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Abstract

The anomalous 0.5 and 0.7 conductance plateaus in quantum point contacts in zero magnetic -eld are analyzed within a
phenomenological model. The model utilizes the Landauer–B/uttiker formalism and involves enhanced spin correlations and
thermal depopulation of spin subbands. In particular we can account for the plateau values 0.5 and 0.7, as well as the unusual
temperature and magnetic -eld dependences of the 0.7 plateau. Finally, the model predicts the possibility of coexisting 0.5
and 0.7 plateaus. c© 2001 Elsevier Science B.V. All rights reserved.
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1. Introduction

It has been known and well understood since
1988 ([1,2] and for a review see e.g. Ref. [3]) that
the DC-conductance G of narrow quantum point
contacts and quantum wires (both referred to as
QPCs below) is quantized in units of G2 = 2 e2=h.
During the past 5 yrs an increasing part of the ex-
perimental and theoretical work on QPCs has been
devoted to studies of a particular deviation from this
integer quantization known as 0.7 conductance
anomaly [4–14]. This anomaly is a narrow plateau,
or in some cases just a plateau-like feature appearing
in scans of G versus gate voltage Vg at a value of
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G which is reduced by a factor 0.7 relative to the
ideal value G2. The 0.7 anomaly has been recorded
in numerous QPC transport experiments (even before
it was noted in 1996, see e.g. Ref. [1]). Recently the
appearance of an anomalous plateau at the value 0:5G2

was also reported [10,11].
In this paper, we show that many of the exper-

imental -ndings regarding the 0.5 and 0.7 anoma-
lous plateaus can be consistently interpreted by
invoking the model of enhanced spin correlations in
the QPC, which we previously put forward to explain
the 0.7 plateau [14]. We emphasize that our model
does not rely on the existence of static polarization,
which would be inconsistent with some general theo-
rems [19,20], but rather on eCects of dynamical local
polarization in the QPC.
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Already in the -rst paper [4] it was pointed out that
due to its magnetic -eld dependence the 0.7 anomaly
may be related to spontaneous spin polarization of
electrons in the QPC. Theoretical attempts to link
the 0.7 anomaly to spontaneous spin polarization
have been made [12,13]. However, none of these ap-
proaches have explained all of the experimental facts,
and most strikingly they failed to predict the observed
plateau at 0:7G2. Also the 0.7 anomaly cannot be
explained by impurity backscattering mechanisms,
Luttinger liquid eCects or an interplay of both, the
predicted temperature dependence being opposite to
the observed one.

2. Summary of experimental facts

In summarizing experimental data we will mainly
refer to the work of the Cambridge group [4–6] and
the Copenhagen group [7–9] presenting detailed stud-
ies of the magnetic -eld and temperature dependence
of the 0.7 anomaly.
The main experimental features of the 0.7 anomaly

are:

(e1) The anomalous plateau is observed in a large
variety of QPCs at a value G= �G2, where the
suppression factor � is close to 0.7 [4–9].

(e2) The temperature dependence is qualitatively the
same for all samples: the anomalous plateau
is fully developed in some (device dependent)
temperature range typically above 2K. With in-
creasing temperature both the anomalous and the
integer plateaus vanish by thermal smearing,
while with decreasing temperature the width of
the anomalous plateau shrinks the conductance
approaching 2G2 [4–9].

(e3) A detailed study of the temperature dependence
of � shows that in the low temperature regime
the conductance suppression has an activated
behavior: 1− �(T )˙ exp(−Ta=T ) [8,9].

(e4) The activation temperature Ta is a function of
Vg vanishing at some critical gate voltage V 0

g .
Close to V 0

g the dependence of Ta on Vg is well
approximated by a power law [8,9], Ta ˙ (Vg−
V 0
g )

	, with 	 ≈ 2.
(e5) At a -xed temperature corresponding to a well

developed 0.7 plateau, � shows a strong depen-
dence on an in-plane magnetic -eld [4–6]. With

increasing magnetic -eld � smoothly decreases
from 0.7 at B=0T to 0.5 at B=13T.

(e6) Under the same temperature conditions as in (e5)
the 0.7 anomaly depends on the source-drain
bias. The suppression factor � increases smoothly
from ∼0:7 at zero bias to ∼0:9 at large bias
(∼2mV) [9].

(e7) In some samples the anomalous plateau was re-
ported to appear atG=0:5G2 [10,11] rather than
at G=0:7G2.

3. The phenomenological model

The ground state of the two-dimensinal electron
gas (2DEG) has been studied extensively using ever
more re-ned methods involving local density func-
tional theory [15,16] and Monte Carlo calculations
[17]. In particular it is argued in the latter work that
at zero temperature there exist at least three phases of
the 2DEG: an unpolarized Iuid (rs ¡ 13), a fully spin
polarized Iuid (13¡rs ¡ 33), and a Wigner crys-
tal polarization (rs ¿ 33). More recently, also using
density functional theory, the quasi-1d case has been
studied and evidence for a spin polarization has been
found [12,18]. In Ref. [12] the spin polarization in
QPC’s was studied at zero temperature assuming that
the expression in the local-density approximation for
the exchange energy of the bulk 2DEG is also valid in
narrow quasi-1d constrictions. This work suggested
the possibility of spin polarization in QPC’s, but yield-
ing only plateaus at 0.5 and 1.0, it failed to explain the
0.7 anomaly. We base our phenomenological model
on these previous works on spin polarization. With-
out refering to any particular model for the exchange
energy, we simply assume the existence on spin polar-
ization expressed by a general spin-density functional
involving three unknown constants that are to be
determined experimentally.
We stress that the spin polarization is not necessar-

ily permanent. It may well exhibit mesoscopic Iuctu-
ations. It is in fact enough to assume that the dynamics
of the spin degrees of freedom in the constriction is
adiabatic (slow) as compared to both the length of the
QPC and the time of passage of electrons through the
QPC. Then, given some instantaneous spin con-gura-
tion the transmission coeKcient T tot

� for a spin-� elec-
tron going through the QPC can thus be calculated as
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Fig. 1. (a) The instantaneous spin split subband structure of
our model. (b) The functional form Eqs. (4) and (5) of
�(�)= � − �s↓(�) giving rise to the anomalous 0.7 plateau.

T tot
� =T�(E)P�+T M�(E)P M�. Here P� (P M�) is the proba-

bility of -nding the incoming spin parallel (antiparal-
lel) to the instantaneous polarization. In the isotropic
case with P� =P M� this leads to the same results as a
static situation where two spin subbands are formed.
For simplicity we just treat the case of a stationary
polarization in the following and derive the subband
structure shown in Fig. 1a.
This discussion of spin-polarization serves as the

justi-cation of the basic assumption in our work: the
existence of a “critical” chemical potential �c, where
the cross-over from full to partial polarization oc-
curs. For �¡�c the densities are n↑ = n0↑ and n↓ =0,
while for �¿�c a non-zero n↓ develops, i.e. two spin
subbands appears with diCerent subband edges �s� as
depicted in Fig. 1a. It turns out that all the phe-
nomenology of the anomalous plateaus is contained
in the � dependence of the position of the minor-
ity subband edge �s↓(�) relative to �. This important
parameter is denoted as

�(�)= � − �s↓(�): (1)

Our entire analysis is based on the local spin density
functional written as

F =E[n↓; n↑]− � (n↓ + n↑): (2)

Near the critical point �c, for �¿�c, we have n↓�n↑
and the condition for the minimum of the free energy
becomes

9F
9n↑

= 	+ 	′�n↑ + �n↓ − �=0;

9F
9n↓

= � + �′n↓ + � �n↑ − �=0: (3)

We have made the linearization n↑ = n0↑ + �n↑ for the
majority spins and assumed that the energy functional
F near the minimum is bilinear in �n↑ and n↓.
The solution for the minority spin density in the

case of �¿�c is n↓ ˙ (�−�c) which combined with
the 1d property that n2↓ ˙ �↓F. But �

↓
F = � − �s↓ =�,

and we arrive at:

�(�)=C(� − �c)2; for �¿�c: (4)

For �¡�c we have n↓ =0 and �(�) is now the ex-
citation gap for Iipping a spin at the Fermi level, i.e.
�(�)= (9n↑F − 9n↓F)= 0, which gives �(�)= � +
� �n↑. This combined with �n↑ ˙ � − �c leads to:

�(�)=D(� − �c); for �¡�c: (5)

We have thus derived the dispersion laws depicted in
Fig. 1:

�↑(k)=
˝2
2m

k2 + �s↑;

�↓(k)=
˝2
2m

k2 + � − �(�): (6)

Given these dispersion relations, at -nite tempera-
ture T using an idealized step-function transmission
coeKcient the LB conductance G(T ) of this system is
[3]

G(T ) = 1
2G2

∑
�= ↑;↓

∫ ∞

−∞
d��(�− �s�)

(−f′[�− �]
)
;

(7)

where f′ is the derivative of the Fermi–Dirac distri-
bution f[x] = [exp(x=kBT )+1]−1 and�(x) is the step
function. By integration and using Eq. (1) we obtain

G(T )= 1
2G2

(
f[�s↑ − �] + f[− �(�)]

)
: (8)

All predictions relating to experiments on the con-
ductance of QPC’s follow from this simple analytical
form.
Before turning to a thorough analysis of this ex-

pression we note some of its basic features. Consider
-rst the situation where the spin polarization is nearly
complete, i.e. �(�)��s↓(�) − �s↑(�). In this case, at
low temperatures, kBT��(�), both terms in Eq. (8)
are 1 and the conductance is the usual G2. However,
in the temperature range

�(�)�kBT��s↓(�)− �s↑(�); (9)

the contribution of the -rst term is 0.5 while the
second term remains 1 yielding G=0:75G2. Due to
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Fig. 2. (a) The conductance from Eqs. (8) and (4) with C =0:5,
D=1:0 and �c = �s↑. All energies are given in units of the trans-
verse mode subband spacing E. (b) The conductance as in (a)
but with -xed T =0:008E and an applied in-plane magnetic -eld
varying from 0 to 0.08E=g�B. For clarity the curves in (b) have
been oCset horizontally.

the parabolic �-dependence of � given by Eq. (4),
which in a sense pins �s↓ to �, the condition (9) is
in fact ful-lled for a suKciently broad range of �
(in experiments � ˙ Vg), thus giving rise to a 0.7
quasi-plateau.
An in-plane magnetic -eld B is readily taken into

account by adding Zeeman energy terms and substi-
tuting

�s↑ → �s↑ − g �B|B|; �s↓ → �s↓ + g �B|B|: (10)

4. Experimental implications of the model

In the following we discuss how the model can
explain the experimental observations (e1)–(e6). In
Fig. 2(a) observations (e1) and (e2) are clearly seen
in the model calculation. In this idealized case with a
step-function transmission coeKcient the plateau ap-
pears at 0:75 as discussed above. Observation (e3)
follows trivially from Eq. (7) with the activation tem-
perature Ta =�(�). Assuming that in the vicinity of
�c the chemical potential depends linearly on the gate
voltage Vg Eq. (4) immediately predicts (e4) with the
exponent 	=2.

The result of the model calculation in the presence
of a magnetic -eld using Eqs. (8), (4) and (10) is
shown in Fig. 2(b). In accordance with observation
(e5) the 0.7 anomaly develops smoothly into an ordi-
nary Zeeman split 0.5 plateau. The experimental ob-

Fig. 3. (a) G for -xed �c and coeKcient C while changing
temperature. For clarity, the curves are oCset, the temperature
increasing from left to right. Note the disappearence of the 0.5
plateau at high T . (b) G for -xed temperature and coeKcient C
while changing �c. For clarity, the curves are oCset, �c increasing
from left to right. Note the disappearence of the 0.5 plateau for
small values of �c.

servation (e6) concerns -nite bias. This brings us into
a strong non-equilibrium situation which is outside
the scope of the present work. However, considering
a small -nite bias not too far from the equilibrium
case, we do -nd that the 0.75 plateau rises, which
gives additional support for the picture presented here.
In Ref. [9] the -nite bias measurements were well
explained by straightforward extension of our model
to the non-linear regime.
Apart from 0.7 quasiplateau, our model also predicts

a plateau at 0:5G2, which should be seen in perfect
QW/PCs at zero temperature and zero magnetic -eld
when �s↑ ¡�¡�c (full polarization). In order to ob-
serve the 0.5 plateau the condition kBT ¡min{|�|; �−
�s↑}must be ful-lled. Otherwise thermal smearing will
destroy the plateau. Note that even if the 0.5 plateau
is thermally smeared, Eq. (9) may still hold and re-
sult in a 0.7 plateau. This is illustrated in Fig. 3. In
Fig. 3(a) �c is -xed and the temperature is changed,
while in Fig. 3(b) the value of �c is changed at a
-xed temperature. One can see that in a situation
where T ¡�c=8 the 0.5 and the 0.7 plateaus can be
seen simultaneously. This situation has never been ob-
served experimentally, which might be an indication
that the experimentally accessible temperatures are too
high to resolve the 0.5 plateau. However according
to (e7), a situation where 0:5 plateau appeared with-
out a 0:7 plateau was observed. This might happen if
the range of � corresponding to partial polarization
in the QPC was particularly narrow as compared to
that corresponding to full polarization. In terms of the
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Fig. 4. (a) G for -xed temperature and a small value of �c while
changing the coeKcient C. For clarity, the curves are oCset, C
decreasing from left to right. Note the emerging 0.7 plateau at
small C. (b) The same as in (a) except for a larger value of �c.
Note the coexistence of the 0.5 and 0.7 plateaus.

parameters of our model it would mean e.g. a very
large constant C.
The role of parameter C is illustrated in Fig. 4. One

can see that with increasing C the 0.7 quasiplateau
becomes narrower and less prominent, and practically
disappears in comparison with the 0:5 at very large
values of C:

5. Non-ideal transmission

In our idealized model we used a step-function
transmission coeKcient for electrons traversing the
QPC. Non-ideal transmission is easily taken into ac-
count by replacing the theta function in Eq. (7) with
a given transmission coeKcient T�(�):

G(T )= 1
2G2

∑
�= ↑;↓

∫ ∞

−∞
d� T�(�)

(−f′[�− �]
)
: (11)

Through the transmission coeKcient T�(�) the conduc-
tance now depends on the geometry of the QPC and
is no more universal. However, some qualitative pre-
dictions can still be made without a knowledge of the
exact transmission properties of the QPC. First of all,
due to the conditions Eqs. (9) and (4) the quasi-plateau
persists. Secondly, mainly the transmission coeKcient
of minority spin band is aCected which results in a
suppression of the anomalous plateau while the integer
plateau remains close to 1. Model calculations show
that the anomalous 0.7 plateau may be suppressed to
the values of G=0:6G2 without being destroyed [14].

Another eCect of non-ideal transmission is the “smear-
ing” of the G versus. � dependence as compared to
the situation of ideal transmission. The character of
smearing is not unlike the thermal smearing, and it
may e.g. contribute to the eCect of masking the 0:5
plateau in the samples where only the 0:7 plateau is
seen.

6. Summary and conclusion

We have presented a phenomenological model
which can account for the experimental observations
of the anomalous 0.7 and 0.5 conductance plateaus
in mesoscopic QPCs. The model is built on an as-
sumption of an eCective instantaneous partial polar-
ization seen by the traversing electrons, while the
ground state itself need not have a -nite magnetic
moment. Even in its simplest form excluding eCects
of non-ideal transmission our model is capable of
providing a very satisfactory description of diCerent
experimental situations, which is achieved by varying
the two model parameters �c and C.
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