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Excitations in antiferromagnetic cores of superconducting vortices

Henrik Bruus, Kasper Astrup Eriksen, Michael Hallundbæk, and Per Hedega˚rd
O” rsted Laboratory, Niels Bohr Institute for APG, Universitetsparken 5, DK-2100 Copenhagen O” , Denmark

~Received 13 July 1998!

We study excitations of the predicted antiferromagnetically ordered vortex cores in the superconducting
phase of the newly proposed SO~5! model of strongly correlated electrons. Using experimental data from the
literature we show that the susceptibilities in the spin sector and the charge sector are nearly equal, and
likewise for the stiffnesses. In the case of strict equality SO~5! symmetry is possible, and we find that if present
the vortices give rise to an enhanced neutron scattering cross section near the so calledp resonance at 41 meV.
In the case of broken SO~5! symmetry two effects are predicted. Bound excitations can exist in the vortex cores
with ‘‘high’’ excitation energies slightly below 41 meV, and the massless Goldstone modes corresponding to
the antiferromagnetic ordering of the core can acquire a mass and show up as core excitation with ‘‘low’’
excitation energies around 2 meV.@S0163-1829~99!10605-2#
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I. INTRODUCTION

Inspired by the discovery of a sharp antiferromagne
resonance, later denoted thep resonance, in neutron scatte
ing experiments on the superconducting phase
YBa2Cu3O7 at (p,p) in the reciprocal space1,2 a new idea
was introduced a year ago in the search for a theory of
high-Tc superconductors. Within the framework of thet-J
limit of the Hubbard model3,4 it was shown theoretically al
ready three years ago5 that thep resonance could be ex
plained in terms of a new collective mode in the partic
particle channel of the model, and that this mode is in
mately connected with the symmetry of the superconduc
gap. Pursuing the symmetry aspects of the problem Zh
proposed a theory combining antiferromagnetism and su
conductivity by symmetry arguments.6 The operators respon
sible for thep resonance was identified with the six gene
tors of rotation between the antiferromagnetic state and
superconducting state. Furthermore, it was proposed tha
phase diagram of the cuprates can be understood as a
petition at low temperatures betweend-wave superconduc
tivity and antiferromagnetism of a system which at high
temperatures posses SO~5! symmetry. The group SO~5! is
sufficiently large to accommodate both the gauge gro
U~1! @5SO(2)# which is broken in the superconductin
state, and the spin rotation group SO~3! which is broken in
the antiferromagnetic state. In the simplest version the tr
sition between the two ordered states is controlled by
parameter—the chemical potential for holes in the otherw
half-filled quadratic lattice of spin 1/2 fermions. The idea h
generated a lot of discussion among theorists,7–10 and no
consensus on the matter has emerged.

We shall not enter this discussion here. Rather we w
take the approach of assuming the model to be a fair des
tion of the high-Tc materials and derive experimental cons
quences, which can be tested in the laboratory. Aro
et al.11 have pointed out that in the vortex cores of fluxoi
in the superconducting state the order parameter will esc
into the antiferromagnetic subspace, meaning that in th
cores we have local antiferromagnetic moments instead
simple featureless normal metal core. This unique predic
PRB 590163-1829/99/59~6!/4349~9!/$15.00
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of the SO~5! model should in principle be quite simple t
verify experimentally. However, preliminary
measurements12 where one looked for Bragg-scattering fro
these moments belonging to the vortex cores did not prod
any signal. This is perhaps not so surprising, since eac
the vortex cores will form a one-dimensional magnet~along
the c axis! and at finite temperatures such a system does
form long range order, and no Bragg peak is to be expec

In this paper we are going to pursue the idea that in e
copper-oxide plane small islands of antiferromagnetically
dered spins exist associated with the vortices generated b
external magnetic field. The direction of the spins in the
islands will not be very strongly correlated from layer
layer and from island to island. In one island, however, th
should exist excitations of the spins, a kind of bound s
wave modes or size quantized magnons. Using sample
the under-doped regime of the superconducting phase, w
the proximity of the antiferromagnetic phase stabilizes
antiferromagnetic vortex cores,11 one should be able to pick
up these core excitations in inelastic neutron scattering m
surements. The modes can be classified according to the
proximate symmetry: Two zero-energy or ‘‘low’’ energ
Goldstone modes whose existence is guarantied by the e
spin rotation symmetry, and two resonances or weakly bo
‘‘high’’ energy modes related to thep resonance arising
form the approximate SO~5! symmetry allowing for rotations
between thed wave superconducting phase and the antif
romagnetic phase. Based on experimental data taken f
the literature we discuss in Sec. II the SO~5! model and its
parameters. The values of the susceptibilities and the s
nesses in the charge sector and the spin sector are found
nearly equal, a remarkable fact supporting the SO~5! model.
In Sec. III we set up the calculation for excitations of th
vortex core. In the isotropic case we show analytically th
the Goldstone modes of the vortex core indeed have z
energy, and that the vortex indeed generates a reson
reminiscent of thep resonance at the bottom of the co
tinuum. In the anisotropic case the Goldstone modes rem
massless, but for certain anisotropies thep resonance can be
transformed into a bound state localized at the vortex. Tre
ing the external fields more accurately introduces symme
4349 ©1999 The American Physical Society
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4350 PRB 59BRUUS, ERIKSEN, HALLUNDBÆEK, AND HEDEGÅRD
breaking terms in the Hamiltonian and results in fin
masses to the Goldstone modes. This will be discusse
Sec. IV. Concluding remarks are contained in Sec. V.

II. THE SO „5… MODEL AND ITS PARAMETERS

In the SO~5! model the relevant order parameter is a r
vectorn in a five dimensional superspin space with a len
which is fixed at low temperatures,

n5$n1 ,n2 ,n3 ,n4 ,n5%, unu251. ~1!

This order parameter is related to the complex superc
ductor order parameter,c, and the antiferromagnetic orde
parameter,m, in each copper-oxide plane as follows:

c5 f eiu5n11 in5 , m5~n2 ,n3 ,n4!. ~2!

In Ref. 6 Zhang argued how in terms of the five dimensio
superspin space one can construct an effective Lagran
L(n) describing the low energy physics of thet-J model. In
the absence of external electromagnetic fields it takes
form

L~n!5 (
a,b

xab

2 FnaS ] tnb2
2m

\
$db,1n52db,5n1% D2~a↔b!G2

2 (
a,b

rab

2
@na¹nb2nb¹na#21

1

2
g~n2

21n3
21n4

2!,

~3!

where the indices run from 1 through 5.
The generalized susceptibilities,x, fall in three groups:

xc[x15 connecting the charge sector$n1 ,n5% with itself,
xs[x235x245x34 connecting the spin sector$n2 ,n3 ,n4%
with itself, and xp[x1(2,3,4)5x (2,3,4)5 connecting the spin
sector with the charge sector. Similarly with the stiffness
rc[r15,rs[r235r245r34, and rp[r1(2,3,4)5r (2,3,4)5.
Below, based on experimental data, we find thatrs'rc and
xs'xc . It is a remarkable fact that the dynamics in two su
distinct sectors as the charge and the spin sector are gove
by coupling strengths of the same size, and it can be take
one strong indication of the near SO~5! symmetry of the
cuprates. At present the values ofxp andrp are not known
experimentally, and it is part of our work to establish
method to measure them. If the corresponding coup
strengths are the same in all sectors we denote it the isotr
case, otherwise the anisotropic case.

In the following we estimate on a 25% accuracy level t
typical zero temperature values of the parameters of
SO~5! model obtained for various cuprates of the for
YBa2Cu3O61x ~YBCO! and La22xSrxCuO4 ~LSCO! with a
range of doping levelsx. All numerical values are listed in
Table I. First we note that for both materials the Cu-O-
distance13 is a53.8 Å . However, YBCO contains two CuO
planes over a distance of 11.4 Å~the sum of the alternating
interlayer distances 3.2 Å and 8.2 Å!, while LSCO contains
one CuO plane every 6.6Å. Hence, when needed for norm
ization purposes we employc56.1 Å as the typical inter-
layer distance.

From the upper critical fieldHc2 the typical correlation
length is found to bej.16 Å,14 while many different meth-
in
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ods like muon spin rotation, magnetic torque, magnetizati
and kinetic inductance~see Ref. 15 and references there!
all result in a London length,lL.1350 Å. Thus the
Ginzburg-Landau parameter isk5lL /j.84.

The connection between the generalized coefficients
the directly measurable parameters are given below. In
completely isotropic case where all generalized coefficie
are equal we have11

g̃5g2x~2m/\!2, ~4!

j5Ar/~2g̃!, ~5!

lL5
\

2e
Ac/rm0. ~6!

To estimaters and xs of the spin sector, experimenta
measurements are combined with theoretical calculation
spin waves within the two dimensional spin 1/2 quantu
Heisenberg model of antiferromagnetism.16–18The bare cou-
pling constantJ is related tors ,xs and the spin wave veloc
ity vs as18

rs5ZrJ/4, ~7!

xs5Zxpa
2/8J, ~8!

vs5ZcAr/x5ZcA2J/pa , ~9!

Zr50.72, Zx50.51, Zc51.18, ~10!

where for brevity a momentumpa[\/a has been intro-
duced, and where theZ’s are renormalization constants
which for classical spin waves all equals 1, but differs fro
1 when quantum fluctuations and spin wave interactions
taken into account. Neutron scattering experiments
LSCO19 have led to a determination ofvs and from that to
J5132 meV in agreement with other experiments. FromJ
one calculatesrs524 meV. Independently,rs have been
determined by neutron scattering measurement20 of the anti-
ferromagnetic correlation lengthjAFM(T)}exp(2prs/kBT)
also leading tors524 meV. From Eq.~8! one findsxs /pa

2

50.49 eV21. A more recent neutron scattering experime
on YBCO21 yielded the consistent resultZx50.460.1 and
J5125 meV.

In the charge sector the stiffness is found from Eq.~6! to
berc5(c/m0)(\/2elL)2. The measured London length,lL ,

TABLE I. The average values of typical parameters of t
SO~5! model based on experimental data for YBCO and LSCO
described in the text. The Cu-O-Cu distance is denoteda, while the
average distance between the CuO planes is denotedc. For brevity
a momentumpa[\/a has been introduced. The number of spins
a given vortex core is estimated bypj2/a2. The anisotropy param-
etersdr anddx are defined in Sec. III B.

a53.8 Å pj2/a2.56 c56.1 Å
j.16 Å lL.1350 Å k.84
J.0.130 eV g.9 meV/Å 2

g̃.253 meV/Å 2

rs.0.024 eV xs /pa
2.0.49 eV21 dr.21

rc.0.018 eV xc /pa
2.0.42 eV21 dx.20.014
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PRB 59 4351EXCITATIONS IN ANTIFERROMAGNETIC CORES OF . . .
readily givesrc'18 meV. The susceptibilityxc , however,
is not directly measurable. Rather we shall use the rela
xc5rc /vc

2 , wherevc is the sound velocity of the electro
liquid. In ordinary superconductors the Goldstone sou
mode is rendered massive by the Anderson-Higgs me
nism and turned into a plasmon mode,22 but as a theoretica
concept it can be calculated, and the corresponding so
velocity is found to be of the order of the Fermi velocity,vF .
Detailed studies13,23 have shown that the dispersion relatio
for quasi particles moving around on the lattice of thet-J
model at low doping near half filling is governed not byt but
is renormalizedt* 'J. Using the dispersion relation~3.15!
of Ref. 13, «k5const1Jcos(kxa)cos(kya)11

3J@cos(2kxa)
1cos(2kya)#, yields vc'vF'1.58J/pa . From this we find
xc /pa

2'0.42 eV21.
To estimate the value of the phenomenological symme

breaking constantg in Eq. ~3! we consider complete antifer
romagnetic ordering, i.e.,umu251. In this case the ordering
energy density in the SO~5! model is simply2 1

2 gumu25
2 1

2 g. On the other hand this energy density can also
expressed within thet-J model as2J/(2a2), and therefore
g5J/a2.9 meV:Å22. The effective coupling constantg̃ of
Eq. ~4! is much smaller. Anticipating the discussion in Se
III A of the p resonance frequencyvp'41 meV we find
the following estimate:g̃52xpvp

2 .253meV/Å2.

III. VORTICES AND CORE EXCITATIONS
IN THE SO „5… MODEL

In Ref. 11 the vortex solutions to the isotropic SO~5!
model have been studied in great detail. To study the an
tropic case we are going to use a different method. To es
lish our method and notation, we will start out in Sec. III
by deriving some of the known results for the isotropic ca
before in Sec. III B we continue with the anisotropic case

A. Vortices and resonances in the isotropic case

In the symmetric version of the SO~5! model the general-
ized susceptibilities and stiffnesses are isotropic in super
space, and the only symmetry breaking terms are quad
terms governed by the chemical potentialm and the phenom-
enological constantg chosen such that superconductivity
favored. The external electromagnetic fields will now be
cluded through the vector potentialA. However, in this sec-
tion we only keep the interaction with thec part of the order
parameter this being the dominating part of the exter
fields. In Sec. IV A we will include the Zeeman interactio
betweenA and them part of the order parameter and dem
onstrate explicitly that this only leads to minor changes.
this approximation the LagrangianLiso then has the form

Liso5
1

2
xu] tcu21

1

2
xu] tmu22

1

2
rUS ¹1

i2e

\
ADcU2

2
1

2
ru¹mu22

1

2
xS 2m

\ D 2

ucu21
1

2
gm2

1
1

2
l~12ucu22m2!1

c

2m0
S 1

c0
2

u] tAu22u¹3Au2D ,

~11!
n

d
a-

nd

y

e
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b-

,
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-

l

n

wherec is the lattice constant perpendicular to the copp
oxide planes andc0 the speed of light. For later convenienc
we have incorporated the constraint Eq.~1! through the
Lagrange multiplierl. Using dimensionless polar coord
nates (s,f), with s[r /j, centered at the origin of the vorte
core, we seek solutions of the form

c~s,f!5 f ~s!e2 if, m5m~s!eb , A5
\

2ej

a~s!

s
ef ,

~12!

where eb is an arbitrary unit vector in (n2 ,n3 ,n4)-space
~equivalent to real space! taken to be (0,1,0) in the follow-
ing, while ef is the azimuthal unit vector. The Euler
Lagrange equation forl yields the constraint

f ~s!21m~s!251, ~13!

such that oncef (s) is determined so ism(s). The Euler-
Lagrange equation form is used to expressl(s) in terms of
m(s):

1

m
¹2m5

~l2g!j2

r
. ~14!

Equations~13! and~14! are then used to eliminatem(s) and
l(s) in the Euler-Lagrange equation forf (s), and as in Ref.
11 we end up with

¹2f 1
f

12 f 2
~]sf !21 f ~12 f 2!F12S a21

s D 2G50. ~15!

The Euler-Lagrange equation fora(s) becomes

]s
2a2

1

s
]sa5

~a21!

k2
f 2. ~16!

Equations~15! and~16! are solved by the numerical shootin
method11 and yieldsf (s) anda(s).

Introducing the ‘‘effective potential’’V0(s) as the right-
hand side of equation Eq.~14!,

V0~s![
~l2g!j2

r
5

1

m
¹2m52

f ¹2f

~12 f 2!
2

~]sf !2

~12 f 2!2
,

~17!

we can use the solution off (s) to determineV0(s), which in
turn results in the Euler-Lagrange equation form of the form

@2¹21V0~s!#m50. ~18!

Naturally, by construction, Eq.~18!, is automatically fulfilled
using m(s)5A12 f (s)2, but for the forthcoming studies o
core excitations it is useful to think of the static core
corresponding to the zero energy solution of t
Schrödinger-like equation Eq.~18! where V0(s) clearly
plays the role of an effective potential. For the same reas
we rewrite Eq.~15! for f (s) by the use of Eq.~17! for V0(s):

F2¹21
1

s2
1V0~s!1

a~22a!

s2 G f 5 f . ~19!

Thus having established the notation and found the st
vortex solutions we now turn to the problem of finding e
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citations in the vortex core. We denote the static vortex
lution by n0 . Due to the SO~3! symmetry in the spin secto
we are free to choose the direction ofm at will. In anticipa-
tion of the treatment in Sec. IV A where an external ma
netic field in thez direction forcesm to lie in thexy plane
we choosem}ey , i.e., only the second of the threem com-
ponents ofn0 is nonzero:

n05$ f ~s!cos~f!,0,m~s!,0,2 f ~s!sin~f!%. ~20!

We seek excitationsdn which are of lowest order in the
deviationsdc anddm. These turns out to be perpendicul
to n0 , i.e., dn}ex or dn}ez or linear combinations thereof
and hence of the form

dnx5$0,1,0,0,0%dm,

dnz5$0,0,0,1,0%dm, ~21!

dm5dmnl~s!eil fe2 ivt.

Throughout this work we are dealing with cylindrical sym
metric vortices, so the excitations are characterized by
angular momentuml and the radial indexn. Of course,dn is
not a complex vector, so the notation exp(ilf) is merely a
short hand notation for either cos(lf) or sin(lf). The La-
grangian is now written to second order indn as L5

L iso
(0)(n0)1L (2)(dn). The explicit form of the second orde

term is

L ~2!~dn!5
1

2
xu] tdnu22

1

2
ru¹dnu21

1

2
@g2l~s!#udnu2.

~22!

Assuming solutionsdn of the form given in Eq.~21! the
Euler-Lagrange equation fordmnl(s) then takes the form o
the following eigenvalue equation:

F2¹21
l 2

s2
1V0~s!Gdmnl5«dmnl , ~23!

«5
xj2

r
v25

x

2g̃
v2.

Using the approximate SO~5! symmetry we can immediatel
find two analytical solutionsdm00 anddm01 to Eq.~23!. Due
to the exact spin rotation symmetry it does not cost a
energy to rotate the order parametern0 of Eq. ~20! in spin
space. Rotatingn0 a small angledu in the (n3 ,n4) plane
produces the deviationdn005$0,0,0,dum(s),0%. If the trial
solution dm00(s)}m(s) is used ~note that l 50), we see
from Eq. ~18! that as expected Eq.~23! is satisfied with«
50. Thus in the the effective potential description t
ground state vortex configuration corresponds to a zero
ergy and zero angular momentum mode.

The second solution is found by rotating between
charge sector and the spin sector. In a perfect SO~5! sym-
metric model such a rotation does not cost any energy. H
ever, one central idea in the SO~5! model of high-Tc super-
conductors is that the SO~5! symmetry is only approximate
It costs a finite energy to rotate between the spin and ch
sectors. Experimentally this is reflected by the 41 meVp
-

-

e

y

n-

e

-

ge

resonance, and theoretically by the symmetry breaking t
1
2 gm2 of Eq. ~3!. We thus expect that by rotatingn0 a small
angle du in the (n1 ,n4) plane a deviation dn01
5$0,0,0,du f (s)cos(f),0% is produced which is an eigen
excitation with «.0. If the trial solution dm01(s)
} f (s)cos(f) is inserted into Eq.~23! ~note thatl 51), we
obtain

F2¹21
1

s2
1V0~s!G f 5« f . ~24!

It is seen from Eq.~19! that this equation is indeed satisfie
by f (s) if «51 and if the additional potentiala(22a)/s2

can be neglected. It turns out that the large value of
Ginzburg-Landau parameter,k.84, indeed does make th
additional potential negligible. Numerical calculations sho
a(22a)/s2,0.001 ~for any value of s) which is much
smaller thanV0(s).1 and«51. The approximate nature o
the solution is not surprising, since the external magne
field does in fact break the SO~5! symmetry by coupling only
to the (n1 ,n5) components of the order parameter. Howev
the larger a value ofk the weaker this symmetry breakin
appears, and in the limit of infinitek the approximate solu-
tion becomes exact. Since the ground state energy is set
zero as the zero energy mode, the excitation energy of
dm01 resonance is given by«51, or going back to fre-

quency:vp5A2g̃/x, which is in accordance with that o
the p resonance given in Ref. 6.

In conclusion we note that bothdm00 anddm01 contains
no radial nodes, hence the notationn50. Any other excita-
tion or resonance would contain more nodes and thus h
higher energies. Sincedm01 corresponds to a resonance
the bottom edge of the continuum we can infer that for
isotropic case no bound collective excitations exist in
antiferromagnetic vortex core.

B. Vortices and excitations in the anisotropic case

We now turn to the anisotropic case. As discussed in S
II rs'rc and xs'xc . In the following we therefore study
the consequences of anisotropies arising fromrpÞrs5rc
andxpÞxs5xc :

r[rs5rc , x[xs5xc ,

rp[r1Dr, xp[x1Dx, ~25!

dr[Dr/r, dx[Dx/x.

These anisotropies are not known experimentally, and i
part of our work to establish a method to measure it. W
begin by finding constraints on them. The stiffness has to
a positive number,i.e., rp5r(11dr).0 or dr.21. Thep
susceptibilityxp is related to thep resonance and to th
coupling strengthsg and g̃. Defining g[(g2g̃0)/g, where
the subscript 0 refer to the isotropic case, we can estimag
using the values listed in Table I and findg.1.014. The
relation betweeng̃ and g̃0 can be written as

g̃5g2xpS 2m

\ D 2

5g̃0

12~11dx!g

12g
. ~26!
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FIG. 1. A display of the vortex cores for vari
ous values of the anisotropy parameters. Grap
of the modulusf (s) of the superconducting orde
parameter as well as of the effective potent
V(s). The parameters arek584 andg51.014.
Whendr is varied,dx50 and vice versa.
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To ensure the superconducting phase it is mandatory to h
g̃,0 and hence from the enumerator in Eq.~26! that 1
2(11dx)g,0 or 20.014,dx . This constraint is listed in
Table I.

The LagrangianLani5Liso1DL in the anisotropic case
differs from the LagrangianLiso in the isotropic case byDL
containing terms proportional to the anisotropiesdr anddx .
The Euler-Lagrange equations forf, m, anda corresponding
to Lani become

¹2f 1
f ~]sf !2

12 f 2
1F12S a21

s D 2G f ~12 f 2!

5F 2dx

11dx
S 12

g

g̃
D 2

2dr

11dr
S a21

s D 2G f 3~12 f 2!,

~27!

¹2m

m
5

~l2g!j2

rp
1

dr

11dr
@~¹m!21m¹2m#, ~28!

]s
2a5

1

s
]sa1

a21

k2
f 2F12

dr

11dr
f 2G . ~29!

It is seen how the anisotropy leads to more nonlinear te
in the differential equations. Using the same numerical me
ods as in Sec. III A we study the static vortex cores
various values ofdr anddx . Some results are shown in Fig
1.

In the isotropic case the static vortex core led to an eff
tive potential description withV0(s) defined as the right-
hand side of Eq.~14!. Similarly, for the anisotropic case w
now define an effective potentialV(s) as the right-hand side
of Eq. ~28! which then satisfies the equation
ve

s
-

r

-

@2¹21V~s!#m50. ~30!

V(s) can be expressed in terms off by usingm2512 f 2, and
thus it can be found by solving Eqs.~27! and~29!. Due to the
anisotropy the effective potential and hence the excitat
spectrum changes. The effective potential for some ani
ropy parameters are shown in Fig. 1. We study the transv
excitations given by Eq.~21! and find the following eigen-
value equation to be fulfilled bydmnl(s):

F2¹21
l 2

s2
1V~s!Gdmnl5

jp
2 xp

rp
v2dmnl5«dmnl .

~31!

As in the isotropic case a zero energy solution cor
sponding to the static vortex solution is trivially given. Wh
is new in the anisotropic case is that now bound excitati
do exist with«,V(`). Some of them are shown in Fig. 2

In Fig. 3 we plot as a function of the anisotropy parame
dr the energy of the lowest excited statedm01 above the ever
present zero energy modedm00. It is seen howdm01 evolves
from the scattering resonance, thep resonance, discused i
Sec. III A with «5V(`) at the isotropic pointdr50 to a
strongly bound state with«50 atdr521, the largest nega
tive value allowed. At this point the excited state thus co
cide energetically with the zero energy state indicating
phase transition from superconductivity
antiferromagnetism—the gap of thep excitations has col-
lapsed.

Our calculations thus lead to the following prediction. F
a given anisotropydr,0 neutron scattering will in zero
magnetic field show thep resonance with«5Vani(`) or
frequencyv5vp . As the magnetic field is turned on mor
and more vortices are created. Each of them supports adm01
excitation with an energy«01,V(`) or frequency v01
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,vp . Consequently an excitation resonance should show
at the low-energy side of thep resonance, and the amplitud
of this resonance scales with the magnetic field.

Similar results does not hold fordxÞ0. The reason for
this can be traced back to the behavior ofV shown in Fig. 1.
Whendx is made positive the potential widens as in the c
of negativedr , however, at the same time the asympto
value drops. As a result no excitations are bound in the
tential. In the case of negativedx the potential narrows
down, but although the asymptotic value rises, it does
rise enough to bind any excitations.

It should be added that this change in the asympt
value ofV due todx is in accordance with the result for th

FIG. 2. The radial partdmnl of bound antiferromagnetic excita
tions in the vortex core in an anisotropic case. To show the eff
more clearly we have chosen the rather extreme parameter v
dr520.5, while havingk584,dx50, andg51.014. To the left is
shown the zero energy statedm00 corresponding to the static vorte
core. To the right are shown the first two excitationsdm01 anddm10

above the zero energy mode. The full line in both panels is
effective potentialV(s). The ordinate axis accounts forV(s) in the
energy units of Eq.~31!. The excitationsdmnl are given in arbitrary
units. The eigenenergies are represented by the dashed horiz
lines with «0050.00,«0150.81, and«1050.97.

FIG. 3. The energy« of the lowest bound excitation as a fun
tion of the anisotropydr for k584, dx50, andg51.014. The dot-
ted line is a fit,«(dr).1.020.7dr

220.3dr
4 . Note that«(0)51 and

«(21)50.
p

e

o-

t

ic

p resonance in a bulk superconductor without the prese
of vortices. In the dimensionless units of the problem, s
Eq. ~23!, the frequencyvp of the p resonance is given by

xp

2g̃
vp

2 5112
Dx

g̃

~2m!2

\2
5

~12g!1dxg

~12g!2dxg
. ~32!

Inserting the valuesdx520.005, 0, and 0.005 we find 2.14
1.00, and 0.47, respectively, asV(`) in Fig. 1.

IV. GOLDSTONE MODES

In Sec. III we studied the zero energy modes and
excitations of the antiferromagnetic order parameterm in the
superconducting vortex core. The zero energy modesdnx
and dnz in Eq. ~21! were found to be degenerate gaple
Goldstone modes. This degeneracy is a result of two
proximations, one being the neglect of the Zeeman inter
tion betweenm and the external magnetic fieldB, the other
being the neglect of interlayer interaction between the sp
In this section we show how the degeneracies are lifted
massive Goldstone modes appear when the approxima
are abandoned.

A. Coupling of core excitations to the external magnetic field

The primary effect of the external magnetic fieldB
5Bez on the system is the creation of superconducting v
tices through the interaction with the superconducting or
parameterc. To a good approximation the antiferromagne
core described bym can be treated disregarding the Zeem
coupling betweenB andm. We now take this coupling into
account. Using standard field theoretic methods24 the spin
operatorŜj acting on sitej can be expressed by a classic
field hj ,

Ŝj→seiQ•Rjhj , ~33!

wheres51/2 andQ5p(a21,a21,c21) is the antiferromag-
netic ordering vector. We then have exp@iQ•Rj #5(21) j ,
i.e., 1 on sublatticeA and 21 on sublatticeB. Since the
system is close to be completely antiferromagnetically
deredhj is written as

hj5mj1~21! j l j , ~34!

wherel j denotes a small ferromagnetic component on top
the antiferromagnetic backgroundmj . Both l j and mj are
slowly varying fields in space. The rapid antiferromagne
variation from site to site is explicitly taken into account b
prefactors (21) j . The smallest deviation possible is ob
tained by havingl j perpendicular tomj , and sincehj is
normalized to unity, we obtain to lowest order inl j that

uhj u251, l j•mj50, umj u251. ~35!

The HamiltonianĤB corresponding to the coupling betwee
the spins andB is

ĤB5(
j

g* mBŜj•B→
1

2
g* mBB•(

j
~21! jhj . ~36!
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Only the ferromagnetic component yields a nonzero con
bution to the sum, and after taking the continuum limit w
end with a Lagrangian densityLB given by

LB52
1

2

g* mB

a2
B• l~r !. ~37!

The appearance of a nonzero ferromagnetic compo
l(r ) leads to a loss of antiferromagnetic ordering ener
This has to be included in the description through the Ham

tonian ĤAFM describing the spin-spin interaction:

ĤAFM5J (
^ j , j 8&

Ŝj•Ŝj 8→2
1

4
J (

^ j , j 8&

hj•hj 8 . ~38!

Performing the sum and taking the continuum limit results
the Lagrangian densityLAFM ,

LAFM5
1

2

J

a2
@12 l~r !2#. ~39!

The constraint l j•mj50 is incorporated through a
Lagrange multiplierl8 and we end with the following La-
grangian densityL8 of the magnetic effects

L852
1

2

J

a2
l~r !21S l8m2

1

2

g* mB

a2
BD • l~r !1

1

2

J

a2
.

~40!

An effective LagrangianLmB(m) for the interaction be-
tween m and B is found from the partition functionZ
5*Dm*Dl*Dl8exp@iS(m,l,l8)/\#5*Dm exp@iSeff(m)/\#
from which the final result can be extracted after integrat
out l andl8:

LmB~m!52
1

2
G~B•m!21

1

2
GB21

1

2

J

a2
, ~41!

whereG5(g* mB)2/(4Ja2). AddingLmB to the Lagrangian
of the anisotropic caseLani leads to the following eigenvalu
equation for an excitationdnb5dmeb , with b5x or z,

@2¹21V~s!#dm5
jp

2 xp

rp
Fv22

G

xp
B2ez•ebGdm. ~42!

As was the case for Eq.~23! two eigensolutions proportiona
to m can now be found . One mode hasb5x ~i.e., ez•eb
50) and remain a zero energy mode:

\vx50. ~43!

The other mode hasb5z ~i.e., ez•eb51), resulting in a
nonzero energy, which can be estimated by settingB
5F0 /plL

2 and using the parameters of Table I:

\vz5\A G

xp
B5

A2\2

m* lL
2

.5.9 meV. ~44!

We can thus conclude that the presense of the external m
netic field in fact does break the degeneracy of the two g
less Goldstone modes, leaving only one mode gapless w
i-

nt
.

l-

g

g-
p-
ile

rendering the other massive. The rather small value of
gap, 5.9 meV'68 mK, would be very difficult to observe
in a neutron scattering experiment. It is two orders of ma
nitude smaller than thep resonance, and hence it is seen
be a good approximation to disregard the interaction betw
the external magnetic field and the antiferromagnetic or
parameter.

B. Interlayer coupling

To this point we have only treated one single CuO pla
Naturally, to stabilize the order parameter, interaction
tween the layers has tacitly been assumed. In this section
are explicitly going to include that part of the interlayer co
pling which arises from the antiferromagnetic coupling b
tween the CuO planes. We model this coupling by a Ham
tonian Ĥ8, where spins at sitej in the CuO planez are
interacting with the closest spins in the neighboring plan
z61 as follows:

Ĥ85
1

2
J8(

j ,z
Ŝj ,z•@Ŝj ,z211Ŝj ,z11#. ~45!

The interlayer couplingJ8 is much smaller than the intra
layer couplingJ, namely J8.431025J.25 In this specific
model there is no coupling between sites having differ
in-plane indexj, and we are led to consider 1D spin chai
perpendicular to the planes. As before, see Eqs.~33! and
~34!, the spins are represented by the classical fieldsh,m,
and l:

Ŝj ,z→s~21!zhj ,z , hj ,z5mj ,z1~21!zl j ,z . ~46!

Henceforth, we drop the site indexj and focus on just one o
the spin chains. The HamiltonianH8 is now expressed in
terms of the classical fields, and in the continuum limit w
obtain the form

Ĥ8→2
J8

8a2E d2r(
z

$22@hz~r !2hz21~r !#2%. ~47!

Defining Dmz5mz2mz21 we obtain the following form of
the Lagrange density,Lilc for the interlayer coupling:

Lilc52
J8

8a2(z
@22Dmz

2#. ~48!

As in Sec. IV A, excitationsdm in the order paramete
m5mey are sought in the perpendicular directionsex andez .
The motion in these two directions is independent of ea
another, and we write the excitationsdmb ,b5x or z, as

dmb~z!5ub~z!eb , ~49!

where the amplitudeub(z) is m times the~small! angle by
which the order parameterm in planez is tilted away from
its equilibrium position. The eigenmodes are found by t
Fourier transformation

ub~z!5(
k

uk,beikzc, k5n
2p

Ncc
, n51,2,3, . . . ,

~50!
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whereNc is the number of CuO planes in the sample. B
cause of the Fourier transform it is more natural to work w
Lagrange functions,L5*Ld2r , rather than Lagrange dens
ties. However, in the end by dividingL with Ncj

2, the num-
ber of planes times the effective area of a vortex,
Lagrange function is rendered into a Lagrange density.
resulting Lagrangian densityL ilc

(2)(dmb) thus becomes

L ilc
~2!~dmb!5(

k,b
H x

2
u] tuk,bu22

J8

4a2
@12cos~kc!#uuk,bu2J

5
1

2
x(

k,b
@ u] tuk,bu22vk,b

2 uuk,bu2#, ~51!

where, after usingx5\2/8Ja2, the eigenfrequenciesvk,b
are seen to be

\vk,b52AJ8J@12cos~kc!#. ~52!

The interlayer coupling thus splits the 2Nc-fold degenerate
Goldstone modes in a stack ofNc vortices. The twok50
modes,v0,b50, remain zero energy modes. However, sin
vk,(x,z)5v2p2k,(x,z) , the rest of the modes,k.0, split up in
a quasi continuous band consisting ofNc/221 fourfold de-
generate massive Goldstone modes. The most mas
modes are found fork5p/c with an energy

\vp/c,b5A8J8J.2.2 meV'26 K. ~53!

We conclude that also the interlayer coupling produces o
minor effects in the excitation spectrum as compared to
p excitation, however, the estimated splitting of 2.2 meV
resolvable with the existing neutron scattering spectromet
For bilayer compounds such as YBCO we note that there
two interlayer coupling constants. One,J8, for the coupling
within the bilayer, and another,J9, for the coupling between
different bilayers. SinceJ8 dominates in this case a simp
two-layer version of theN-layer model suffices and the spli
ting is found to be identical to the optical magnon gap kno
experimentally to be 74 meV.21 For completeness we finall
note that the combined effect of the external magnetic fi
and the interlayer coupling on the Goldstone modes is gi
by v5Avb

21vk,b
2 .
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V. CONCLUSIONS

The excitations in the antiferromagnetic cores of sup
conducting vortices in the SO~5! model have been studied
By examining the existing literature on experimental resu
connecting to the values of the parameters of the model,
have found that the stiffnesses in the charge and spin se
are nearly identical,rc'rs , and likewise for the suscepti
bilities, xc'xs . This remarkable fact serves as good supp
of the idea of the existence of a SO~5! symmetry in the high-
Tc cuprates.

Under the assumption that the antiferromagnetic core
the ground state configuration for the superconducting vo
we have predicted within the SO~5! model that bound local-
ized excitations exist when asymmetries arise between thp
sector of the parameters and the spin and charge secto
they exist, these excitations could be observed in neu
scattering experiments as side peaks to the already obse
p excitation, side peaks with an amplitude proportional
the number of vortices and thereby proportional to the
plied external magnetic field.

Finally, we have predicted the splitting of the degener
zero energy mode as a function of applied magnetic field
the interlayer coupling. The effect of the magnetic field
minute, only a fewmeV, and thus not possible to detect wi
present day neutron scattering technology. The effect of
inter-layer coupling, on the other hand, is of the order o
meV and hence detectable in inelastic neutron scattering
periments. The test of the existence of these core excitat
would constitute a crucial test of the SO~5! model. The ex-
pected signal should only be present in the superconduc
phase, and it should be proportional with the number of v
tices, i.e., with the applied magnetic field.
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15B. Pümpin, H. Keller, W. Kündig, W. Odermatt, I. M. Savic´, J.
W. Schneider, H. Simmler, P. Zimmermann, E. Kaldis,
Rusiecki, Y. Maeno, and C. Rossel, Phys. Rev. B42, 8019
~1990!.

16S. Chakravarty, B. I. Halperin, and D. R. Nelson, Phys. Rev
39, 2344~1989!.

17E. Manousakis, Rev. Mod. Phys.63, 1 ~1991!.



g,

en
,

F.

,

PRB 59 4357EXCITATIONS IN ANTIFERROMAGNETIC CORES OF . . .
18J. I. Igarashi, Phys. Rev. B46, 10 763~1992!.
19S. M. Hayden, G. Aeppli, R. Osborn, A. D. Taylor, T. G. Perrin

S-W. Cheong, and Z. Fisk, Phys. Rev. Lett.67, 3622~1991!.
20B. Keimer, N. Belk, R. J. Birgeneau, A. Cassanho, C. Y. Ch

M. Greven, M. A. Kastner, A. Aharony, Y. Endoh, R. W. Erwin
and G. Shirane, Phys. Rev. B46, 14 034~1992!.

21S. M. Hayden, G. Aeppli, T. G. Perring, H. A. Mook, and
Doğan, Phys. Rev. B54, R6905~1996!.
,

22P. W. Anderson, Phys. Rev.130, 439 ~1963!.
23J. Gan and P. Hedega˚rd, Phys. Rev. B53, 911 ~1996!.
24E. Fradkin,Field Theories of Condensed Matter Systems, Fron-

tiers in Physics Vol. 82~Addison-Wesley Publishing Company
New York, 1991!.

25S-W. Cheong, J. D. Thompson, and Z. Fisk, Phys. Rev. B39,
4395 ~1989!.


