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Periodic magnetoconductance fluctuations in triangular quantum dots in the absence
of selective probing

P. Bo”ggild, A. Kristensen, H. Bruus, S. M. Reimann, and P. E. Lindelof
Niels Bohr Institute, O” rsted Laboratory, University of Copenhagen, Universitetsparken 5, DK-2100 Copenhagen O” , Denmark

~Received 20 October 1997; revised manuscript received 6 March 1998!

We have studied the magnetoconductance of quantum dots with triangular symmetry and areas down to
0.2 mm2, made in a high mobility two-dimensional electron gas embedded in a GaAs-AlxGa12xAs hetero-
structure. Semiclassical simulations show that the gross features in the measured magnetoconductance are
caused by ballistic effects. Below 1 K we observe a strong periodic oscillation, which may be explained in
terms of the Aharanov-Bohm flux quantization through the area of a single classical periodic orbit. From a
numerical and analytical analysis of possible trajectories in hard- and soft-walled potentials, we identify this
periodic orbit as the enscribed triangle. Contrary to other recent experiments, this orbit is not accessible by
classical processes for the incoming collimated beam.@S0163-1829~98!04924-8#
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I. INTRODUCTION

Over the past two decades, the technological advance
device fabrication and semiconductor growth techniq
have made possible the studies of small and impurity-f
electron systems. At sufficiently low temperatures both
elastic mean free path and the phase coherence length
come larger than the characteristic length scales of
sample, and its transport properties1 can reveal pronounce
quantum interference effects. A device, particularly w
suited for studies of these effects, is the quantum dot2 created
by electrostatical lateral confinement of a two-dimensio
electron gas~2DEG!. The size and shape of the dot can
changed by varying the voltage of the electrodes, which
termine the confining potential, thus providing a possibil
to modify the systemin situ. In ballistic quantum dots, wher
the boundary of the confining potential has a shape,
generates chaotic classical dynamics, one observes ran
reproducible conductance fluctuations, provided the Fe
wavelengthlF is small compared to the dot size.1 For small
dots, where this requirement is not quite fulfilled, the wa
nature of the electrons reduces the sensitivity to the in
conditions characteristic of chaotic dynamics, and a m
regular electronic motion appears. Recently, the attention
turned towards quantum dots that are just marginally chao
i.e., devices capable of showing both regular and cha
behavior described by a mixed phase space.2–9

Besides the size and overall shape of the potential,
leads feeding current into the quantum dot are often per
bations on an intentionally regular confining potential. As t
leads are gradually opened, the dynamics therefore cha
from regular to chaotic.10 Furthermore, it is expected
theoretically11 that the total phase breaking ratetf

211tesc
21 is

enhanced, as escaped electrons are reinjected with unc
lated phases. As the leads are opened, the quantum dot
longer an isolated system, its eigenstates become life
broadened, and in the limit of wide open leads they even
ally evolve into scattering resonances in a continuous sp
trum. In transport measurements this allows only the gr
shell structure rather than individual levels to be resolved6
570163-1829/98/57~24!/15408~8!/$15.00
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Several observations of periodic magnetoconducta
fluctuations in open dots have been interpreted semicla
cally, based on periodic orbits, or quantum-mechanica
based on scarred wave functions.2–4,6–9The observed periods
DB in magnetic field can be related to the areaF encom-
passed by a periodic orbit using the Aharonov-Bohm ty
relation FDB5F0, where F05h/e is the flux quantum.
This relation and generalizations thereof can be more rig
ously obtained from semiclassical periodic orbit theory.12 In
the spirit of Bohr and Sommerfelds quantization rule, pe
odic orbit theory provides a connection between the class
action of the periodic orbits and the density of states in
quantum regime.

When analyzing the experimental results, however,
resolution seldom warrants an interpretation in terms of
full periodic orbit theory: to extract the quantum density
states from the transport measurements is a difficult, if
impossible task. This is also the case for our work, so
explain the quasiperiodic magnetoconductance fluctuat
observed for our triangular dots, we simply start from t
classical action of a periodic electron orbit of lengthL en-
compassing an areaF, which for a constant wavelengthlF
becomes

N5
1

h R ~p2eA!•dq5
L

lF
2

BF

F0
. ~1!

This yields a magnetic field-dependent quasiperiodDB(B)
given by

DB~B!5UdN

dBU
21

, ~2!

since bothL and F depend on the magnetic field. In mo
experiments such an oscillation has to be extracted fro
complicated background consisting of additional perio
components as well as an aperiodic part.3

The role of leads as selective probes of resonant states
recently been emphasized.7–9 The collimated beam of elec
trons injected through one lead selects a set of momenta
coordinates, i.e., a particular part of phase space. Semic
15 408 © 1998 The American Physical Society
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sically, resonances occur when the direct trajectories are
ing injected close to periodic orbits in phase space.

In this work we focus on the role of leads for providing
mechanism to select periodic orbits in quantum dots w
mixed dynamics, and we have chosen a triangular geom
of the dot to obtain a particularly simple set of periodic o
bits. In Sec. II we describe the experiment and a sim
geometrical model for the electrostatic potential induced
the gates. Then, in Sec. III we use classical simulations
assert that the periodic fluctuations in the low-temperat
magnetoconductance are not of classical origin. In Sec
we compare the measured quasiperiod of the quantum o
lations to the results of a numerical and analytical analysi
the classical trajectories. We show that particularly rob
and strong conductance oscillations can be related to a s
orbit that is classically inaccessible from the leads. Fina
in Sec. V we discuss the origin and the implications of t
small coupling between this periodic orbit and the leads. I
concluded that selective probing is not necessary to de
periodic orbits in a small, open cavity with mixed dynamic

II. EXPERIMENT

A GaAs-AlxGa12xAs heterostructure with a 2DEG em
bedded 90 nm under the surface is used as a starting poin
the device fabrication. The mobility of the 2DEG after pr
cessing is about 200 m2/V s and the carrier density 1.
31015 m22. Using electron-beam lithography, three he
agonal aluminum gates are deposited on the surface o
heterostructure, as shown in the insets of Fig. 2. By apply
a negative gate voltage of20.3 V, an equilateral triangula
cavity with open corners is formed between the gates.
present measurements performed on three samples, in
following referred to as A1, A2, and B1. Samples A1 and A
are nominally identical while sample B1 has the same lit
graphic shape, but an area twice as large. The lithogra
width W of the leads is 0.39mm for sample B1 and 0.27mm
for samples A1 and A2. The corresponding pinch-off vo
ages for the three samples areVB1521.0 V, VA15
20.50 V, andVA2520.57 V. The side length of the hex
agonal gates is 2W in all samples. Based on the classic
ballistic features described in Sec. III, we find the carr
densities to range between 0.7 and 1.0 in units of 1015 m22

for all confined quantum dots, corresponding to a Fe
wavelengthlF'80 nm.

The electrostatic potential changes the area and shap
the dot significantly from the first formation to pinch off. I
the analysis of our data, we therefore need to estimate
size of the dot as a function of gate voltage. When the do
formed at the gate voltageVd520.3 V, the edge of the
electron gas is assumed to be directly under the edge o
gates. As the gate voltage is made more negative, a regio
width d is depleted around the gates, until the three po
contact regions are fully depleted at the pinch-off volta
Vp . In a theoretical study of a half plane gate situated in
plane of a 2DEG, Shikin and Larkin13 found a linear relation
between the depletion widthd and the gate voltageVg . The
depletion zone around one of the hexagonal gates is assu
to be independent of the two other gates, and conseque
the dot shrinks linearly from the lithographic shape atVg
5Vd to a smaller triangle near pinch off atVg5Vp . We can
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now express the areaF of the dot as a function of the gat
voltage, or more conveniently as a function of the dime
sionless gate voltageṼ5(Vg2Vd)/(Vp2Vd) as follows:
Fdot'W2(A3/4)@(423Ṽ/2)223(12Ṽ)2#. With this model
we estimate the areas 0.41mm2 (0.83 mm2) for sample A1
~B1! at the formation of the dots, and roughly half the
areas near pinch off.

The samples are cooled to 20 mK in a dilution fridg
located in a rf-shielded room. Using standard lock-in tec
niques the three-terminal devices are measured in a cur
biased two-probe configuration with the third probe floatin
Excitation currents are typically 1 nA at an ac frequency
117 Hz. Despite filtering, the electron gas is not cooled
low 50 mK, as estimated from the activated behavior of
resistivityrxx on then52/3 fractional quantum Hall platea
and from the temperature dependence of the low field c
ductance fluctuations. The magnetic field sweep ratedB/dt
was kept below 0.15 T/min to avoid additional heating due
eddy currents.

III. CLASSICAL EFFECTS

Before studying the quantum interference effects, we fi
have to identify those parts of the conductance fluctuatio
which are related to purely classical effects. One poss
way to discern classical conductance variations from qu
tum fluctuations is to increase the temperature. The class
variations are far less temperature dependent than the q
tum fluctuations, reflecting the elastic mean free path be
less temperature dependent than the phase-breaking leng1,2

Above 1 K the quantum fluctuations are largely suppress
and we are left with the classical variations, which f
sample A1 near pinch off are dominated by a large cond
tance dip around zero field as shown in Fig. 1. This zero fi
dip is quite large~of the order ofe2/h), is accompanied by
two smaller conductance maxima at 0.11 and 0.35 T.
find this overall shape and field scale of the magnetocond
tance preserved up to about 10 K, where the variations v
ish due to the increased scattering.14 Similar behavior is ob-
served for samples A2 and B1.

To identify the classical ballistic part of the conductanc
we performed a semiclassical simulation in a potential
sembling the effective potential of the cavity, and compa
the calculated conductance to low- and intermedia
temperature measurements. The advantage of this appr
is twofold: it allows us to gain an understanding of the phy
ics behind the conductance variations in the classical reg
and it provides a way to make consistent deductions on
shape of the effective potential and the carrier density in
dot, as these two parameters determine the amplitude, sh
and field scale of the magnetoconductance variations.
four steps of our analysis are straightforward.~1! A soft
model potential is defined on a lattice, allowing us to calc
late the force on each point in thexy plane.~2! An ensemble
of electrons is injected with cosine distributed angles in le
i 51, and tracked to the exit leadsj 51,2,3 using the classi
cal equations of motion.~3! The transmission coefficientsTji
are calculated as the number of modes in leadi times the
probability of ending in leadj when starting from leadi . ~4!
Using Landauer-Bu¨ttiker formalism for a three probe do
with triangular symmetry,15 the conductance become
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G12,125(2e2/h)(T211T31
2 /@T211T31#), where the triangular

symmetry conditionsT125T235T31 and T135T215T32 are
used.14

We have used two model potentials. First, the threef
Hénon-Heiles potential12,16with appropriately chosen param
eters, which in polar coordinates has the formU(r ,u)
5ar 21br 3 sin(3u) and secondly, a gate-shaped step fu
tion (U5Vg on the gates andU50 between the gates!, con-
voluted by a Gaussian function of widthg to emulate the soft
walls characteristic of electrostatic potentials.13 By changing
the smoothing widthg the convoluted potential can be va
ied from being nearly hard walled,g.0, to being very soft
walled, g@W. For 0,g,W/2 the potential is fairly hard
walled with corresponding flat regions in the center at d
tances roughly greater thang away from the gates. In con
trast, the He´non-Heiles potential always has a soft parabo
shape in the center.

In Fig. 1 we compare the magnetoresistance traces
sample A1 close to pinch off at temperaturesT54.2 K and
T50.02 K with a numerical 4.2 K simulation. For each ca
culated valueG(B), 20 000 trajectories with energies distrib
uted according to the finite temperature are started out
the cavity, the majority being backscattered before ente
the dot. We find fair agreement between measurement
simulation by choosing rather hard walls with a smooth
width g of only 45 nm, and by choosing a carrier dens
n50.731015 m22. The measured conductance variations
Fig. 1 are smaller than observed in the simulation, which
believe is due to temperature-induced scattering proce
not taken into account; at 8 K the classical variations ar
nearly washed out. The simulation could probably be furt
improved using a self-consistent potential such as in Ref.
However, the same values used forg and n in the simple

FIG. 1. Magnetoconductance of sample A1 atT520 mK ~top!
andT54.2 K ~middle! compared to the result of a classical sim
lation involving 20 000 injected particles per data point~bottom!,
with energies distributed according to the temperatureT54.2 K.
The model potential is a step potential shaped like the gates
softened by a Gaussian function of widthg545 nm. The carrier
density is 0.731015 m22. We note that the same choice of param
eters yields the fit of the quasiperiods in Fig. 3~c!. The insets sche-
matically show the origin of the variations: the main dip is relat
to backscattered trajectories, whereas the two conductance ma
correspond to direct transmission and a single skipping orbit.
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simulation presented in Fig. 1 also lead to an excellent ag
ment for the quasiperiod as shown in Fig. 3~c! to be dis-
cussed in Sec. IV. We therefore conclude that the simula
works satisfactorily, and it shows that the conductance
aroundB50 T is caused by trajectories reflected by the fl
wall opposing the source lead. As the magnetic field is
creased toB'0.1 T, the collimated electron beam is direct
into the exit lead, leading to a maximum in the conductan
A similar peak is seen atB'0.3 T, where the trajectorie
perform one bounce on the edge of the potential before
iting. Similar geometric resonances have been studied
semiconductor double slits,18 in rectangular cavities,8,19 and
in etched triangular cavities.9

We conclude that the slow variations in the magnetoc
ductance at intermediate temperatures are of classical na
containing no oscillatory structure on scales smaller than
T. We have estimatedn to be between 0.7 and 1.0 in units o
1015 m22 and found evidence for the effective potential b
ing fairly hard walled and therefore quite far from th
Hénon-Heiles type. As we now have accounted for the c
ductance features seen at intermediate temperatures we
proceed to the low-temperature regime.

IV. QUANTUM INTERFERENCE EFFECTS

In all samples we find pronounced oscillatory structure
the magnetoconductance below 1 K in addition to the slow
variations at higher temperatures. As seen in Fig. 1 the l
temperature conductance oscillations in sample A1 co
pletely dominate the classical conductance variations, m
ing the classical background difficult to observe. In Fig. 2 t
magnetoconductance data of samples A1 and B1 are sh
before ~full lines! and after~dashed lines! applying a high

ut

ma

FIG. 2. At low temperatures the magnetoconductance traces
hibit an oscillatory structure up to roughly 0.3 T~sample B1! and
0.4 T ~sample A1!, which is considerably stronger than rando
conductance fluctuations. Panel~a! shows for sample A1 the raw
conductance measurement~full curve! and the measurement wit
the classical background filtered out~dashed curve!, while panel~b!
shows the corresponding power spectrum (0,B,0.3 T!. Accord-
ingly, panels~c! and ~d! show conductance and power spectra
sample B1. For the small dot A1, the oscillations are almost free
other harmonics, whereas sample B1 exhibits more frequencies
sample A1, the oscillations die out at higher fields than for sam
B1, and persist over a larger range of gate voltage. The insets in
power spectra show SEM micrographs of the samples with w
bars of length 1mm.
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pass filter to remove the relatively slow classical variatio
The oscillations in the smaller samples of type A are g

erally twice as strong as in the larger samples of type B, t
also persist over larger ranges of gate voltages, and they
to be dominated by a single quasiperiod with little oth
structure. The main oscillation of sample B1 is accompan
by other periodic and aperiodic components. The domina
periods measured in sample A1~40–70 mT! are larger than
those in sample B1~25–40 mT!. The peak positions gener
ally move as the size of the quantum dot is changed, i.e.
varying the gate voltage. We point out that the samples
and A2 are not identical, and that the same sample beh
differently from cool down to cool down. The overall beha
ior is, however, conserved. The oscillations continue w
roughly constant quasiperiod up to about 0.3 T in all th
samples, as reflected in the narrow peaks in the power s
tra shown in Figs. 2~b! and 2~d!. Above this field, the fluc-
tuations become weaker while the quasiperiod~peak-to-peak
distance! increases. In all cases the oscillations remain ess
tially unchanged on a time scale of 24 h, except for min
differences in shape due to occasional redistribution of
potential, presumably caused by charge hopping between
donor atoms in the GaAlAs barrier layer.17

The presence of a single quasiperiod over a range of m
netic fields and gate voltages implies the existence o
single orbit which is robust to both changes in magnetic fi
and the shape of the potential. By analyzing the class
trajectories in soft- and hard-walled model potentials and
mogeneous magnetic fields~see Sec. II!, we note that the
triangular loop orbit with the same winding direction as t
free electron cyclotron orbit is the only orbit which exists
the large field range of the experimentally observed osc
tions. Rather than being destroyed as the magnetic fiel
augmented, it gradually changes into the cyclotron o
which is also a single loop. The triangular orbit at low fiel
can therefore be seen as a cyclotron orbit forced to fit ins
the triangular cavity. Indeed, a detailed analysis of the
served magnetoconductance reveals a smooth transition
the low field oscillations with a nearly constant quasiperio
to Landau level quantization oscillations, or Shubnikov–
Haas oscillations, periodic inB21. This is shown in Fig. 3. In
panel~a! is displayed a gray-scale plot of the conductance
a function of both magnetic fieldB and gate voltageVg. It is
clearly seen how the resolved oscillations are of theB21

periodic Shubnikov–de Haas type in the open quantum
@Vg'20.27 V, top of panel~a!#, where the magnetic con
finement dominates the electrostatic confinement alre
when the first oscillation can be resolved. This is in contr
to the nearly closed quantum dot@Vg'20.55 V, bottom of
panel~a!#, where a more constant quasiperiod is seen at
fields before theB21 periodic behavior sets in. In the regim
between the two limits (G;e2/h andG@e2/h) where sev-
eral conducting channels are passed through the system
fluctuations are generally less clear, and at some gate
ages practically disappear.

In Figs. 3~b! and 3~c! the results of a quantitative analys
are shown. We begin by considering the triangular perio
orbit in a hard-walled potential, where it in zero field is a
equilateral triangle.20 In weak fields, the triangular orbi
splits into two orbits: a large area orbit (1) winding the
same way as the cyclotron orbit, and a smaller area o
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(2) winding the opposite way. Between the reflections
the walls of the quantum dot, the electrons move on a
with the cyclotron radiusRc5\kF /eB. For weak magnetic
fields ap-corner periodic orbit exists in any regularp-sided
polygonal potential with hard walls, as for instance seen
Ref. 7. In soft potentials, the corners of the orbit will b
rounded accordingly. In terms of the dimensionless magn
field b5 l 0/2Rc the field-dependent lengthL(b) and area
F6(b) of a p-corner periodic orbit, which at zero field ha
sidelengthl 0 can be written as

L~b!5
pl0
b

arcsin~b!, ~3!

FIG. 3. Panel~a! shows the conductance of sample A2 in
gray-scale plot~bright denotes low conductance!, versus gate volt-
age and magnetic field. The gate voltage ranges from20.27 V
~formation point!, to the pinch-off voltage20.57 V for this particu-
lar dot. The arrows at the top of the graph show the conducta
maxima being periodic inB21 characteristic of Landau level~LL !
oscillations in an electron system with carrier density of 1
31015 m22. The arrows at the bottom show theB quasiperiodic
oscillations related to the triangular loop orbit, with an increas
quasiperiod at high fields. In panel~b! the measured quasiperiods o
sample A2 are compared to the analytical expression Eq.~6! for a
hard-wall potential (g0), as well as numerical calculations for a ste
potential with soft region width of 15 nm (g1). The best fit is
obtained by choosing the carrier densitynA251.031015 m22. The
white markers show the measured oscillation quasiperiods of
sample at the point of formation being 1/B periodic, down to much
lower fields than when the dot is near pinch off~black markers!.
Similarly, in panel~c! results for the quasiperiod of sample A1 a
compared to the analytical expression Eq.~6! for a hard wall po-
tential (g0), as well as numerical calculations for step potenti
with soft region widths of 15 nm (g1), 45 nm (g2), and 73 nm
(g3). The top curve (h) shows the calculation for the He´non-Heiles
potential. As in Fig. 1 theg2 potential matches the data best t
gether with a carrier densitynA150.731015 m22.
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15 412 57P. BO”GGILD et al.
F6~b!5
pl0

2

4 F6cotS p

p D1
arcsin~b!

b2
2

A12b2

b G . ~4!

By inserting these equations into Eq.~1! the quantization
rule becomes

N65
pl0
2lF

F7b cotS p

p D1
1

b
arcsin~b!1A12b2G , ~5!

whereN1 (N2) is the orbit winding the same~opposite! way
as the cyclotron orbit. The corresponding magnetic-fie
dependent quasiperiodsDB65udN6 /dBu21 are then given
by

DB65
4F0

pl0
2 U7 cotS p

p D2
arcsin~b!

b2
1

A12b2

b U21

. ~6!

By comparison with Eq.~4! it is seen that the quasiperiod o
the (1) orbit takes on the simple formDB15F0 /F1(b).
Above a certain field strengthb* 5sin(p/p), where the cy-
clotron radiusRc is equal to the radius of the circumscribe
circle, the (1) orbit is just the cyclotron orbit. We note tha
the Landau level filling factorn5nF0 /B can be derived
semiclassically by applying the Bohr-Sommerfeld quanti
tion rule Eq.~1! to the cyclotron orbit, givingNLL5n/2 with
the factor of 2 due to spin degeneracy. The correspond
quasiperiodDBLL is then quadratic inb ~see Fig. 3!:

DBLL5
2B2

nF0
5

4F0

p l 0
2

b2. ~7!

The (2) orbit exists only at low fieldsb,1, and further-
more its quasiperiod diverges atb51 around 0.2 T, which
disqualifies it as an explanation for the observed oscillatio
We apply Eq.~6! for b,b* and Eq.~7! for b.b* to our
system by settingp53 ~triangular orbit! and by using the
geometrical relationl 05(220.75Ṽ)W for the zero-field or-
bit side length as a function of the dimensionless gate v
ageṼ ~see Sec. II!.

In Fig. 3~b! the calculated hard-wall quasiperiod denot
g0 is plotted against magnetic fieldB together with measured
periods ~black markers! of conductance oscillations in
sample A2 and similarly in Fig. 3~c! for sample A1. The
measured periods represent the distance between adj
maxima~or minima! of quasiperiodic oscillations plotted a
the fields halfway between the maxima~or minima!. The
transition to a cyclotron orbit is taking place at the sha
minimum of the curve. In a more accurate quantu
mechanical calculation, this minimum would be smooth
as the transition from one type of orbit to another is contin
ous due to the finite extent of the wave function by which
hard wall appears more soft.21 Likewise, classically the hard
wall model predicts much larger variations of the quas
eriodDB(B) in the low field region, than obtained with sof
ened walls. Therefore, to improve the hard-wall model
calculate the quasiperiodudN/dBu21 numerically for the se-
quence of loop orbits that exist in soft potentials in the fie
range from zero to 0.8 T. By this we not only obtain a clos
match to the actual potential, we also avoid the above m
tioned discontinuities in the transition from the triangular
the circular orbit.
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In Figs. 3~b! and 3~c! we plot in addition to the analytica
predictions of Eqs.~6! and~7!, the periods obtained numer
cally with the Hénon-Heiles potential (h) and three step po
tentials,g1–g3, of different smoothing widthsg. Again we
obtain the best agreement with the fairly steep potent
softened only a little by choosing the same small values og
and the same carrier densityn as in Sec. III.

We note from the simulations that the soft walls tend
stabilize the quasiperiod of the (1) orbit at low fields, and
that the simple relationDB15F0 /F(b) found for hard
walls is approximately correct for softened walls as well. T
field dependence of the quasiperiod related to the triang
orbit then turns out to be similar to that of an orbit wi
constant area and length. These facts allow us to use the
field triangular orbit in the further analysis of oscillations
low fields. With the linear depletion model of the dot~see
Sec. II! we obtain the following approximative expressio
for the area of the triangular orbit as a function of the dime
sionless gate voltageṼ:

Fn~Ṽ!.W2~0.24Ṽ221.30Ṽ11.73!. ~8!

Equation~8! contains no adjustable parameters; it is based
the linear depletion model and the measured data. In Fig.
shown that the theoretical prediction of the oscillation pe
odsDB5F0 /Fn as a function of the gate voltageVg is in
good agreement with the experimental data points. The
that the measured periods are slightly smaller than predi
is due to the hard wall triangle being slightly smaller in ar
than its soft wall rounded counterpart. From the simulatio
we estimated the difference in area to be roughly 20%, wh
leads to the corrected curves~dotted! in Fig. 4.

Finally, we observe an almost complete suppression
random fluctuations in the oscillatory regime, which is cle
from the isolated peaks in the power spectra of Fig. 2.
possible factor to the suppression of random fluctuation
the small ratio between size and wavelength caused by

FIG. 4. The measured quasiperiods determined from the po
spectra of seven measurement series plotted together with the
culated quasiperiod corresponding to the triangular orbits. For c
parison, the areas of the softened triangles, as estimated from
merical calculations, are indicated by the dotted lines.
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low carrier densities. When sample A1 is smallest~near
pinch off!, the length of the symmetry axis from gate to le
is about 6 times the Fermi wavelengthlF580 nm, while the
total lengthL of the triangular orbit is 10lF , compared to
roughly 18lF for the square orbit considered in Ref. 7. T
small sample A1 does not quite fulfill the conditionlF!L
and random fluctuations are suppressed.

V. DISCUSSION

Having established that the low field conductance osci
tions are due to the triangular periodic orbit, which chang
into a cyclotron orbit at high fields, we discuss qualitative
the coupling between the incoming electrons and the o
causing the conductance oscillations.

Recently, quasiperiodic magnetoconductance oscillati
in square and triangular quantum dots have been interpr
in terms of selective probing7–9 where the incoming elec
trons are injected close to the classically periodic orbits
sketched in Figs. 5~a! and 5~b!. The same interpretation ma
in fact also be applied to circular dots.3,6,22 A common fea-
ture of these billiard shapes is that the polygons access
from the leads are single members of families of degene
orbits with the same classical action. As an example, in
circular case these are rotated copies of the accessed
gon. Classically, small-angle scattering can transfer a par
from one orbit~or family! to another until it finally couples
to the lead and escapes. The situation for our triang
samples is entirely different: the orientation of the triangu
loop orbit is fixed with respect to the leads, and the orbi
isolated, i.e., it does not belong to any continuous family
orbits. As illustrated in Fig. 5~c!, the incoming electron beam
does not inject into the loop orbit. From the analysis of t
classical dynamics, we have noted that just a small frac
of injected electrons end up in trajectories close to the lo
orbit at small fields,B,0.15 T, and none at higher fields
where the loop orbit is localized in the center of the dot.
even if the quasiperiod of the oscillations can be explaine
terms of one periodic orbit, the coupling between the inco
ing trajectories and the periodic orbit is expecteda priori to
be weak. However, we will argue that the remarkable robu
ness and strength of the observed oscillations is exact
consequence of this weak coupling. In a sense the triang
orbit resembles a resonating oscillator only weakly coup
to the surroundings, but the weak coupling translates in
high Q value with a significant response as a consequenc
steady state.

FIG. 5. Panels~a! and ~b! show the geometries discussed
Persson~Ref. 6! and Bird ~Ref. 7! ~see text!. Some periodic orbits
related to the conductance oscillations observed in the sample
sketched. In both cases the collimated beam can inject close
periodic orbit in phase space. In panel~c! the triangular sample is
sketched. The incoming orbit does not match the direction of
triangular orbit anywhere; this orbit is classically inaccessible
phase space, in contrast to the situation shown in panels~a! and~b!.
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Quantum mechanically the spatial structure of high-lyi
eigenstates often resembles periodic orbits of the corresp
ing classical system. In the semiclassical limit, i.e., for m
soscopic systems, these so-called scarred wave function
particularly important.7–9,12 We speculate that the triangula
orbit in our system is largely represented by a set of sca
wave functions similar to those found also in a triangu
quantum dot.9 In that study, however, a different lead geom
etry implies a strong coupling between the periodic orb
and the leads. It is possible to explain the weak coupl
found in our classical simulation by noting that the propag
tion direction of the incoming wave will be almost orthog
nal with the scarred wave function propagating along
triangular orbit thus yielding an almost vanishing overl
integral. The experimental evidence of a nonzero coupl
would then be a manifestation of quantum mechanical t
neling in phase space without classical counterparts.6,23 A
similar situation has been seen in the high field Aharon
Bohm effect in quantum dots,24 where the outer edge stat
propagates through the dot while the inner edge state is
isolated loop. In this case, tunneling into the inner state le
to magnetoconductance oscillations corresponding to
area of the inner isolated state. In the wave picture, as in
classical picture, the remarkable robustness and strengt
the observed oscillations can be explained in terms of higQ
values: once a wave packet is launched along the isol
triangular orbit, small-angle scattering cannot bring it clo
to an exit lead; only a tunneling process in phase space
do so. The triangular orbit acts as a wave resonator wit
high Q value, and we come to the surprising conclusion t
periodic orbits can be observed most clearly in those tra
port measurements where the orbits in question are no
rectly accessible to the incoming particles injected from
leads but in fact are only weakly coupled to the leads.

As a final remark we note that the smooth transition fro
oscillations inB to oscillations in 1/B indicates that the low
field oscillations is a density of states effect similar to La
dau quantization, and that the main difference between
two field regimes is whether the confinement is of elect
static or magnetic origin. Loosely speaking, the density
states from the inner dot contributes significantly to the sc
tering resonances, and the conductance oscillations ca
interpreted as a manifestation of gross-shell structure in
energy spectrum related to the existence of periodic orbit12

A consequence of the appearance of such a gross-shell s
ture would be that the thermal behavior of the fluctuati
amplitude differs from those of chaotic energy spectra. D
to level repulsion in a chaotic system, the typical level sp
ing is equal to the average level spacing^D&. The amplitude
of the fluctuations increases with decreasing temperat
only until the thermal energykBT becomes smaller than̂D&,
where the number of available scattering states become
dependent on the temperature. This has been seen ex
mentally in a system similar to ours.25 However, for systems
showing gross-shell structure the typical level spacing
comes smaller than̂D& due to the appearance of large ga
Dgap.^D& in the energy spectrum. Saturation should then
in on the larger energy scaleDgap, giving rise to a higher
saturation temperatureT'Dgap/kB .

In the smallest triangular sample A1, we observe inde
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such a saturation of̂dG& below temperatures of 0.5 K an
corresponding bias voltageseVbias/kB . This effect is not due
to trivial saturation of the electron gas temperature, wh
only occurs at much lower temperature (;0.05 K). This is
evident not only from resistance measurements in the f
tional quantum Hall regime~see Sec. II! but also from the
temperature dependence of the conductance fluctuations
shape of the conductance fluctuations changes throughou
temperature range from 0.5 to 0.05 K, and simultaneou
the correlation field as obtained from the autocorrelation
the fluctuations decreases below the transition tempera
However, applying the same analysis as in Ref. 25 to
data we obtain saturation energies 1.5 to 4 times larger
the expected valuêD& indicating the presence of the abov
mentioned shell structure. Furthermore, we observe a
dency of the saturation to set in at higher temperatures, w
the dot is near pinch off, consistent with an increased s
spacing as the dot is made smaller. If this explanation
correct, the temperature dependence of the fluctuations
vides an interesting possibility of detecting the quant
properties of small cavities with mixed dynamics. We pr
pose that the bias voltage could be used as a conven
parameter to control the thermal broadening of the level
order to extract information on the level distribution as d
scribed above.

VI. SUMMARY

We have studied the intermediate- and low-tempera
magnetoconductance of triangular symmetric quantum d
of different sizes. At low temperatures we observe stro
periodic fluctuations in the magnetoconductance, which
robust to moderate variations in gate voltage and magn
field. While the quasiperiod is nearly constant at low ma
netic fields, a 1/B periodicity is observed at higher fields
similar to Shubnikov–de Haas oscillations. The magne
.
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field dependence of the oscillation periods has been analy
numerically and analytically in terms of one classical orb
the triangular loop orbit. To account for the effect of ga
voltage on the area of the orbit we assumed linear deple
as a function of gate voltage. This leads to a geometr
model without adjustable parameters that agrees well w
the measured oscillation periods obtained at different g
voltages. The orbit in question is inaccessible in terms
classical collimated trajectories, and we therefore prop
that the transport mechanism is a pure quantum tunne
effect, through the essentially isolated triangular periodic
bit. The quasi-isolation of the orbit explains the robustne
and strength of the observed oscillations, and our work
led us to the conclusion that periodic orbits can be obser
very clearly in systems where the orbits are not directly
cessible to the incoming particles injected from the lea
Finally, the quasi-isolation of the triangular orbit leads to t
appearance of shell effects with implications for the satu
tion temperature of the quantum fluctuations: we have m
sured a saturation temperature up to four times larger t
the one expected for systems without shell structure.
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