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Periodic magnetoconductance fluctuations in triangular quantum dots in the absence
of selective probing
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We have studied the magnetoconductance of quantum dots with triangular symmetry and areas down to
0.2 wm?, made in a high mobility two-dimensional electron gas embedded in a Ga&@aAl,As hetero-
structure. Semiclassical simulations show that the gross features in the measured magnetoconductance are
caused by ballistic effects. Belol K we observe a strong periodic oscillation, which may be explained in
terms of the Aharanov-Bohm flux quantization through the area of a single classical periodic orbit. From a
numerical and analytical analysis of possible trajectories in hard- and soft-walled potentials, we identify this
periodic orbit as the enscribed triangle. Contrary to other recent experiments, this orbit is not accessible by
classical processes for the incoming collimated bg@0163-18208)04924-4

[. INTRODUCTION Several observations of periodic magnetoconductance
fluctuations in open dots have been interpreted semiclassi-
Over the past two decades, the technological advances 6filly, based on periodic orbits, or quantum-mechanically,
device fabrication and semiconductor growth techniquedased on scarred wave functiciié:*~*The observed periods
have made possible the studies of small and impurity-freédB in magnetic field can be related to the afeancom-
electron systems. At sufficiently low temperatures both thePassed by a periodic orbit using the Aharonov-Bohm type
elastic mean free path and the phase coherence length W&lation FAB=®,, where ®,=h/e is the flux quantum.
come larger than the characteristic length scales of thdhis relation and generalizations thereof can be more rigor-
sample, and its transport properfigzan reveal pronounced ously (_)t_)tamed from semiclassical per|od|c_0rb|t thetin _
quantum interference effects. A device, particularly wellth® SPirit of Bohr and Sommerfelds quantization rule, peri-
suited for studies of these effects, is the quanturf dietated odic orbit theory provides a connection between the classical

by electrostatical lateral confinement of a tvvo-dimensionrclf'letlon of the periodic orbits and the density of states in the

electron gag2DEG). The size and shape of the dot can bequ?/\r;ﬁgr? ;eng;:;zei.ng the experimental results, however, the
changed by varying the voltgge of the eIe.ct_rodes, Wh'.Ch. .der'esolution seldom warrants an interpretation in terms of the
termine the confining potential, thus providing a possibility

dify th O ballisti q h full periodic orbit theory: to extract the quantum density of
to modify the systenmn situ. In ballistic quantum dots, where  giaiaq from the transport measurements is a difficult, if not

the boundary of the confining potential has a shape, thahossible task. This is also the case for our work, so to

generates chaotic classical dynamics, one observes randogypain the quasiperiodic magnetoconductance fluctuations
reproducible conductance fluctuations, provided the Fermgpserved for our triangular dots, we simply start from the

wavelength\ is small compared to the dot siz&or small  cjassical action of a periodic electron orbit of lendthen-

dots, where this requirement is not quite fulfilled, the wavecompassing an aref, which for a constant wavelengtte
nature of the electrons reduces the sensitivity to the initiahecomes
conditions characteristic of chaotic dynamics, and a more

regular electronic motion appears. Recently, the attention has 1 BF
turned towards quantum dots that are just marginally chaotic, N=¢ fﬁ (p—eA)-dg=3—— 5 (1)
i.e., devices capable of showing both regular and chaotic F 0
behavior described by a mixed phase space. This yields a magnetic field-dependent quasiperdsi( B)

Besides the size and overall shape of the potential, thgiven by
leads feeding current into the quantum dot are often pertur-
bations on an intentionally regular confining potential. As the
leads are gradually opened, the dynamics therefore changes AB(B)= ‘d_B
from regular to chaotit® Furthermore, it is expected
theoretically* that the total phase breaking ratg'+ rotis  since bothL and F depend on the magnetic field. In most
enhanced, as escaped electrons are reinjected with uncorexperiments such an oscillation has to be extracted from a
lated phases. As the leads are opened, the quantum dot is pomplicated background consisting of additional periodic
longer an isolated system, its eigenstates become lifetimeomponents as well as an aperiodic part.
broadened, and in the limit of wide open leads they eventu- The role of leads as selective probes of resonant states has
ally evolve into scattering resonances in a continuous spececently been emphasizéd The collimated beam of elec-
trum. In transport measurements this allows only the grostrons injected through one lead selects a set of momenta and
shell structure rather than individual levels to be resofred. coordinates, i.e., a particular part of phase space. Semiclas-
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sically, resonances occur when the direct trajectories are b&ow express the area of the dot as a function of the gate
ing injected close to periodic orbits in phase space. voltage, or more conveniently as a function of the dimen-

In this work we focus on the role of leads for providing a sjonless gate voltag®/ = (Vg—Va)/(V,—Vy) as follows:
mechamsm tq select periodic orbits in qqantum dots Wlth,:dotng(\/5/4)[(4_39/2)2_3(1_;/)2]_ With this model
mixed dynamics, and we have chosen a triangular geometr\)(,e estimate the areas 0.41m2 (0.83 um?) for sample Al

of the dot to obtain a particularly simple set of periodic Or'(Bl) at the formation of the dots, and roughly half these
bits. In Sec. Il we describe the experiment and a simpleareas near pinch off '

geometrical model for the electrostatic potential induced by The samples are cooled to 20 mK in a dilution fridge

the gates. Then, In S?C' I we use gla55|cal simulations tﬁ’ocated in a rf-shielded room. Using standard lock-in tech-
assert that the periodic fluctuations in the Iow-temperatur%iques the three-terminal devices are measured in a current-

magnetoconductance are not Of. cla_ssmal origin. In Sec. \jiaseq two-probe configuration with the third probe floating.
we compare the measured quasiperiod of the quantum osci-

i ) . ; Xcitation currents are typically 1 nA at an ac frequency of
lations to the results of a numerical and analytical analysis o ypically g Y

the classical traiectories. We show that dicularl b 17 Hz. Despite filtering, the electron gas is not cooled be-
€ classical frajectories. We show that particuiarly Tobus,,, 55 mk | as estimated from the activated behavior of the
and strong conductance oscillations can be related to a sing

: 2 ) ; : : SsistivitypXX on thev=2/3 fractional quantum Hall plateau
i(:]rbsnetcha\t/ '\?Vgl3issséﬁzgyt;]2ag?ie?ﬁ'glne df;ﬁzi::elilce;?;ﬁ;:gﬁl:]ﬁand from the temperature dependence of the low field con-
' 9 P ductance fluctuations. The magnetic field sweep ddédt

small coupling between this periodic orbit and the leads. It i as kept below 0.15 T/min to avoid additional heating due to
concluded that selective probing is not necessary to dete%ddy currents '

periodic orbits in a small, open cavity with mixed dynamics.

Ill. CLASSICAL EFFECTS
Il. EXPERIMENT ) ) _
Before studying the quantum interference effects, we first

A GaAs-AlLGa, _,As heterostructure with a 2DEG em- have to identify those parts of the conductance fluctuations,
bedded 90 nm under the surface is used as a starting point farmich are related to purely classical effects. One possible
the device fabrication. The mobility of the 2DEG after pro- way to discern classical conductance variations from quan-
cessing is about 200 %V s and the carrier density 1.7 tum fluctuations is to increase the temperature. The classical
X 10" m~2. Using electron-beam lithography, three hex-variations are far less temperature dependent than the quan-
agonal aluminum gates are deposited on the surface of them fluctuations, reflecting the elastic mean free path being
heterostructure, as shown in the insets of Fig. 2. By applyingess temperature dependent than the phase-breaking Fe’ngth.
a negative gate voltage 6f0.3 V, an equilateral triangular Above 1 K the quantum fluctuations are largely suppressed,
cavity with open corners is formed between the gates. Wand we are left with the classical variations, which for
present measurements performed on three samples, in teample Al near pinch off are dominated by a large conduc-
following referred to as Al, A2, and B1. Samples Al and A2tance dip around zero field as shown in Fig. 1. This zero field
are nominally identical while sample B1 has the same lithodip is quite large(of the order ofe?/h), is accompanied by
graphic shape, but an area twice as large. The lithographi@vo smaller conductance maxima at 0.11 and 0.35 T. We
width W of the leads is 0.3%um for sample B1 and 0.24m  find this overall shape and field scale of the magnetoconduc-
for samples Al and A2. The corresponding pinch-off volt-tance preserved up to about 10 K, where the variations van-
ages for the three samples aMz;=—1.0 V, V= ish due to the increased scatterffigsimilar behavior is ob-
—0.50 V, andV4,=—0.57 V. The side length of the hex- served for samples A2 and B1.
agonal gates is W in all samples. Based on the classical To identify the classical ballistic part of the conductance,
ballistic features described in Sec. Ill, we find the carrierwe performed a semiclassical simulation in a potential re-
densities to range between 0.7 and 1.0 in units 3P 1@ 2  sembling the effective potential of the cavity, and compared
for all confined quantum dots, corresponding to a Fermithe calculated conductance to low- and intermediate-
wavelengthh r~80 nm. temperature measurements. The advantage of this approach

The electrostatic potential changes the area and shape isftwofold: it allows us to gain an understanding of the phys-
the dot significantly from the first formation to pinch off. In ics behind the conductance variations in the classical regime
the analysis of our data, we therefore need to estimate thend it provides a way to make consistent deductions on the
size of the dot as a function of gate voltage. When the dot ishape of the effective potential and the carrier density in the
formed at the gate voltagey=—0.3 V, the edge of the dot, as these two parameters determine the amplitude, shape,
electron gas is assumed to be directly under the edge of thend field scale of the magnetoconductance variations. The
gates. As the gate voltage is made more negative, a region &fur steps of our analysis are straightforwafd) A soft
width d is depleted around the gates, until the three pointmodel potential is defined on a lattice, allowing us to calcu-
contact regions are fully depleted at the pinch-off voltagelate the force on each point in thxg plane.(2) An ensemble
Vy. In a theoretical study of a half plane gate situated in theof electrons is injected with cosine distributed angles in lead
plane of a 2DEG, Shikin and Larkififound a linear relation i=1, and tracked to the exit leadls-1,2,3 using the classi-
between the depletion widith and the gate voltagéy. The  cal equations of motior(3) The transmission coefficienTs;
depletion zone around one of the hexagonal gates is assumatk calculated as the number of modes in ledines the
to be independent of the two other gates, and consequentfyrobability of ending in lead when starting from lead. (4)
the dot shrinks linearly from the lithographic shapeVgt  Using Landauer-Bitiker formalism for a three probe dot
=V, to a smaller triangle near pinch off &, =V,. We can  with triangular symmetry® the conductance becomes
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FIG. 2. At low temperatures the magnetoconductance traces ex-
hibit an oscillatory structure up to roughly 0.3(¥ample B} and
0.4 T (sample A}, which is considerably stronger than random
FIG. 1. Magnetoconductance of sample AlTat 20 mK (top)  ¢onductance fluctuations. Par@ shows for sample Al the raw
andT=4.2 K (middle) compared to the result of a classical simu- ¢onquctance measuremeifll curve) and the measurement with
lation involving 20 000 injected particles per data painottom,  he classical background filtered ddashed curve while panel(b)
with energies dist_ribu_ted according tc_J the temperaflire4.2 K. shows the corresponding power spectrurs<@<0.3 T). Accord-
The model potential is a step_ potentlz_il shaped like the gat_es bqﬁgw’ panels(c) and (d) show conductance and power spectra for
softened by a Ge;ussuén function of widih=45 nm. The carrier  sample B1. For the small dot A1, the oscillations are almost free of
density is 0.% 10_1 m~<. We note that the same choice of param- gther harmonics, whereas sample B1 exhibits more frequencies. For
eters yields the fit of the quasiperiods in Figcl3 The insets sche-  gample A1, the oscillations die out at higher fields than for sample
matically show the origin of the variations: the main dip is related B1, and persist over a larger range of gate voltage. The insets in the

to backscattered trajectories, whereas the two conductance maxi%wer spectra show SEM micrographs of the samples with white
correspond to direct transmission and a single skipping orbit. bars of length Jum.

G1z,17= (2€%/N) (Tor+ T3/[ Tor+ Tanl), where the triangular  simulation presented in Fig. 1 also lead to an excellent agree-
symmetry conditionsT;,=Tos=Ts, and Ti3=T21=Tsz @€ ment for the quasiperiod as shown in FigcBto be dis-
used. _ _ cussed in Sec. IV. We therefore conclude that the simulation
_We have used two model potentials. First, the threefoldyorks satisfactorily, and it shows that the conductance dip
Hénon-Heiles potentiaf°with appropriately chosen param- aroundB=0 T is caused by trajectories reflected by the flat
eters, which in polar coordinates has the fold(r,f)  wall opposing the source lead. As the magnetic field is in-
=ar?+ Bre sin(3¢) and secondly, a gate-shaped step funccreased tB~0.1 T, the collimated electron beam is directed
tion (U=V, on the gates and =0 between the gatgscon-  into the exit lead, leading to a maximum in the conductance.
voluted by a Gaussian function of widthto emulate the soft A similar peak is seen a~0.3 T, where the trajectories
walls characteristic of electrostatic pOtentngy Changing perform one bounce on the edge of the potentia| before ex-
the smoothing widthy the convoluted potential can be var- iting. Similar geometric resonances have been studied in
ied from being nearly hard walled;~0, to being very soft semiconductor double slit§,in rectangular cavitie$!® and
walled, y>W. For 0<y<WI/2 the potential is fairly hard in etched triangular cavitie.
walled with corresponding flat regions in the center at dis- We conclude that the slow variations in the magnetocon-
tances roughly greater thapaway from the gates. In con- ductance at intermediate temperatures are of classical nature
trast, the Haon-Heiles potential always has a soft paraboliccontaining no oscillatory structure on scales smaller than 0.1
shape in the center. T. We have estimated to be between 0.7 and 1.0 in units of
In Fig. 1 we compare the magnetoresistance traces ofg'> m~2 and found evidence for the effective potential be-
sample Al close to pinch off at temperatufes 4.2 K and  ing fairly hard walled and therefore quite far from the
T=0.02 K with a numerical 4.2 K simulation. For each cal- Henon-Heiles type. As we now have accounted for the con-
culated valuegs(B), 20 000 trajectories with energies distrib- ductance features seen at intermediate temperatures we now
uted according to the finite temperature are started outsidgroceed to the low-temperature regime.
the cavity, the majority being backscattered before entering
the dot_. We find fair_ agreement between rr_leasurement_and IV. QUANTUM INTERFERENCE EFFECTS
simulation by choosing rather hard walls with a smoothing
width y of only 45 nm, and by choosing a carrier density In all samples we find pronounced oscillatory structure in
n=0.7x 10" m 2. The measured conductance variations inthe magnetoconductance beld K in addition to the slow
Fig. 1 are smaller than observed in the simulation, which wevariations at higher temperatures. As seen in Fig. 1 the low-
believe is due to temperature-induced scattering processéasmperature conductance oscillations in sample Al com-
not taken into account;ta8 K the classical variations are pletely dominate the classical conductance variations, mak-
nearly washed out. The simulation could probably be furtheing the classical background difficult to observe. In Fig. 2 the
improved using a self-consistent potential such as in Ref. 17nagnetoconductance data of samples Al and B1 are shown
However, the same values used fgrand n in the simple  before (full lines) and after(dashed linesapplying a high
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pass filter to remove the relatively slow classical variations. .

The oscillations in the smaller samples of type A are gen- 30
erally twice as strong as in the larger samples of type B, they
also persist over larger ranges of gate voltages, and they ten
to be dominated by a single quasiperiod with little other o 040§
structure. The main oscillation of sample B1 is accompanied.=
by other periodic and aperiodic components. The dominating 0
periods measured in sample A40—-70 mT are larger than
those in sample B125-40 m7). The peak positions gener- o
ally move as the size of the quantum dot is changed, i.e., by 7§ B . 3 _ __
varying the gate voltage. We point out that the samples A1~ ,, ™*~® 02 0 e 0%
and A2 are not identical, and that the same sample behave B (T)
differently from cool down to cool down. The overall behav- 030
ior is, however, conserved. The oscillations continue with

roughly constant quasiperiod up to about 0.3 T in all three 0'25-@ Q

-0.35

b Sample A2

/’2\\___

samples, as reflected in the narrow peaks in the power specg 020
tra shown in Figs. ) and Zd). Above this field, the fluc- =

tuations become weaker while the quasipefjpeak-to-peak 2
distancg increases. In all cases the oscillations remain essen = o.10}
tially unchanged on a time scale of 24 h, except for minor

Period AB (T)
o
S

0.05F

0.05F

differences in shape due to occasional redistribution of the a;f
potential, presumably caused by. charge hopping between th 00 =555 %557 02 03 02 05 06
donor atoms in the GaAlAs barrier layEr. B(T) B(T)

The presence of a single quasiperiod over a range of mag- )
netic fields and gate voltages implies the existence of a FIG. 3. Panel@ shows the conductance of sample A2 in a
single orbit which is robust to both changes in magnetic fielddray-scale plotbright denotes low conductancerersus gate volt-
and the shape of the potential. By analyzing the classic#f9¢ @nd magnetic field. The gate voltage ranges from27 Vv
trajectories in soft- and hard-walled model potentials and hotformation poin}, to the pinch-off voltage-0.57 V for this particu-

g lar dot. The arrows at the top of the graph show the conductance
mogeneous magn_etlc_ fieldsee Sec. .M we npte t.hat the maxima being periodic i ! ?:haracteﬁsti?: of Landau levéLL)
triangular loop orbit with the same winding direction as the .~ . ) : :

L ? . . . ~oscillations in an electron system with carrier density of 1.0
free electron cyclotron orbit is the only orbit which exists in

X 10" m~2. The arrows at the bottom show tfe quasiperiodic

the large field range of the experimentally observed OSC'”a.bsciIIations related to the triangular loop orbit, with an increasing

tions. Rather.than being destroyed'as the magnetic field ,'&uasiperiod at high fields. In pand)) the measured quasiperiods of
augmented, it gradually changes into the cyclotron orbilsampie A2 are compared to the analytical expression(@dfor a
which is also a single loop. The triangular orbit at low fields hard-wall potential §,), as well as numerical calculations for a step
can therefore be seen as a cyclotron orbit forced to fit insid@otential with soft region width of 15 nmy,). The best fit is
the triangular cavity. Indeed, a detailed analysis of the oboptained by choosing the carrier density,=1.0x 1015 m~2. The
served magnetoconductance reveals a smooth transition frofhite markers show the measured oscillation quasiperiods of the
the low field oscillations with a nearly constant quasiperiod,sample at the point of formation beingBLperiodic, down to much

to Landau level quantization oscillations, or Shubnikov—deower fields than when the dot is near pinch dflack markers
Haas oscillations, periodic iB . This is shown in Fig. 3. In  Similarly, in panel(c) results for the quasiperiod of sample Al are
panel(a) is displayed a gray-scale plot of the conductance asompared to the analytical expression E). for a hard wall po-

a function of both magnetic fiel8 and gate voltag¥. It is tential (yo), as well as numerical calculations for step potentials
clearly seen how the resolved oscillations are of Big"  With soft region widths of 15 nm+,), 45 nm (y;), and 73 nm
periodic Shubnikov—de Haas type in the open quantum ddtYs)- The top curvelf) shows the calculation for the Hen-Heiles
[Vg% ~0.27 V, top of panela)], where the magnetic con- potential.. As in F!g. 1 thgyz potential msatchezs the data best to-
finement dominates the electrostatic confinement alread§ether With a carrier density,,=0.7< 10 m~2,

when the first oscillation can be resolved. This is in contrast o ) .

to the nearly closed quantum dd¥,~—0.55 V, bottom of (=) winding the opposite way. Between the reflections at

panel(a)], where a more constant quasiperiod is seen at lofh€ walls of the quantum dot, the electrons move on arcs

fields before thd~! periodic behavior sets in. In the regime With the cyclotron radiuR.=%ikg/eB. For weak magnetic

between the two limits G~ e?/h and G>e?h) where sev- fields ap-corner periodic orbit exists in any regulpssided

eral conducting channels are passed through the system, tR8!ygonal potential with hard walls, as for instance seen in

fluctuations are generally less clear, and at some gate volRef- 7. In soft potentials, the corners of the orbit will be

ages practically disappear. rounded accordingly. In terms of the dimensionless magnetic
In Figs. 3b) and 3c) the results of a quantitative analysis field b=10/2R; the field-dependent length(b) and area

are shown. We begin by considering the triangular periodi¢ = (b) of a p-corner periodic orbit, which at zero field has

orbit in a hard-walled potential, where it in zero field is an Sidelengthly can be written as

equilateral trianglé® In weak fields, the triangular orbit |

splits into two orbits: a large area orbit-() winding the L(b)= Plo ;

same way as the cyclotron orbit, and a smaller area orbit (b) b arcsir(b), ©
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T
tcot(— +
p

By inserting these equations into E€l) the quantization
rule becomes
_ plo _ o 1 ) >
N+—m[ *b COt(E + b arcsinb)++1-b
whereN, (N_) is the orbit winding the sam@pposite way

as the cyclotron orbit. The corresponding magnetic-field- 0.04+
dependent quasiperiodsB. =|dN../dB| ! are then given

by Tt
0.02+
44)0 _ t(’ﬂ'
—| + col —
plj P
By comparison with Eq(4) it is seen that the quasiperiod of

the (+) orbit takes on the simple formB, =®,/F +(b). FIG. 4. The measured quasiperiods determined from the power
Above a certain field strength* =sin(m/p), where the Cy-  spectra of seven measurement series plotted together with the cal-
clotron radiusR. is equal to the radius of the circumscribed culated quasiperiod corresponding to the triangular orbits. For com-
circle, the (+) orbit is just the cyclotron orbit. We note that parison, the areas of the softened triangles, as estimated from nu-
the Landau level filling factow=n®d,/B can be derived merical calculations, are indicated by the dotted lines.
semiclassically by applying the Bohr-Sommerfeld quantiza-

0.12

|2
Fa(b)=

arcsintb) J1—b?
4 - .

b2 b

(4)

0.10}

0.08-
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H __h2
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b2 b 0.00
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tion rule Eq.(1) to the cyclotron orbit, givindN, | = »/2 with In Figs. 3b) and 3c) we plot in addition to the analytical
the factor of 2 due to spin degeneracy. The correspondingredictions of Eqs(6) and(7), the periods obtained numeri-
quasiperiodAB,, is then quadratic ib (see Fig. ¥ cally with the Heon-Heiles potentiall{) and three step po-
tentials, y,—7,, of different smoothing widthg. Again we
_282 4D, obtain the best agreement with the fairly steep potentials
ABLL_nTao_ ?gb : (™ softened only a little by choosing the same small valueg of
and the same carrier densityas in Sec. Ill.
The (—) orbit exists only at low fielddb<1, and further- We note from the simulations that the soft walls tend to

more its quasiperiod diverges ht=1 around 0.2 T, which  stabilize the quasiperiod of thet( orbit at low fields, and
disqualifies it as an explanation for the observed oscillationshat the simple relatiomMB, =®,/F(b) found for hard

We apply Eq.(6) for b<b* and Eq.(7) for b>b* to our  walls is approximately correct for softened walls as well. The
system by settingp=3 (triangular orbi} and by using the field dependence of the quasiperiod related to the triangular
geometrical relation,=(2—0.75V)W for the zero-field or-  orbit then turns out to be similar to that of an orbit with
bit side length as a function of the dimensionless gate voltconstant area and length. These facts allow us to use the zero
ageV (see Sec. )l field triangular orbit in the further analysis of oscillations at

In Fig. 3(b) the calculated hard-wall quasiperiod denoted!oW fields. With the linear depletion model of the deee
v, is plotted against magnetic fieiitogether with measured S€C: 1) we obtain the following approximative expression
periods (black markers of conductance oscillations in for the area of the tr@ngular orbit as a function of the dimen-
sample A2 and similarly in Fig. (8) for sample Al. The sionless gate voltage:
measured periods represent the distance between adjacent
maxima(or minima of quasiperiodic oscillations plotted at FA(V)=W?(0.24/2—-1.30V+1.73. 8)
the fields halfway between the maxintar minima. The
transition to a cyclotron orbit is taking place at the sharpEquation(8) contains no adjustable parameters; it is based on
minimum of the curve. In a more accurate quantum-the linear depletion model and the measured data. In Fig. 4 is
mechanical calculation, this minimum would be smoothedshown that the theoretical prediction of the oscillation peri-
as the transition from one type of orbit to another is continu-ods AB=®,/F , as a function of the gate voltagg; is in
ous due to the finite extent of the wave function by which thegood agreement with the experimental data points. The fact
hard wall appears more sdftLikewise, classically the hard- that the measured periods are slightly smaller than predicted
wall model predicts much larger variations of the quasip-is due to the hard wall triangle being slightly smaller in area
eriod AB(B) in the low field region, than obtained with soft- than its soft wall rounded counterpart. From the simulations
ened walls. Therefore, to improve the hard-wall model wewe estimated the difference in area to be roughly 20%, which
calculate the quasiperiddN/dB| ! numerically for the se- leads to the corrected curvégotted in Fig. 4.
qguence of loop orbits that exist in soft potentials in the field Finally, we observe an almost complete suppression of
range from zero to 0.8 T. By this we not only obtain a closerrandom fluctuations in the oscillatory regime, which is clear
match to the actual potential, we also avoid the above merfrom the isolated peaks in the power spectra of Fig. 2. A
tioned discontinuities in the transition from the triangular topossible factor to the suppression of random fluctuations is
the circular orbit. the small ratio between size and wavelength caused by the
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a b c Quantum mechanically the spatial structure of high-lying
| | eigenstates often resembles periodic orbits of the correspond-

E> E> ing classical system. In the semiclassical limit, i.e., for me-
'ft>_|:{> a éﬂ soscopic systems, these so-called scarred wave functions are

particularly importanf=®'2We speculate that the triangular

FIG. 5. Panelqa) and (b) show the geometries discussed by orbit in our.syster.n i.s largely represented by ‘.”1 set O.f scarred
Persson(Ref. 6 and Bird (Ref. 7) (see text. Some periodic orbits  WaVe functions similar to those found glso in a triangular
related to the conductance oscillations observed in the samples af¢antum dof. In that study, however, a different lead geom-
sketched. In both cases the collimated beam can inject close to &Y implies a strong coupling between the periodic orbits
periodic orbit in phase space. In parfe] the triangular sample is and the leads. It is possible to explain the weak coupling
sketched. The incoming orbit does not match the direction of thdound in our classical simulation by noting that the propaga-
triangular orbit anywhere; this orbit is classically inaccessible intion direction of the incoming wave will be almost orthogo-
phase space, in contrast to the situation shown in p&aegd(b).  nal with the scarred wave function propagating along the

triangular orbit thus yielding an almost vanishing overlap
low carrier densities. When sample Al is smallésear ntegral. The experimental evidence of a nonzero coupling
pinch off), the length of the symmetry axis from gate to lead\yould then be a manifestation of quantum mechanical tun-
is about 6 times the Fermi wavelength=80 nm, while the  neling in phase space without classical countergeitsA
total lengthL of the triangular orbit is 10, compared 10  gimjlar situation has been seen in the high field Aharonov-
roughly 18\ for the square or_blt cor_15|dered in _R_’ef. 7. The gohm effect in quantum dofé where the outer edge state
small sample Al does not quite fulfill the conditiag<L 5 4hagates through the dot while the inner edge state is an
and random fluctuations are suppressed. isolated loop. In this case, tunneling into the inner state leads
to magnetoconductance oscillations corresponding to the
V. DISCUSSION area of the inner isolated state. In the wave picture, as in the

Having established that the low field conductance oscillaclassical picture, the remarkable robustness and strength of

tions are due to the triangular periodic orbit, which changedh® observed oscillations can be explained in terms of Qigh
into a cyclotron orbit at high fields, we discuss qualitatively Values: once a wave packet is launched along the isolated
the coupling between the incoming electrons and the orbitfiangular orbit, small-angle scattering cannot bring it close
causing the conductance oscillations. to an exit lead; only a tunneling process in phase space can
Recently, quasiperiodic magnetoconductance oscillationdo so. The triangular orbit acts as a wave resonator with a
in square and triangular quantum dots have been interpretdtigh Q value, and we come to the surprising conclusion that
in terms of selective probirig® where the incoming elec- periodic orbits can be observed most clearly in those trans-
trons are injected close to the classically periodic orbits aport measurements where the orbits in question are not di-
sketched in Figs. (®) and §b). The same interpretation may rectly accessible to the incoming particles injected from the
in fact also be applied to circular dot§22 A common fea- leads but in fact are only weakly coupled to the leads.
ture of these billiard shapes is that the polygons accessible As a final remark we note that the smooth transition from
from the leads are single members of families of degeneratescillations inB to oscillations in 1B indicates that the low
orbits with the same classical action. As an example, in thdield oscillations is a density of states effect similar to Lan-
circular case these are rotated copies of the accessed poljau gquantization, and that the main difference between the
gon. Classically, small-angle scattering can transfer a particlevo field regimes is whether the confinement is of electro-
from one orbit(or family) to another until it finally couples static or magnetic origin. Loosely speaking, the density of
to the lead and escapes. The situation for our triangulastates from the inner dot contributes significantly to the scat-
samples is entirely different: the orientation of the triangulartering resonances, and the conductance oscillations can be
loop orbit is fixed with respect to the leads, and the orbit isinterpreted as a manifestation of gross-shell structure in the
isolated, i.e., it does not belong to any continuous family ofenergy spectrum related to the existence of periodic otbits.
orbits. As illustrated in Fig. &), the incoming electron beam A consequence of the appearance of such a gross-shell struc-
does not inject into the loop orbit. From the analysis of theture would be that the thermal behavior of the fluctuation
classical dynamics, we have noted that just a small fractio@mplitude differs from those of chaotic energy spectra. Due
of injected electrons end up in trajectories close to the loogo level repulsion in a chaotic system, the typical level spac-
orbit at small fieldsB<0.15 T, and none at higher fields, ing is equal to the average level spaciiy). The amplitude
where the loop orbit is localized in the center of the dot. Soof the fluctuations increases with decreasing temperature,
even if the quasiperiod of the oscillations can be explained ionly until the thermal energlgs T becomes smaller tham ),
terms of one periodic orbit, the coupling between the incomwhere the number of available scattering states becomes in-
ing trajectories and the periodic orbit is expectegriori to  dependent on the temperature. This has been seen experi-
be weak. However, we will argue that the remarkable robustmentally in a system similar to ouf However, for systems
ness and strength of the observed oscillations is exactly showing gross-shell structure the typical level spacing be-
consequence of this weak coupling. In a sense the triangulaomes smaller tha¢A) due to the appearance of large gaps
orbit resembles a resonating oscillator only weakly coupledig,>(A) in the energy spectrum. Saturation should then set
to the surroundings, but the weak coupling translates into & on the larger energy scalky,,, giving rise to a higher
high Q value with a significant response as a consequence isaturation temperature~ A ,,/Kg .
steady state. In the smallest triangular sample Al, we observe indeed
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such a saturation af6G) below temperatures of 0.5 K and field dependence of the oscillation periods has been analyzed
corresponding bias voltaged/,;,s/kg . This effect is not due numerically and analytically in terms of one classical orbit:
to trivial saturation of the electron gas temperature, whichthe triangular loop orbit. To account for the effect of gate
only occurs at much lower temperature @.05 K). Thisis voltage on the area of the orbit we assumed linear depletion
evident not only from resistance measurements in the fracas a function of gate voltage. This leads to a geometrical
tional quantum Hall regimésee Sec. )l but also from the model without adjustable parameters that agrees well with
temperature dependence of the conductance fluctuations: tihiee measured oscillation periods obtained at different gate
shape of the conductance fluctuations changes throughout thieltages. The orbit in question is inaccessible in terms of
temperature range from 0.5 to 0.05 K, and simultaneouslglassical collimated trajectories, and we therefore propose
the correlation field as obtained from the autocorrelation othat the transport mechanism is a pure quantum tunneling
the fluctuations decreases below the transition temperatureffect, through the essentially isolated triangular periodic or-
However, applying the same analysis as in Ref. 25 to oubit. The quasi-isolation of the orbit explains the robustness
data we obtain saturation energies 1.5 to 4 times larger thaand strength of the observed oscillations, and our work has
the expected valu) indicating the presence of the above- led us to the conclusion that periodic orbits can be observed
mentioned shell structure. Furthermore, we observe a tervery clearly in systems where the orbits are not directly ac-
dency of the saturation to set in at higher temperatures, whegessible to the incoming particles injected from the leads.
the dot is near pinch off, consistent with an increased shelfFinally, the quasi-isolation of the triangular orbit leads to the
spacing as the dot is made smaller. If this explanation isippearance of shell effects with implications for the satura-
correct, the temperature dependence of the fluctuations préion temperature of the quantum fluctuations: we have mea-
vides an interesting possibility of detecting the quantumsured a saturation temperature up to four times larger than
properties of small cavities with mixed dynamics. We pro-the one expected for systems without shell structure.

pose that the bias voltage could be used as a convenient

parameter to control the thermal broadening of the levels in
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