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Abstract

We present experiments and simulations of magnetic separation of magnetic beads in a microfluidic channel. The

separation is obtained by microfabricated electromagnets. The results of our simulations using FEMLAB and

Mathematica are compared with experimental results obtained using our own microfabricated systems.
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1. Introduction

Manipulation of superparamagnetic nanoparti-
cles encapsulated in polymer beads (magnetic
beads) is a well-known technique in biochemical
analysis and processing [1,2]. In magnetic separa-
tion biochemically functionalized magnetic beads
are separated from a solution using magnetic
forces. Recently, microsystems offering the same
functionality have been reported [3–5]. Microsys-
tems capable of magnetic separation are ideal for
inclusion in Lab-on-a-chip systems. The vision of
Lab-on-a-chip systems is to have entire biochemical
- see front matter r 2005 Elsevier B.V. All rights reserve
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laboratories on a single chip. The advantages of
such Lab-on-a-chip systems are that they can
handle minute sample volumes (e.g. micro or
nanolitres), they are highly portable, and they are
potentially inexpensive and thus disposable [6,7].
We present numerical simulations of the move-

ments of such magnetic beads in microfluidic
systems and compare with experiments.
2. Design and fabrication

The design of our microsystem is shown in
Fig. 1. Each microsystem contains three micro-
electromagnets, each consisting of a copper coil
semi-encapsulated in a dielectric layer and a nickel
soft magnetic yoke on top of that.
d.
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Fig. 1. Overview of the microsystem design. (a) Top-view of the

fabricated chip. The microelectromagnets are planar spiral

copper coils with 12 turns. The coils are semi-encapsulated in a

soft magnetic yoke made from nickel. (b) The microsystem seen

from the side. The horizontal scale bar at the bottom applies to

both (a) and (b).
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We have fabricated electromagnets by use of
standard cleanroom technology. Fig. 2 sum-
marizes the fabrication process. For more details
see Ref. [8]. The electromagnets that we have used
for the experimental part of this paper have the
following design parameters: number of turns 12;
coil wire height 25 mm, width 60 mm, and spacing
20 mm; electromagnet width 4mm, and yoke
thickness 25 mm; fluid channel depth 150 mm,
length 14mm, and width 1.5mm.
3. Magnetostatic theory

The magnetic induction B is calculated using
magnetostatics formulae,

B ¼ r� A ¼ m0mrH, (1)

r �H ¼ Jf , (2)
where H is the magnetic field, A is the magnetic
vector potential, m0 is the permeability of vacuum,
mr is the relative permeability of the material, and
Jf is the free current density. These equations can
be combined to yield

r� ððm0mrÞ
�1
ðr � AÞÞ ¼ Jf . (3)

To simplify the simulations we study circular
electromagnets, and thus the magnetostatic
problem is reduced from 3D to 2D. This still
allows for qualitative comparison with the square
magnets of the experiments as discussed by
Shafique et al. [9].
We apply cylindrical coordinates ðr; y; zÞ with

r ¼ 0 at the centre of the electromagnet. All free
currents are thus in the azimuthal direction Jf ¼

Jf ðr; zÞêy which is consistent with a magnetic
vector potential A ¼ Ayðr; zÞêy:
To bring Eq. (3) into a form suitable for the

software, FEMLABs, we introduce the function
uðr; zÞ given by

uðr; zÞ ¼
Ayðr; zÞ

r
. (4)

Using this, the only non-zero component of Eq.
(3) is

�
q
qr

rðm0mrÞ
�1 qu

qr
þ 2ðm0mÞ

�1u

� �

�
q
qz

rðm0mrÞ
�1 qu

qz

� �
¼ Jf

y, ð5Þ

which is the canonical form that FEMLABs

solves in its ‘‘Magnetostatics–Azimuthal currents’’
mode of its Electromagnetics Module [10]. In
terms of uðr; zÞ the components of the magnetic
induction become:

B ¼ ðBr;By;BzÞ ¼ �r
qu

qz
; 0; r

qu

qr
þ 2u

� �
. (6)

Nickel is a ferromagnetic material, and thus mr is
not a constant. However, since nickel is a soft
magnetic material and thus almost hysteresis-free,
we use the approximate empirical Fröhlich–Ken-
nelly relation M ¼ MsH=ðC þ jHjÞ for hysteresis-
free magnetization to describe the material [11].
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Fig. 2. Process flow for the fabrication of a micromachined magnetic bead separator. (a) A double polished silicon wafer is oxidized

(50 nm) and 100 nm silicon nitride is grown. (b) The microfluidic channel (150 mm deep) is etched using deep reactive ion etching

(DRIE), and a pyrex lid is attached by anodic bonding. (c) A seed layer is deposited, and a 25 mm layer of photoresist (AZ4562 from

Hoechst is used throughout) is spun onto the wafer and patterned using UV-lithography. (d) The copper wire is electroplated into the

resist mould followed by resist and seed layer removal. (e) A patterned layer of hard-baked photoresist forms the dielectric layer. (f) A

seed layer is deposited and a new photoresist mould is defined. (g) A 25mm nickel magnetic yoke is electroplated into the resist

openings. Finally the resist and seed layer are removed.

Fig. 3. M vs. H loop of an electroplated nickel film. The

measured saturation magnetization is 4.84� 105A/m. The line

is the fitted Fröhlich–Kennelly relation described in the text.
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The relative permeability mrðHÞ thus becomes

mrðHÞ ¼ 1þ
Ms

C þ jHj
, (7)

where Ms is the saturation magnetization of the
material, and C is an experimentally determined
parameter.
In order to solve Eq. (5) in FEMLABs, it is

necessary to express mr as a function of B (or
actually as a function of u and its partial
derivatives) rather than H in order to use it in
Eq. (5). By setting jHj ¼ jBj=m0mr in Eq. (7), mr is
found as the positive root of a second order
polynomial, which to first order in jBj is

mrðjBjÞ ¼ 1þ
Ms

C
�

Ms

CðC þ MsÞ

jBj

m0
þ OðjBj2Þ.

(8)

It is seen that mrðjBjÞ is constant until the
magnetic field inside the magnetic material ap-
proaches the saturation magnetization (assuming
MsbC).
Fig. 3 features the measured hysteresis loop of
one of our electroplated nickel thin films together
with a fit based on Eq. (7). We have focused on a
good fit for the low-field part of the hysteresis
loop, which is why we have allowed for a
saturation magnetization in the fit, which is
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Fig. 4. Contour plot of the magnitude of the calculated H-field.

The current in the copper coil is 360mA. Also shown is the

position of the microfluidic channel relative to the electro-

magnet. The magnetic beads will be attracted to regions where

the magnetic field is large.
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different from the nickel saturation magnetization
of 4.84� 105A/m.
We have used the electromagnetics module of

FEMLABs 2.3 to solve Eqs. (4) through (7) with
the parameters of the electroplated nickel thin film.
In order to keep the magnetic reluctance of the
entire system constant, all length scales have been
scaled in order to have the same area in the
circular geometry as in the original square
geometry [9]. This yields a scaling factor of
ð4=pÞ1=2: The free current density has been scaled
with the inverse factor to ensure that the total
current is unchanged.
Fig. 4 shows the result of such a calculation.

Note that the magnetic beads will be attracted to
areas in the microfluidic channel with large
magnetic field and thus the attraction will be
perpendicular to the contours of Fig. 4 (since these
are also contours of jHj2). The fact that jHj inside
the magnetic yoke does not exceed 2000A/m,
means that mr is everywhere within 80% of the
constant 1þ Ms=C in Eq. (8).
4. Magnetic force on a magnetic bead

First, the magnetic force on a magnetic bead is
calculated from the calculated magnetic field. The
general expression for the magnetic force on a
magnetizable object is given by [12]

Fmag ¼ m0

Z
V

ðM 	 rÞHa d
3r; (9)

where the integral is taken over the volume of the
magnetizable object, and Ha is the magnetic field
in the absence of the magnetizable object.
For a spherical bead in a homogeneous magne-

tizing field, the magnetization M inside the bead is
given by [13]

M ¼ wmHa ¼
wi

1þ Nwi
Ha ¼ 3

mr � 1

mr þ 2
Ha, (10)

where wi is the intrinsic susceptibility of the
magnetic bead material, wm is the measured
susceptibility of a single magnetic bead including
demagnetization effects, and mr ¼ 1þ wi is the
relative permeability of the magnetic bead material.
It has been assumed that the sphere is surrounded
by a medium with w 
 0: The last equality follows
from the fact that the demagnetization factor of a
sphere is N ¼ 1

3
: At this point it is not necessary to

assume that w is constant; however, this assumption
simplifies the following equations substantially, and
is justified for the fields inside the microfluidic
channel in our case. Inserting this into Eq. (9) and
taking the magnetizable object to be a magnetic
bead yields:

Fmag ¼ m03
mr � 1

mr þ 2

Z
Bead

ðHa 	 rÞHa d
3r


 2pR3m0
mr � 1

mr þ 2
rðjHaj

2Þ

¼
1

2
m0VbeadwmrðjHaj

2Þ. ð11Þ

The approximation is that the integrand is
constant over the volume Vbead of a magnetic bead
with radius R, and it has been used that Ha is curl-
free, since there are no free currents outside the
copper coils. This result is consistent with the
effective dipole approximation reported by Jones
[14], but it has been found through different means.
5. Dynamics and microfluidic theory

Low Reynolds numbers and hence laminar
flows generally characterize fluid flows in
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microfluidic systems. For example in our system
and for the used flow rates the Reynolds number is
approximately 10�2, and thus all inertial
terms in the Navier–Stokes equation can be
discarded. Since we are considering stationary
incompressible flow in straight channels with no
net body force on the fluid, the Navier–Stokes
equation reduces to:

q2

qy2
þ

q2

qz2

� �
vxðy; zÞ ¼ �

Dp

ZL
, (12)

where Dp is the pressure drop across the length L

of the microfluidic channel, Z is the viscosity of the
fluid, and vxðy; zÞ is the longitudinal velocity in the
channel. Using the usual no-slip boundary condi-
tions on the walls ðy; zÞ 2 ½0; y0 � ½0; z0 the solu-
tion to Eq. (12) can be written as

vxðy; zÞ ¼ vavr
fðy; zÞ
hfi

, (13)

fðy; zÞ ¼
X1
n¼0

f nðzÞ sinðknyÞ; kn ¼ ð2n þ 1Þ
p
y0

;

(14)

f nðzÞ ¼
�1

ð2n þ 1Þ3
coshðknzÞ

�

� tanh kn

z0

2

� �
sinhðknzÞ � 1

�
, ð15Þ

hfi ¼
1

y0z0

Z z0

0

Z y0

0

fðy; zÞ dy dz, (16)

where vavr is the average flow velocity in the
channel given by vavr ¼ Q=y0z0 where Q is the
volumetric flow rate. In experimental microfluidics
the flow rate is often the adjustable parameter
rather than the pressure difference, and the
solution is expressed in terms of Q. For the
numerical calculations, the sum in Eq. (14) was
truncated at n ¼ 100:
We take the fluid drag on a magnetic bead to be

the Stokes drag:

Ffluid ¼ 6pRZðvfluid � vÞ, (17)

where Z is the viscosity of the fluid, and vfluid and v
are the velocity vectors of the fluid and bead,
respectively.
Finally gravity is included through a buoyancy
term:

Fgrav ¼
4
3
pR3ðrfluid � rÞgẑ, (18)

where the rfluid and r are the densities of the fluid
and bead, respectively.
At this point we have accounted for all the

forces that affect a magnetic bead in the fluid, and
thus Newton’s second law yields:

r
4

3
pR3 dv

dt
¼ FmagðrÞ þ FgravðrÞ þ Ffluidðr; vÞ.

(19)

At a given bead position all forces can be
considered constant except for Ffluid that
depends on v; and that yields a differential
equation for v with a solution that has a
constant term (the equilibrium velocity) and a
decaying exponential function with a time
constant t given by:

t ¼
2R2r
9Z


 10�7 s: (20)

This shows that the bead reaches its equilibrium
velocity, where all forces cancel, instantaneously
compared to other time scales in the simulation,
e.g. capture times, and thus it is justifiable to use
the equilibrium velocity for calculations of the
bead flows [15]. Hence we neglect the inertial term
of Eq. (19), and obtain

v ¼
dr

dt
¼ vfluidðrÞ þ

1

6pRZ
ðFmagðrÞ þ FgravðrÞÞ. (21)

Eq. (21) constitutes three coupled, first-order,
ordinary differential equations of motion for the
bead.
From the equations of motion it is seen that the

largest magnetic forces appear in regions with the
largest gradients in jHj2: Once caught by the
magnetic gradient force, the particles are brought
towards the local magnetic field maximum. Hence,
we expect a high capture efficiency near such
points, i.e. near edges and corners of magnetic
structures.
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6. Simulations

For the simulations we have used the para-
meters of the bead type MyOnes from Dynal
Biotech [2], which are approximately: 2R ¼

1:05mm; r ¼ 1:8� 103 kg=m3; and mr ¼ 2:5: Also,
the permeability of the magnetic beads can be
assumed constant, since the applied fields do not
saturate the beads. The fluid is water with r ¼

1:0� 103 kg=m3 and Z ¼ 8:90� 10�4 Pa s:
We have solved Eq. (21) using the numerical

solver NDSolve of Mathematicas for many
different initial positions of the magnetic beads.
We have assumed that whenever a bead hits the
bottom of the microfluidic channel, it sticks
without any possibility of further motion.
Fig. 5 shows the result of a calculation where

10,000 magnetic beads have been released into the
microfluidic channel from the left at equally
spaced points. The flow rate is 1 mL/min. From
Fig. 5(a) it is noticed that many beads settle near
the entrance of the channel. This is due to the low
velocity of beads that are released very close to the
bottom of the microfluidic channel so that gravity
will have a large effect over short distances.
However, since the fluid velocity near the bottom
of the channel is small, the bead in-flux is also
small there. In other words, the in-flux of magnetic
beads is low for z 
 0; whereas the in-flux is large
for z 
 z0=2: This is reflected in Fig. 5(b) that
shows the bead settling probability density across
the microfluidic channel. Each of the settling
Fig. 5. Calculation of the trajectories of 10,000 magnetic beads, whos

the microfluidic channel. Each cross in the figure corresponds to a po

have been transformed into a settling probability density. The dark pa

density.
points from Fig. 5(a) has been scaled with the
fluid velocity at the entry point of the bead, since
the in-flux of magnetic beads at an entry point is
proportional to the fluid velocity at that entry
point, if the bead concentration in the fluid is
constant. Since the in-flux of magnetic beads in the
part of the channel entrance (near the bottom of
the channel) that would lead to settling points in
the beginning of the channel is low, the settling
probability density is not as high in the left part of
the channel as might be expected from Fig. 5(a). It
is Fig. 5(b) rather than Fig. 5(a) that one would
expect to observe experimentally.
The most important feature of Fig. 5 is that the

beads clearly tend to settle near the inner pole
piece edges of the electromagnets, i.e., where the
magnetic field is largest according to Fig. 4. This
means that an experimentally observed bead-
settling pattern would be expected to concentrate
in these areas.
Fig. 6 shows a magnetic capture diagram of the

entrance of the microfluidic channel, and it shows
where beads with different initial positions settle in
the microfluidic channel. It is seen how beads
released near the sides or bottom of the micro-
fluidic channel are more easily captured in the
channel, since the fluid velocity at the release point
is small, and thus both gravity and magnetic force
will be large compared to the fluid drag. Fig. 6 also
allows us to calculate the bead capture efficiency
for the microsystem. It is simply the summed
probabilities for bead entrance at all the different
e initial positions were equally spaced across the left entrance of

int, where a magnetic bead has settled. In (b) the settling points

rts of the plot correspond to places with high settling probability
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Fig. 6. The plot shows the fluid and bead entrance of the

microfluidic channel, which has been divided into four areas

corresponding to the position where a bead that started in that

phase settled in the microfluidic channel, or if the bead escaped

capture. L is the length of the microfluidic channel.

Fig. 7. Micrograph of captured beads on top of one micro-

electromagnet. The dotted square marks the inner pole of the

electromagnet and has a side length of 1mm. The magnetic

beads are seen as the bright areas along the edge and close to

the corners of the inner pole region of the electromagnets.
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points in the entrance of the microfluidic channel
that correspond to caught beads. In this case the
capture efficiency is �89%.
7. Experiments

We have performed bead capture experiments
using the described microfabricated system. While
it is difficult to measure bead capture efficiencies
and almost impossible to study bead trajectories
when the dimensions of the microfluidic channel
are large compared to the bead diameter, the bead-
settling pattern is more easily observed. In the
experiments we have used bead concentrations
that are large enough to capture a significant
number of magnetic beads, but still low enough
that interactions between the magnetic beads in
the solution are negligible.
Fig. 7 shows the bead-settling pattern of such an

experiment. The picture is taken after 20min, and
it is seen how the beads have settled near the edges
of the inner pole region of the square microelectro-
magnet. Beads captured along the edges are
vaguely seen, but most beads have settled near
the corners of the square electromagnet. As the
simulations have been carried out for cylindrical
electromagnets, the bead accumulation near cor-
ners is not predicted. However, the magnetic field
is expected to be even more concentrated near the
corners of the electromagnet, so when beads
approach the bottom of the microfluidic channels,
they will experience a horizontal force towards the
corners. Also in the simulations the beads were
supposed to stick, when they hit the bottom.
Experimentally they might move along the bottom
of the microfluidic channel, giving rise to the very
high density of captured magnetic beads at the
corners.
8. Conclusion

We have presented a simulation scheme for the
movement and capture efficiency of magnetic
beads in a microfluidic channel. Furthermore we
have shown that the results of the simulations are
in qualitative agreement with experimental data.
In the simulation scheme, we have neglected the

effect of hydrodynamic and magnetic interactions
between magnetic beads, and interactions between
beads and channel walls. These effects are
discussed in Ref. [16]. Also the movement of
magnetic beads after they first hit the channel
bottom has been neglected.
In Ref. [15] another simulation scheme is

presented, where the local concentration of mag-
netic beads in the fluid is treated as a continuous
function, and the behaviour of the local bead
concentration as a function of time is discussed. In
that scheme it is also found that the beads move
towards regions with large magnetic field, so there
is a qualitative agreement between that simulation
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scheme and the one presented here, where the
movement of single magnetic beads are considered.
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