ = (εa + εb)/σa . We are
interested in the viscosity limit µa � µb, i.e., when the more
conducting liquid is much less viscous. An involved analysis
gives for the critical field that induces overstability

E2
c = − 2µbσa

εb(εa + 3εb)
. (22)

The minus sign indicates that in this limit no field can
induce the instability. In light of figure 8, the imparted viscous
stresses, pronounced in the more viscous liquid, act to suppress
the interface deformation. On the other hand, if the conducting
liquid is the one with a much higher viscosity (e.g. pumping
of a gas), the critical field is positive and given by

E2
c = 2µaσa

εb(εb + 3εa)
, (23)

or, for εa � εb,

Ec =
(

2µaσa

3εaεb

) 1
2

. (24)
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When equation (24) is evaluated for common fluids, the fields
are on the order of 106 V m−1. In the studied example
(operating voltage 10 V), the electric field within the main
channel is E = 4 × 104 V m−1, a much lower value.

The above results show that our viscous liquid pump is
stable with respect to the EHD overstability. In the case when
a more viscous, nonconducting liquid is pumped, stability is
always present whereas in the case of low-viscosity dielectrics
the critical fields are much higher than the operating ones. In
passing we remark that the normal polarization forces also
stabilize the interface when the liquid of higher conductivity
has also a higher dielectric constant, which is usually the case.

5.4. Capillary instability

The pressure drop over the interface between two immiscible
fluids is given by the Laplace equation

�P = γ

(
1

r1
+

1

r2

)
, (25)

where γ is the surface tension while r1 and r2 are the principal
radii of curvature. We take the width a and depth D of a valve
channel to correspond to 2r1 and 2r2, respectively. In a high
aspect ratio valve a � D, hence only the width a contributes
to the capillary pressure.

The pressure induced below the valves in the two-liquid
pump will tend to deform the interface according to
equation (25), as simulated in figure 3(c). We now estimate
under which conditions the breaking of two streams sketched
in figure 5 could occur and why. For an oil–water interface
γ = 18 × 10−3 N m−1 and a valve width of a = 1 µm it takes
a pressure of 36 kPa to push an oil droplet through the valve
opening.

The backpressure capacity of the pump is �p = 30 Pa for
10 V using a conducting liquid. In the case of the water–oil
interface the pressure increases to 9 kPa × 0.1 = 900 Pa at
10 V due to the higher viscosity of oil (µoil = 300µwater)

and the reduced oil velocity, see figure 3(d). This value is
still lower than the capillary pressure thus the interface will be
stable in normal operation.

If the interphase breaks due to instabilities, e.g., in the
case of lower surface tension, oil droplets may enter the
outlet valve to account for the mass conservation (q1 �= q2).
Hence the pinched-off conducting droplets shown in figure 5.
Similar effects of variable flow resistance on droplet break-
up is demonstrated in [29]. Obviously, such behavior would
eventually disrupt the pumping operation.

We conclude this section by saying that the pressure valves
will prevent an immiscible liquid from entering them if the
backpressure capacity of the pump is smaller than the capillary
pressure associated with the valve openings.

6. Conclusion

We have presented a novel electro-osmotic pump which can
be used to pump nonconducting liquids by the viscous drag
of a conducting secondary liquid. In order to achieve a

viable pump, the liquids must be immiscible, stability must
be ensured and three main features need to be employed: a
favorable under-pressure, pressure valves and an optimized
potential drop.

The flow rate–pressure characteristic of the two-liquid
viscous EO pump largely depends on the geometrical factors
and can be significantly enhanced by advanced etching
techniques. The pump design still works for miscible liquids,
but here the working liquid gets mixed with the pumping liquid
due to diffusion.

Numerical simulations and the equivalent circuit model of
the design presented here yield a maximal flow rate per volt
of 0.03 nL V−1 s−1 and a backpressure capacity per volt of
3–90 Pa V−1 depending on the liquids in the pump. These
values are quite small and the pump is therefore suited for
precise flow manipulation rather than pumping bulk volumes.

Three effects play a role with regard to the stability of the
pump: (1) shear-flow instability happens only when the liquids
differ in viscosities and is suppressed when the conducting-
liquid layer is thin compared to the nonconducting one.
(2) Electrohydrodynamic overstability is suppressed when
the conducting liquid has a much smaller viscosity than the
nonconducting liquid. (3) Capillary instability is suppressed
by a large surface tension and by a large value of the capillary
pressure stemming from a small width of the pressure valves.

Future work involves time-dependent two-phase
simulations. Such work could give valuable information
about priming of the pump. We are currently preparing
papers containing the detailed mathematical analysis of the
stability mechanisms [19, 20]. Finally a prototype should be
manufactured. Because of the possibility of pumping all types
of liquids in a precise and controlled manner, the described
concept and design appear promising.
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