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Abstract
We present a theoretical and numerical study of the quasi-static motion of
large wetting bubbles in microfluidic channels with contractions. In most
cases the energy of a bubble increases when it is moved from a wide channel
to a narrow one, and the bubble thus tends to clog the flow of the fluid. A
certain pressure, the so-called clogging pressure, is needed to push the
bubbles out of the contraction. However, we show that in the case of a
hydrophilic channel contraction there exists a range of parameter values
where the bubble actually gains energy by moving into the narrow part. For
these specific cases we analyze how the clogging pressure depends on
channel geometry, surface tension and contact angle. Based on our analysis
we establish design rules for minimizing the clogging pressure of
microchannel contractions.

1. Introduction

Many microfluidic networks on modern lab-on-a-chip devices
contain channel contractions. These tend to become
problematic if, as is often the case, gas bubbles are introduced
into the liquid at the inlets or by electrochemical processes.
Due to the small channel dimensions gas bubbles can easily
be large enough to span the entire channel cross-section.
Such ‘large’ bubbles are prone to get stuck at the channel
contraction, whereby they can clog the flow and disturb
measurements or functionality of the system in an uncontrolled
manner. To clear the clogged channel an external pressure,
the so-called clogging pressure, has to be applied to push
the clogging bubble out of the system. Although already
identified nearly a decade ago [1, 2], this important problem
in microfluidic systems has not been studied theoretically
to a wide extent, a situation we would like to amend with
this paper. The present work is a substantial extension of a
preliminary and specialized study presented at the NanoTech
2003 conference [3], now including an analysis of the bubble
energies in general cases, inclusion of compressibility effects
and the use of different parameter values.

A complete analysis of the motion of a large bubble
through a microchannel contraction involves many different
physical effects, some which are not completely understood.

Any comprehensive analysis would at least require detailed
modeling of the liquid–gas, liquid–solid and solid–gas
interfaces as well as the dynamics in the bulk fluids. But
also more complicated processes near the contact lines need
to be addressed, e.g. wetting [4–6], contact line pinning and
hysteresis [4, 7], dynamic contact angles and contact lines
[8–10] and static and dynamic friction [11–13]. It should be
stressed that many of these surface effects are hard to control
precisely, therefore dynamical systems where the lubrication
assumption is used are also widely analyzed [14, 15].

In this work, however, we will restrict our analysis to
quasi-static motion of bubbles. By this we mean that the
velocity of the bubble is nearly zero and that the entire
model system remains arbitrarily close to equilibrium for all
bubble positions. All dynamic aspects are thus neglected,
and basically the model involves only the free energy of the
internal interfaces of the system and external pressures. This
is motivated by the fact that it is difficult to experimentally
control surface related properties. We thus only study
geometry related effects. We also choose to work only with
axisymmetric channels of smooth (but otherwise arbitrary)
contraction geometries free from any sharp corners and
other singularities. With these simplifications the forces or
pressures needed to push a bubble through the system can be
calculated accurately without losing the essential physics of
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Figure 1. A bubble with internal pressure Pi and center of mass xcm

in a hydrophilic axisymmetric channel. The left (right) contact line
has the coordinate xL (xR) and contact angle θ . The channel is
contracting from a straight part of radius R to one of radius r. The
specific channel profile is defined by some function r(x).
Throughout this paper we have chosen r(x) to be a sloped straight
line joined to the straight parts by two circle arcs. The tapering
angle θt is given by tan θt = −r ′(x). The pressure left (right) of the
bubble is denoted as PL (PR) and the pressure difference across the
bubble is �Pb.

the problem. This in turn enables us to formulate design rules
for microchannel contractions to prevent or reduce clogging.
To our knowledge similar analyses have only been made on
channels of constant cross-sections [16] and for the special
case of sudden contractions [17].

2. The model and basic physical assumptions

Consider a hydrophilic microfluidic channel or capillary, such
as the one depicted in figure 1, which is axisymmetric about
the x axis with a position dependent channel radius r(x). The
channel is filled with a liquid. A large bubble of some other
fluid (we think mainly of a gas such as air) is present in the
liquid. By large we mean that the volume of the bubble is
larger than the volume V max

sph of the largest inscribed sphere
that can be placed anywhere in the microchannel. A large
bubble divides the liquid into two disconnected parts, left and
right of the bubble. The bubble itself consists of a bulk part in
direct contact with the walls of the channel and of two menisci,
in contact with the liquid, capping the ends of the bubble.

The bubble is assumed to be in quasi-static equilibrium. In
that case it is relatively simple to combine mass conservation
with geometric constraints to determine, as a function of the
bubble position, the pressure drops over the two menisci
needed to maintain this equilibrium. We define our central
concept, the clogging pressure, as the maximum of the position
dependent pressure drop across the bubble, i.e. the minimal
external pressure that must be supplied to push the bubble
through the microchannel.

2.1. The Young and Young–Laplace equations

Our model system consists of a solid channel containing a
liquid and one large gas bubble. Therefore, the essential
physical parameters are the three surface tensions (surface

free energy per area) σlg, σsl and σsg for the liquid–gas, solid–
liquid and solid–gas interfaces, respectively. In equilibrium
the contact angle θ is determined by the surface tensions
through the Young equation [18, 19]

σsg − σsl = σlg cos θ. (1)

In the following the contact angle is taken as the equilibrium
angle or rather as an average contact angle. Because contact
angle hysteresis is very sensitive to surface effects, we do not
address these questions in this work.

To sustain a curved interface with the main radii of
curvature Rc

1 and Rc
2 between a gas of pressure Pg and a liquid

of pressure Pl, the pressure difference �P = Pg − Pl must
obey the Young–Laplace equation [20]

�P = σlg

(
1

Rc
1

+
1

Rc
2

)
= 2σlg

cos θ

r
, (2)

where the last equation is applicable for a constant circular
cross-section of radius r. We use the standard convention that
these radii are taken as positive if the interface is concave when
seen from the gas.

2.2. Isothermal motion and compressibility

In the rest of the paper we consider a ‘large’ bubble having the
initial position ‘1’ in the widest part of the channel. The initial
volume is V1 = γV max

sph , where γ > 1 and V max
sph = 4πr3

1

/
3,

and the corresponding internal pressure is Pi,1. At a later stage
the bubble is moved to a position ‘2’, where the volume is
V2 and the internal pressure is Pi,2. In the quasi-static case
the bubble motion is isothermal and hence the compressibility
condition applies,

Pi,1V1 = Pi,2V2. (3)

The pressure Pi within the bubble is given as the external
pressure P0 plus the pressure change �P across the curved
interface, given by equation (2).

The most extreme compression is obtained by pressing a
large bubble, which floats without geometrical constraints in
a bulk liquid of pressure P0, into a narrow circular channel of
radius r. Combining equations (2) and (3) yields

V1

V2
= Pi,2

Pi,1
≈ Pi,2

P0
= 1 +

2σlg cos θ

rP0
. (4)

For example, moving a large spherical air bubble in water
(σlg = 0.0725 J m−2) at the ambient pressure P0 = 105 Pa
into a channel of radius r = 25 µm leads to V1/V2 ≈ 1.06,
i.e. a volume compression of 6%. Moving, as in section 6,
a bubble from a 300 µm to a 190 µm wide channel yields a
compression of about 0.2%.

In the case of laser ablated microchannels in plastic
chips, compressibility effects are negligible as the smallest
dimensions typically are greater than 100 µm. However, for
silicon based micro- or nanofluidic devices, compressibility
may play a significant role.

2.3. Quasi-static motion and geometry

For a bubble positioned in a microchannel contraction, the
total internal energy Etot is the sum of the surface free energy,
gravitational energy, kinetic energy and frictional energy. We
regard the surrounding pressures as external energy. By our
definition quasi-static motion of an incompressible bubble
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implies that the kinetic energy is zero and friction is also
zero because of hydrostatic and thermodynamic equilibrium.
Finally, we treat channels of characteristic dimensions 2r less
than 300 µm, which is significantly smaller than the capillary
length of water, �c = √

σlg/ρlg ≈ 2700 µm, where ρl =
103 kg m−3 and g = 9.82 m/s2. So the gravitational energy
can also be neglected, which ensures that the menisci may be
approximated by spherical caps.

The total internal energy Etot of the microchannel
containing a quasi-statically moving bubble is given only by
the surface free energy, i.e. the sum of interfacial energies σi

times interfacial areas Ai ,

Etot =
∑

i

σiAi = σlgAlg + σsgAsg + σslAsl. (5)

The pressure-related applied external force F needed to
balance the bubble is given by the gradient of the total internal
energy with respect to the center of mass coordinate of the
bubble xcm. Hence

F = dEtot

dxcm
, (6)

which thus depends on the bubble position xcm and, through
the areas Ai , on the geometry of the channel.

2.4. The clogging pressure

The Young–Laplace pressure drops (cf equation (2)) at the
menisci are given by,

�PL = Pi − PL, (7a)

�PR = Pi − PR. (7b)

The total pressure drop �Pb(xcm) over the bubble as a function
of its center of mass xcm is given by

�Pb(xcm) = PR − PL = �PL(xcm) − �PR(xcm). (8)

The clogging pressure Pclog is defined as the maximal position
dependent pressure drop across the bubble,

Pclog = max {−�Pb(xcm)}. (9)

The clogging pressure expresses the minimal amount by which
the left-hand-side pressure PL must exceed the right-hand-side
pressure PR to push the bubble through the contraction quasi-
statically from left to right.

3. General energy considerations for axisymmetric
microchannels

Consider a bubble placed in a cylindrical channel of radius R.
We want to determine the change in energy resulting from
moving it into a smaller channel of radius r < R, e.g.
by moving it from left to right in the channel depicted in
figure 1. Intuitively, we would expect the energy to increase
as a result of the movement. In most cases this intuition is
correct; however, we shall see that in some cases the system
gains energy by the move, solely due to geometric conditions.

The bubble has the initial volume V1 = γV max
sph , where

γ > 1 and V max
sph = 4πR3/3. With this constraint the bubble is

forced to touch the walls regardless of its position. According
to equations (2) and (7b) the internal pressure of the bubble is

Pi,1 = PR + 2σlg
cos θ

R
. (10)

The volume of the bubble is the sum of two spherical cap
volumes and the volume of a cylinder of initial length L. Once
the length L is known, the relevant interfacial areas Alg and
Asg may be found.

The gas bubble is now moved to the cylindrical channel
of radius r, and according to equations (2), (3) and (7b) the
pressure Pi,2 and volume V2 are

Pi,2 = PR + 2σlg
cos θ

r
, (11)

V2 = Pi,1

Pi,2
V1. (12)

By solving equation (12) it is straightforward to find the change
in total free surface energy,

�Etot = Etot,2 − Etot,1 = σlg(Alg,2 − Alg,1)

+ σlg2π cos θ(rl − RL), (13)

where l is the length of the bubble in the channel of radius
r < R (situation 2). In equation (13) the Young relation
(1) has been used to eliminate the solid–liquid and solid–gas
interfacial energies.

Based on equation (13) we can analyze the energy change
when moving the bubble from the wide channel of radius R to
the narrow channel of radius r. First we give the limiting values
of �Etot. In the limit r/R → 1 we obviously get �Etot → 0.
In the opposite limit, r/R → 0, the compressibility of the
bubble results in convergence of �Etot,

lim
r
R

→0
�Etot = πR3

3

(
4γRPR − σlg

4 + sin(3θ) − 3 tan θ

cos2 θ

)
.

(14)

To discuss �Etot for general values of r/R we use a numerical
example: an air bubble in a water filled PMMA channel for
which we have the parameter values PR = 105 Pa, σlg =
72.5 mJ and θ = 72◦. The radius ratio r/R and the volume
parameter γ are then varied.

In figure 2 the energy �Etot (equation (13)) is plotted
as a function of the ratio r/R for given values of γ . The
figure shows that for large values of γ , i.e. large bubbles,
it requires energy (�Etot > 0) to move the bubble from
the wide to the narrow channel. However, there exists a
critical value γc ≈ 4.75 below which the system can gain
energy by moving the bubble, if the radius ratio r/R is not too
small. This behavior is generic for a bubble in a contracting
channel, but the specific shape of the curve and the optimal
minimum depend on the material parameters and the external
pressure PR.

The critical value γc, above which energy gain is
impossible, is given by ∂�Etot/∂(r/R) = 0 at r/R = 1,

γc = (3 − cos(3θ) + 2 sin θ)(2σlg cos θ + RP0)

2RPR cos θ(1 + sin θ)
. (15)

Figure 3 depicts the energy �Etot as a function of the
ratio r/R for γ = 1 and γ = 3, and for five values of the
wide channel radius, R = 100, 150, 200, 250 and 300 µm.
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Figure 2. Plot of the energy change �Etot as a function of the ratio
r/R. The bubble is moved from a wide channel of radius R =
150 µm to a narrow channel of radius r. Five curves are shown
corresponding to the volume ratio γ = 1, 2, 3, γc and 8, respectively.
γc ≈ 4.75. For ‘small’ volumes 1 � γ < γc the system can gain
energy by moving the bubble to the narrow channel, if the width of
the latter is not too small. For γ > γc the movement requires energy
in all cases.
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Figure 3. The energy �Etot as a function of the ratio r/R for
different values of the wide channel radius, R = 100, 150, 200, 250
and 300 µm. The plain curves correspond to the smallest bubble for
γ = 1 and the dotted curves correspond to a larger bubble with
γ = 3.

From equation (13) it may be seen that min{�Etot} ∝ R2 as
the area is proportional to R2 and L is proportional to R.
Deviations from this proportionality arise for small values
of R because of compressibility. For γ = 1 in figure 3
we find max{−�Etot} = kR2 with k = 0.159 J m−2. This
proportionality is illustrated as the energy at a given r/R

point is increased by a factor 4 when R is doubled, e.g. from
R = 150 µm to R = 300 µm.

The previous calculations clearly show that for some
geometries it is favorable to place the bubble in the narrow
rather than in the wide part of the channel. In the following
we shall address the question of whether for such geometries
the bubble will move spontaneously or it must cross an energy
barrier to arrive at the low-energy state in the narrow channel.

4. Analytical results for contractions with
energy gain

Combining the geometry defined in figure 1 with equations (2)
and (8), the central expression of our analysis is easily derived,

L

Dd

(a) (b)

x1 x1x2 x2

Figure 4. Two generic situations for a bubble of length L = xR − xL

near a microchannel contraction of length x2 − x1. (a) The
contraction is long enough to contain the entire bubble, i.e.
xR − xL < x2 − x1. (b) The contraction is so short that the bubble
can span it completely, i.e. xR − xL > x2 − x1, which is a class β4

bubble.

�Pb = 2σlg

(
cos[θ − θt(xL)]

r(xL)
− cos[θ + θt(xR)]

r(xR)

)
. (16)

From the discussion in section 2.4 it follows that if �Pb < 0
then the contraction causes bubble clogging, whereas for
�Pb > 0 the bubble tends to move spontaneously through
the contraction toward the narrow part.

Based on equation (16) a number of design rules may be
established specifying the geometric features that may prevent
or decrease clogging. Consider a bubble that starts out in the
wide straight section left of the contraction, where it has a
length L0 = xR − xL. The pressure drop �Pb is zero to begin
with, but depending on the shape of the contraction, such as the
two examples shown in figure 4, �Pb changes as the bubble
advances quasi-statically through the contraction.

The first part of any contraction can always be
approximated by a circle with an arc angle which is the local
tapering angle θt. As the right contact line xR just enters the
contraction, equation (16) can be expanded to first order in θt

yielding

�Pb ≈ 2σlg sin θ

R
θt > 0. (17)

Thus initially the bubble tends to move spontaneously into
the contraction. The physical reason for this is that the local
tapering angle allows the meniscus to flatten a little, which
reduces the costly gas–liquid interface energy.

Once the bubble moves inside the contraction defined in
figure 1, a complicated interplay between the initial bubble
length L0, the contact angle θ , the channel radii r(xL) and
r(xR) at the contact lines and the local tapering angle θt(x)

decides whether bubble clogging occurs or not. We classify
our systems into two main classes:

Class α comprises all cases where no clogging occurs,
i.e. where the bubble can move spontaneously through the
contraction without applying an external pressure.

Class β contains all cases with clogging, i.e. where
�Pb < 0 at some point or, equivalently, where Pclog > 0.

For class β four sub-classes can be identified depending on
where the bubble is when �Pb becomes negative and clogging
occurs. This bubble position is classified by the position of
the contact lines xL and xR relative to the beginning x1 and the
end x2 of the contraction region (see figures 1 and 4):

class β1 : xL < x1 and x1 < xR < x2,

class β2 : x1 < xL < x2 and x1 < xR < x2,

class β3 : x1 < xL < x2 and x2 < xR,

class β4 : xL < x1 and x2 < xR.

(18)
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Table 1. Physical parameters for air bubbles in water flowing
through PMMA microchannels.

Parameter values Reference

σlg = 72.5 × 10−3 J m−2 [21]
σsg = 38.9 × 10−3 J m−2 [21]
σsl = 16.5 × 10−3 J m−2 [21]
θ = 72◦ [18]

A detailed analysis of equation (16) yields important
relations for some of the clogging classes.

A β2 clogging only occurs if the bubble can move entirely
within the tapered region as shown in figure 4(a), and if at
some point it has a length L = xL − xR such that

L >
r(xL)

tan θt

[
1 − cos(θ − θt)

cos(θ + θt)

]
. (19)

In β4 where the bubble in fact spans the entire contraction
as sketched in figure 4(b), there is always clogging and the
clogging pressure is maximal. The value for �Pb is negative
and independent of the shape of the contraction. From
equation (16) we get

�Pb = 2σlg cos θ

(
1

R
− 1

r

)
< 0. (20)

The nonclogging class α will in general occur if the bubble is
small enough. According to the class β4 analysis a necessary
(but not sufficient) condition for avoiding clogging is that the
bubble is small enough to be completely contained in the
contraction region. An analysis of the β2 and β3 classes shows
that it should also be short enough to avoid clogging while
the left meniscus is still in the tapered region. The β1 class
furthermore puts upper limits on tapering angles that allow
for clog-free flow. Examples from class α and β4 are treated
further by detailed numerical analysis in sections 5.2 and 5.3.

5. Numerical simulations

To illustrate the analysis given above a detailed simulation is
made in the following. The aim is to minimize the clogging
pressure �Pb with respect to a given parameter. We are
limiting our analysis so that the variation comprises only one
parameter: the tapering angle θt.

5.1. The numerical algorithm

In order to find the force and clogging pressure acting on a
large bubble for a given geometry, a semianalytical model
of the contracting channel is implemented in MatLab. A
numerical Romberg integration scheme is used together with
a Newton solver to determine the location of the right and left
contacts line (xR and xL) for a given position of the center of
mass coordinate xcm. The respective interface areas Ai are
then found. For a specific geometry defined through r(x),
the maximal force is found through equations (5) and (6)
and the pressure drop �Pb is found through equation (16).
The heaviest calculation ran for approximately 4 h on a
standard PC.

To be specific we use the geometry defined in figure 1 and
take PMMA as the solid material, water as the liquid and air as
the gas. This configuration has the physical parameters given
in table 1.

5.2. A specific system without clogging, class α

The first example is the system with a bubble placed in a
relatively gentle contraction depicted in figure 5. The total
length of the channel is 1000 µm. The wide straight channel
to the left has a radius R = 150 µm and length 200 µm. The
contraction has a length x2 − x1 = 350 µm and circle arc
lengths of 30 µm, which results in a tapering angle θt = 10◦.
The narrow straight channel to the left has a radius r = 95 µm
and length 500 µm. The bubble starts out in the wide channel
to the left. It has a relative volume of γ = 1.02 (cf section 3)
and an initial length L0 = 180 µm.

Figure 5 shows the bubble at five different positions (a)–
(e). As the bubble advances through the channel it is seen
how its length xR − xL changes and how the curvatures of the
menisci vary. The black dots inside the bubble indicate the
center of mass xcm.

In figure 6(a) the total internal energy of the system is
plotted as a function of center of mass position xcm. The zero
point of the energy is chosen as the energy of the system when
the entire bubble is positioned completely within the narrow
part of the channel. The five positions (a)–(e) in figure 5 are
also marked here.

It is seen that the energy decreases monotonically. This
means that without a negative external pressure holding it back,
it would move spontaneously through the channel from the left
to the right. As long as the bubble moves completely within the
wide part of the channel, the energy is constant (about 4 nJ).
Then as the right edge enters the contraction, position (a),
the energy drops rapidly in accordance with the pressure drop
equation (17). This trend continues as the entire bubble moves
inside the contraction, as is the case in position (b). The energy
continues to drop, but now less rapidly, as the right edge of the
bubble enters the narrow channel, see position (c). However,
as the left bubble edge approaches the narrow channel, the
energy drop picks up again, see position (d). Finally,
the bubble moves completely inside the narrow section and
the energy becomes zero (per definition), see position (e).

In figure 6(b) the corresponding balancing external force F
from equation (6), and the clogging pressure across the bubble
−�Pb, equation (16), are plotted as functions of xcm. The
balancing external force is seen to be negative, which means
that to maintain the bubble at quasi-static equilibrium, it is
necessary to hold it back. Without this force, the bubble would
of course, as mentioned above, move spontaneously toward
the narrow segment. At position (c) where the right edge of
the bubble enters the narrow channel, both force and pressure
reach local maxima, but even here they are both negative. No
clogging occurs in this system, and it therefore belongs to class
α as defined in section 4.

5.3. A specific channel with clogging, class β4

The second example is nearly the same as the first. Only
the length of the contraction region has been reduced from
350 µm to 180 µm. This leads to an increase of the tapering
angle from 10◦ to θt = 20◦. In figure 7 four positions (a)–(d)
of the large bubble are depicted. Note that since θ + θt = 92◦,
the right meniscus in the tapered section of the channel in
panel (a) is nearly flat. In fact it has a slight inward bend.
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Figure 9. The maximal balancing force Fmax and clogging pressure
Pclog = −�Pb,max plotted as functions of the tapering angle θt.
Detailed figures illustrating the situation for θt = 10◦ (marked A)
are given in figures 6(a) and (b), and for θt = 20◦ (marked B) in
figures 8(a) and (b). The β3, β4 and α classes are described in
section 4. The maximal clogging pressure occurs in class β4. It is
found by equation (20) to be Pclog = 173 Pa.

In figure 8(a) the energy is shown as a function of xcm.
The four positions (a)–(d) are also marked. We immediately
note a qualitative difference between this graph and that in
figure 6(a). The energy no longer drops monotonically but
exhibits a marked increase between positions (b) and (c). This
corresponds to the case where the bubble spans the entire
contraction, i.e. the left bubble edge is still in the wide channel
segment when the right edge enters the narrow segment.

This effect is of course also visible in figure 8(b) where the
balancing external force F and the clogging pressure −�Pb

are plotted as functions of xcm. Around position (b) both F and
−�Pb become positive, which means that external pressure
forces need to be applied to move the bubble through the
system. Using equation (20) the clogging pressure is found
to be 173 Pa. Without this external force the bubble would
tend to move backwards out of the channel, i.e. the system
is clogging, and in fact it is an example of class β4 clogging.

5.4. Clogging pressure versus tapering angle θt

The previous two examples showed the behavior for a
particular channel contraction from R = 150 µm to r =
95 µm with tapering angles θt = 10◦ and 20◦, respectively. We
now extend this analysis to the entire interval 0◦ < θt < 60◦.
For each tapering angle we calculate the maximal external
force F and the clogging pressure Pclog. The result is shown
in figure 9.

The graph clearly shows that some tapering angles ease the
passage of bubbles. For the geometrical configuration defined
by R = 150 µm, r = 95 µm and C = 30 µm a small window,
the interval 9.5◦ < θt < 11◦, with optimal tapering angles can
be identified. In this window Pclog < 0 corresponding to the
clogging-free class α behavior.

For angles greater than about 11◦ the maximal force is
seen to increase dramatically. This transition corresponds to a
configuration where the bubble can span the entire contraction
region, i.e. class β4. We clearly see that once the bubble is
able to span the entire contraction, the specific geometry of

the contraction (in this case the tapering angle) plays no role.
We get the same clogging pressure, Pclog = 173 Pa.

Finally, we note, that class β3 behavior sets in for small
tapering angles below 9.5◦. A small clogging pressure is
observed, less than 30 Pa.

6. Conclusion

The effects of geometry on the quasi-static motion of
large bubbles through a hydrophilic microchannel (capillary)
contraction are modeled. The simplicity of the model leads to
a good physical understanding of bubble clogging. We have
shown that in most cases it requires energy to move a bubble
from a wide to a narrow channel. However, we have also found
that certain bubble sizes and specific channel geometries lead
to a gain in energy.

We have specifically studied the contractions where such
an energy gain is achieved. Using the central equation for
the pressure drop �Pb across the bubble, equation (16),
we analyzed a specific contracting axisymmetric hydrophilic
channel, and we identified four different classes, denoted as β1

to β4, leading to bubble clogging, and one clogging-free class
denoted as α. The details of the analysis are quite complicated
due to the large number of parameters: the tapering angle θt,
the contact angle θ , the initial bubble length L0, the radii R and
r of the wide and narrow channel segments, etc. However, one
general trend is clear. The tendency for clogging increases as
the bubbles become larger.

Based on our analysis, some important design rules can
be established for making microchannel contractions with
minimal or even vanishing clogging pressures. These rules
only apply for channel contractions where the energy is lowest
in the narrow part.

First, if the typical size L0 of the bubbles present in
the microfluidic system is known, it is important to design
contractions which are larger than L0. The highest clogging
pressures occur namely for bubbles spanning the entire
contraction, the so-called β4 class.

Second, the combined effect of the tapering angle and
contact angle has to be taken into account to make sure that L0

is shorter than the critical length leading to clogging of class
β2 being entirely within the tapered region.

Third (not presented here), to smoothen out and lower
any unavoidable positive clogging pressure, it helps to make
the curved parts of the contraction as large as possible, thus
decreasing their curvature.

The method of analyzing the bubble clogging problem
in microchannels presented in this paper is very general.
It is straightforward to extend it to other geometries
(such as nonmonotonic contractions) and to hydrophobic
microchannels. With the presented design rules at hand it
is possible to design a system that may filter or sort bubbles
of different volumes—one simply places contractions with
different tapering angles in properly arranged series. A
comparable system designed to sort bubbles is presented in
[17]. The model may also be extended to include wetting
layers as used in [16], and it may be used to model two phase
flows in porous media as in [22, 23]. Some of the dynamical
effects such as those briefly mentioned in the introduction may
be included as well.
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