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Energy level statistics of the two-dimensional Hubbard model at low filling

Henrik Bruus* and Jean-Christian Angle`s d’Auriac†

Centre de Recherches sur les Tre`s basses Tempe´ratures, CNRS, Boıˆte Postale 166, F-38042 Grenoble Ce´dex 9, France
~Received 18 October 1996!

The energy level statistics of the Hubbard model forL3L square lattices (L53,4,5,6) at low filling~four
electrons! is studied numerically for a wide range of coupling strength. All known symmetries of the model
~space, spin, and pseudospin symmetry! have been taken into account explicitly from the beginning of the
calculation by projecting into symmetry-invariant subspaces. The details of this group theoretical treatment are
presented with special attention to the nongeneric case ofL54, where a particular complicated space group
appears. For all the lattices studied, a significant amount of levels within each symmetry invariant subspaces
remains degenerated, but except forL54 the ground state is nondegenerate. We explain the remaining degen-
eracies, which occur only for very specific interaction-independent states, and we disregard these states in the
statistical spectral analysis. The intricate structure of the Hubbard spectra necessitates a careful unfolding
procedure, which is thoroughly discussed. Finally, we present our results for the level spacing distribution, the
number varianceS2, and the spectral rigidityD3, which essentially all are close to the corresponding statistics
for random matrices of the Gaussian ensemble independent of the lattice size and the coupling strength. Even
very small coupling strengths approaching the integrable zero coupling limit lead to Gaussian ensemble
statistics, stressing the nonperturbative nature of the Hubbard model.@S0163-1829~97!02613-1#
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I. INTRODUCTION

The behavior of strongly correlated electronic systems
mains a central problem in contemporary condensed ma
physics. Several years of intense studies have made it c
that the necessary theoretical skills and tools to deal w
strongly correlated fermion systems are lacking~see, e.g., the
recent reviews by Dagatto1 and Lieb2!. Many exotic schemes
have been invented to accommodate a suitable theore
framework, but the development of a predictive gene
theory does not seem to be in sight. In this state of affairs
importance of performing numerical calculations of t
ground-state properties and the energy spectrum of a g
many-body Hamiltonian has grown. Computational resu
can lead to the acceptance or rejection of the proposed
lytical models, and they can guide the development of n
analytical approaches.

In the Hubbard model and related models one import
parameter is the fillingn. Much work has been devoted t
the high-density case near half filling, since it is believed
be relevant for high-temperature superconductivity,1,3 but
also the low-filling regime is of interest; e.g., it plays a
important role in theoretical studies of the breakdown
Fermi liquid theory in two dimensions~2D!.4 In this paper
we present a numerical study of the two-dimensional H
bard model at the low-filling regimen,0.25, a regime
where the calculation is tractable. It is natural to choose f
particles as a generic case close to the simple two-par
case. The coupling strength is used as a perturbation pa
eter, and we address the question of universality in the
sponse of strongly correlated electron systems to
perturbation.5

We describe an efficient method which allows for nume
cal calculations of the exact energy spectrum. This met
can relatively easily be extended to calculations of vario
Green’s functions and spectral functions well suited for
550163-1829/97/55~14!/9142~18!/$10.00
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study of low-lying excitations and the corresponding coh
ent part of the spectral densities, a topic we will study
forthcoming work. Here, we rather study the statistical pro
erties of the typical high-energy excitations which are rela
to the incoherent background of the typical spectral fu
tions. More specifically, we study the statistical properties
the spectra within the framework of random matrix theo
~RMT!. RMT was developed for the study of neutron sc
tering resonances in nuclear physics in the 1950s and 1966

but it has since been applied to a wide range of problem
many areas of physics7 ~e.g., studies of conduction
fluctuations,8 microwave eigenmodes,9 and acoustical prop-
erties of solids10! and mathematics~e.g., studies of the dis
tribution of the zeros of the Riemannz function11!. More-
over, RMT has also been applied to various types of ma
ensembles like Hamiltonian matrices6 ~as in our case! and
scattering matrices,8,12 as well as transfer matrices13 and
Glauber matrices14 of statistical mechanics models. Recent
RMT has been employed in the study of strongly correla
electronic systems. Examples are studies of the 2Dt-J
model,15 2D tight-binding models,16 the 1D Bethe chain,17

and the 1D Luttinger liquid.18 The work presented here wit
emphasis on mathematical and numerical methods is an
tension of this line of research. Preliminary results of o
work have been published elsewhere.19

There are basically two ways of applying RMT. One w
is to model a relevant matrix of the given physical syste
with a matrix drawn from a suitable random matrix ensem
and subsequently calculate average properties of the sy
by averaging over the random matrix ensemble accordin
RMT. The other way, which we employ here, consists si
ply of characterizing the spectrum of a given physical syst
by comparing various statistical properties of the spectr
with the corresponding properties calculated within one
the few universal statistical matrix ensembles of RM
Which of these ensembles describes properly a physical
9142 © 1997 The American Physical Society
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55 9143ENERGY LEVEL STATISTICS OF THE TWO- . . .
ation depends on the symmetries of the system. The g
spectrum which one analyzes is of course deterministic,
statistical properties are given to it by considering quanti
like, for example, the distribution of the energy spacin
where all but one of the spectral variables have been i
grated out. This is like pseudo-random-number genera
which are perfectly deterministic and nevertheless h
many properties in common with random sequences.

The paper is organized as follows. In Sec. II we introdu
the Hubbard model and the corresponding Hilbert space
Sec. III we introduce the RMT quantities used in the char
terization of the spectra, and we discuss in detail the spe
spectral unfolding technique necessitated by the intricate
ture of the Hubbard spectra. In Sec. IV the entire symme
group consisting of space, spin, and pseudospin symmet
the model is studied, and all the corresponding project
operators are calculated. In Sec. V the model is diagonal
numerically and we study the raw spectrum, in particular
ground state and some unexpected remaining degener
higher in the spectrum. In Sec. VI we present the result of
spectral statistics analysis of the model, and finally, in S
VII we discuss the results and conclude. Appendixes A
contain mathematical details.

II. HUBBARD MODEL

Throughout this paper we study the simple one-ba
L3L square lattice Hubbard model with periodic bounda
conditions containing a nearest-neighbor hopping term2tT̂

and an on-site interaction termUÛ:

Ĥ52tT̂1UÛ52t (
^ i , j &,s

L2

ĉ js
† ĉis1U(

i

L2

n̂i↑n̂i↓ , ~1!

whereĉis
† and n̂is are the creation operator and the numb

operator, respectively, for an electron on sitei with spins.
No disorder is present in the model. Below half filling th
dimensionNH of the Hilbert space grows rapidly as a fun
tion of L and the numberNe of electrons occupying the
lattice, and so we have confined ourselves to the low-fill
case of only four electrons, whereas we letL vary. More-
over, without loss of generality we always work in the sec
where thez componentSz of the total spin is zero; the othe
Sz sectors can be reached by use of the spin ladder oper
S1 and S2 , which commute with the Hamiltonian. Th
Sz50 sector is the largest of the spin sectors, and it
NH5@L2(L221)/2#2 which for L53, 4, 5, and 6, the lattice
sizes studied here, yields 1296, 14 400, 90 000, and 396
respectively. The corresponding fillingsn[Ne/2L

2 are 0.22,
0.13, 0.08, and 0.06.

In the occupation number basis we label the states
follows,20 wherea andb are two lattice sites occupied wit
spin-up electrons andc andd with spin-down electrons:

ua,b;c,d&[ ĉa↑
† ĉb↑

† ĉc↓
† ĉd↓

† uvac&. ~2!

Two explicit examples of such states as well as the lat
site enumeration are shown in Fig. 1. In our work we ma
sure thata,b and c,d, and we have ordered the bas
states such that the stateux1 ,x2 ;x3 ,x4& comes before the
state ux18 ,x28 ;x38 ,x48& if xi,xi8 , where i is the first position
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encountered wherexi andxi8 are different. If during a calcu-
lation a state is encountered witha.b and/orc.d, the nec-
essary exchange operations including sign changes are
formed to restore it.

Finally we note that for evenL a bipartition of the lattice
is possible. A given lattice sitea can be identified by a set of
Cartesian coordinatesa5(a1 ,a2) simply counting the posi-
tion in the lattice@thus, e.g., site 05(0,0) and 95(1,2) in
Fig. 1~a!#. Each sitea can then be assigned with a sig
ua[(21)a11a25exp(ip•a), wherep5(p,p).

III. RANDOM MATRIX THEORY

Within random matrix theory~RMT! one can study sev-
eral statistical ensembles of matrices. Three important
amples are the diagonal ensembles, the Gaussian ensem
for Hermitian matrices as, e.g., Hamiltonians, and the circ
lar ensembles for unitary matrices as, e.g., scattering ma
ces. Since a main object of this work is to characterize t
spectrum of the Hubbard model within the framework o
RMT, we are led to use the diagonal and the Gaussian
sembles of square matrices. The first ensemble is the
semble of diagonal matricesD with statistically independent
diagonal elementsDii drawn from the same distribution
P(Dii ). This ensemble describes situations where the eig
values are essentially independent, which empirically h
been found to be the case for integrable models. One ch
acteristic feature of such systems is a ‘‘soft’’ spectrum wi
large probabilities of having levels close together describ
by the Poisson~exponential! distribution. The three others
ensembles—denoted the Gaussian orthogonal ensem
~GOE!, Gaussian unitary ensemble~GUE!, and Gaussian
symplectic ensemble~GSE!—are defined by requirering sta-
tistical independence of the matrix elements of a matrixH
and invariance of the probability distributionP(H) in matrix
space under one of the three canonical similarity transform
tions: the orthogonal, the unitary, and the symplectic tran
formations, respectively.6 Which ensemble to choose de
pends on the symmetry of the system. In fact, the ensemb
are universal in the sense that no details of the physical s
tem play any role; only knowledge of the global symmetry
needed. The three Gaussian ensembles are found to des
situations of very complex or chaotic systems, and one ch

FIG. 1. Two four-electron states withSz50 are shown: in~a!
the zero-pair stateu5,6;2,14& of the 434 square lattice and in~b!
the one-pair stateu5,16;13,16& of the 535 square lattice. The con-
vention of the ket notation is explained in the text. The numberi
of the lattice sites is the one employed in our computer calculatio
The signs of the 434 lattice correspond to the bipartition of the
lattice, which is only possible for even site lattices.
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9144 55HENRIK BRUUS AND JEAN-CHRISTIAN ANGLÈS D’AURIAC
acteristic feature of such systems is a ‘‘rigid’’ spectrum w
eigenvalue repulsion. In this work we need only to treat
GOE, which is found for systems with preserved tim
reversal symmetry.

To perform a meaningful RMT analysis one has to s
the spectrum in symmetry sectors corresponding to the s
metry group of the Hamiltonian since the symmetr
invariant subspaces are orthogonal to one another. Each
symmetry-invariant subspace is characterized by a spe
set of quantum numbers, and the RMT analysis is perform
on sets of eigenlevels having the same quantum number
Sec. IV we treat the complete symmetry group of the Hu
bard model and calculate the corresponding projection op
tors of the symmetry-invariant subspaces. As illustrated
Sec. VI significant errors are introduced in the analysis
some of the symmetries are neglected.

Another caveat in the RMT analysis of finite spectra is
notion of mixed phase space. As a function of some exte
parameter a given system can be driven from integrab
~the diagonal ensemble! to chaos~one of the Gaussian en
sembles! or from one type of symmetry~say, the GOE! to
another~say, the GUE!. If the spectrum of such a system
studied in the middle of the transition, the spectrum is
mixture of two or more components, each described by
of the random ensembles.21 In the thermodynamic limit usu
ally only one component survives, but for finite spectra t
mixing calls for a further sorting of the spectrum within ea
symmetry-invariant subspace. For the Hubbard model us
the coupling strengthU/t as the external parameter such
situation does in fact arise as the analysis presented in
VB shows.

When the necessary sorting of the spectrum has been
formed the RMT analysis can begin. The first step is to
fold the spectrum.

A. Unfolding the spectrum

Naturally, it is necessary to make some kind of transf
mation or normalization of the spectrum of any given phy
cal system to be able to make comparisons with the unive
and dimensionless results of RMT. This operation is cal
the unfolding. By local rescaling of the spectrum with t
local average level spacing the unfolding transforms the
tual energiesEi into dimensionless ‘‘unfolded energies’’« i
with a local density of 1. Thus, by unfolding one subtra
the regular slowly varying part of the spectrum and consid
only the fluctuations. It amounts to computing from the a
tual integrated density of statesN(E),

N~E!5E
2`

E

(
i

d~e2Ei ! de5(
i

u~e2Ei !, ~3!

an averaged integrated density of stateN̄(E). The unfolded
energies« i are then given by

« i5N̄~Ei !. ~4!

The notions of ‘‘local density’’ and ‘‘averaged density’’ ar
not mathematically rigorous. For some systems there ex
natural unfolding procedures. For example, it is a rigoro
result that the density of states for aN3N random matrix
approaches a semicircular form forN→`; thus for any given
e
-

t
-

ch
fic
d
In
-
a-
n
if

e
al
y

a
e

s

g

ec.

er-
-

-
-
al
d

c-

rs
-

ts
s

finite random matrix one simply uses the limiting density
states as the average density. In billiard systems one
make a Laurent series expansion inAE of N(E) and obtain
the Weyl law forN̄(E) by truncating the series after a finit
number of terms, each of which has a physical interpretat
In our case, no such natural choices exist forN̄(E). We have
therefore used several methods to unfold the spectra. Eac
these methods has a free parameter, but there is no un
prescription of how to choose it. The best criterion is t
insensitivity of the final result to the method employed a
to reasonable variations of the free parameter.

The first method is polynomial interpolation. It can be
simple linear interpolation or running average whereN̄(Ei)
is found as a linear fit ofN(E) in an interval containingr
levels on each side of the levelEi ; the free parameter is the
the parameterr . It can also be higher order polynomial in
terpolation, e.g., in the form of interpolating between seve
linear interpolations—a method we used in our work on s
tistical mechanics models.13,22

The second method7 defines« i5« i211d1 /dn , wheredk
is thekth smallest spacing toEi . Heren becomes the free
parameter. This method works also for complex eigenval
of non-Hermitian matrices.

The third method is Fourier broadening of the step fun
tions u(e2Ei) in Eq. ~3!. The Fourier transforms from the
energy domain to the time domain of the step functions
found. In the following back transformation yieldingN̄(E)
only the slow time components are kept. Choosing a cu
t beyond which all Fourier components are set to zero yie
u~e2Ei)'Si@~e1E*2Ei)t#/p2Si@~e2E*1Ei)t#/p, where
Si(x) is the sine integral andE* is an energy slightly larger
than the largest energy in the spectrum to be unfolded.
free parameter ist, and by choosing 1/t to be of the order of
the mean-level spacing a goodN̄(E) is obtained.

The fourth method is Gaussian broadening of the de
functionsd(e2Ei) in Eq. ~3!, leading to the following ex-
pression forN̄(E):

N̄~E!5E
2`

E

(
i

1

s iA2p
expF2

~e2Ei !
2

2s i
2 Gde. ~5!

The standard deviation or widths i of the Gaussians can
be taken as a constant for the entire spectrum; it is then
free parameter. However, due to the appearance of m
minibands in the Hubbard spectrum for small values ofU/t
each having different densities, it is desirable to lets i adapt
to local variations in the spectrum. We have developed
following algorithm: Takea levels to each side of leveli ,
determine the local average level spacingD i5(Ei1a
2Ei2a)/(2a), and sets i50.608aD i . By this assignment
90% of the weight of the broadened peak falls in the inter
@Ei2aD i ,Ei1aD i # anda becomes the free parameter. If
gap~defined as a very atypical spacing! falls within the cho-
sen range, we only take the states of the same side of the
asEi into account. The procedure is illustrated in Fig. 2. W
discuss how to optimize the choice ofa in Sec. VI. Typi-
cally, we finda'4 to be a good choice.

All four methods of unfolding yield essentially the sam
results. We decided to use the Gaussian broadening
varying width, Eq.~5!, since it was better suited to the stud



a

s
t
d
t
th
er
o
t

th
s
-

a
om

f

o
h
b
.
as

est
or-
s

e

,

is
e-

is

r.

n
sis.
an
y-
in-
c-
the
nt

ors
he
ely.

It

-

in
d

we
f t
n
t

55 9145ENERGY LEVEL STATISTICS OF THE TWO- . . .
of the Hubbard spectra with its many minibands at sm
coupling strengthU/t ~see Sec. V A!.

A final remark on the unfolded spectrum is that it is cu
tomary to discard from the analysis the states closest to
boundary of the spectrum or to the edges of the miniban
The reason is that these levels in contrast to the levels in
bulk of the spectrum do not interact with levels of bo
higher and lower energy. Hence such levels are nongen
We usually discarded a few percent of the total number
states on that account. This effect is a size effect tha
expected to be negligible in the thermodynamic limit.

B. Quantities characterizing the spectrum

The simplest quantity one studies in RMT analysis is
probability distributionP(s) of unfolded energy spacing
s5« i2« i21, where « i and « i21 are two consecutive un
folded energies. One compares the actualP(s) with the same
quantity obtained for random matrices from one of the m
trix ensembles introduced in Sec. III. For diagonal rand
matrices P(s) is the Poisson~exponential! distribution
P(s)5exp(2s). ForN3N GOE matrices the distribution o
spacings is quite complicated for arbitraryN; however, it is
always close to the exact spacing distribution of the 232
GOE matrices known as the Wigner surmise,

PGOE~s!5
p

2
sexpS 2

p

4
s2D , ~6!

which therefore is used in practice.
The spacing distribution probes correlations between c

secutive states and is not sensitive to correlations of hig
order. For example, an artificial spectrum constructed
adding independent variables distributed according to Eq~6!
will certainly show a Wignerian spacing distribution but h

FIG. 2. Unfolding of the spectrum using the Gauss broaden
with variable width, choosinga54. Shown is a part of the Hubbar
spectrum of the invariant subspace (R,S)5(6,0) aroundE/t'1.1
for L55 andU/t51. The positions of the levelsEi are marked by
short vertical lines. For four levels marked by long vertical lines
show the actual broadened Gaussians. Note how the widths o
Gaussians change as the local density of states changes, and
how the width of the Gaussian centered near the gap ignores
states beyond the gap. Also shown are the level staircaseN(E) and
the averaged integrated density of statesN̄(E) ~the smooth dotted
line!.
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clearly nothing else in common with GOE spectra. To t
higher-order correlations one then looks at the two-point c
relation function Y(x) and various weighted average
thereof.6 For the GOE in the large-N limit,

Y~x!5s~x!21
ds~x!

dx E
x

`

s~ t ! dt,

with s(x)5sin(px)/(px). One average ofY(x) often studied
is the number varianceS2(l) defined as the variance of th
number of unfolded energy levels in intervals of lengthl
around the unfolded energy«0:

S2~l!5 K FNuS «01
l

2D2NuS «02
l

2D2l G2L
«0

, ~7!

whereNu(«)[( iu(«2« i) is the unfolded level staircase
and where the brackets denote an averaging over«0. For the
Poissonian caseS2(l)5l, while for the GOE case
S2(l)5l22*0

l(l2x)Y(x) dx with a logarithmic
asymptotic behavior.

Another average of the two-point correlation function
the spectral rigidityD3(l) defined as the least-squares d
viation of the unfolded level staircaseNu(«) from the best-
fitting straight line in an interval of lengthl:

D3~l!5K 1l min
~A,B!

E
«02l/2

«01l/2

@Nu~«!2A«2B#2d«L
«0

. ~8!

For the Poissonian case the spectral rigidity
D3(l)5l/15, while for the GOE caseD3(l)5@l
2*0

l f (x)Y(x) dx]/15, with f (x)5(l2x)3(2l229lx
23x2)/l4 and again with a logarithmic asymptotic behavio

IV. GROUP THEORY AND INVARIANT SUBSPACES

The problem of diagonalizing the Hubbard Hamiltonia
can be reduced considerably by group theoretical analy
Furthermore, as mentioned earlier and as illustrated by
example in Sec. VI A it is indispensable for the RMT anal
sis. The symmetries are explicitly dealt with from the beg
ning of the calculation by constructing the symmetry proje
tion operators corresponding to all known symmetries of
model and using them to project into symmetry-invaria
subspaces of the full Hilbert space.23,24 The main object of
this section is to construct the three projection operat
PR , PS , andPJ corresponding to the space symmetry, t
spin symmetry, and the pseudospin symmetry, respectiv

A. Space symmetry group

The first symmetry we consider is the space groupGL of
theL3L square lattice with periodic boundary conditions.
consists of all permutationsg of the sites such thatg( i ) and
g( j ) are neighbors if and only ifi and j are neighbors. In a
straightforward manner an operatorĝ in Hilbert space can be
associated with each elementg of GL , ĝua,b;c,d&
[ug(a),g(b);g(c),g(d)&, thus forming a groupĜL of op-
erators, which commutes with the Hubbard HamiltonianĤ.
For general values ofL the space groupGL has been ana
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lyzed in detail in Ref. 20. Here we will restrict ourselves
outlining this analysis and to correcting the particular ca
of L52, which induces a simpler space group, andL54,
which induces a much richer space group as briefly m
tioned in Ref. 25.

For LÞ2,4 the structure ofGL can simply be built up by
forming direct26 and semi-direct27 products, denoted̂ and

ss, respectively, of translation and reflection subgroups.
Tx (Ty) be the subgroups of orderL of translations~isomor-
phic with ZL) in the x (y) direction, and letr x , r y , andr d
be the reflection operations for thex axis, they axis, and the
diagonal defined by r x(x)52x, r y(y)52y, and
r d(x,y)5(y,x), while e denotes the identity transformation
The two subgroupsGL

x5Txss $e,r x% andGL
y5Tyss $e,r y% of

order 2L ~isomorphic withCLv5ZLssZ2) are formed and
combined into the direct product subgroupGL

xy5GL
x

^GL
y .

Finally GL is formed by the semidirect produc
GL5GL

xyss $e,r d%. One can say thatGL is generated by the
elements$tx ,r x ,ty ,r y ,r d% although this is not the smalles
possible set of generators. The orderNL of
GL5(CLv^CLv)ssZ2 is seen to beNL58L2.

For L52 we find G25($e,r x% ^ $e,r y%)ss $e,r d%5C4v
with N258. This result differs from that of the general ca
sincetx5r x and ty5r y .

For the caseL54 a richer group appears because
434 lattice with periodic boundary conditions is isomorph
with the group of transformations of the four-dimension
unit hypercube. This isomorphism is easily seen by chang
the decimal enumeration of Fig. 1~a! into a binary enumera
tion such that the binary numbers of neighboring sites di
by only 1 bit as shown in Fig. 3. They can immediately
interpreted as the coordinates of the corners of the hy
cube. Thus the groupG4 of neighbor-preserving transforma
tions is given by combining bit inversion operations 0↔1
with permutations of the 4 bits. In Appendix A we show th
G4 is isomorphic with the group (Z2^Z2^Z2^Z2)ssS4
corresponding to the semidirect product of all combinatio
of bit inversions at the four positions with the permutati
group S4 of the four positions. One neighbor-preservin
transformation of the lattice which is not given by produc

FIG. 3. The mapping of the 434 square lattice with periodic
boundary conditions onto the unit hypercube in 4D. The fo
double arrows indicate the neighbor-preserving transformationr h .
This transformation cannot be expressed by the ordinary tran
tions and reflections in 2D; however, it can be interpreted a
hyperplane reflection in 4D around thexz plane.
s
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t

e
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s

of the elements$tx ,r x ,ty ,r y ,r d% is the hyperplane reflection
r h ~see Fig. 3! obtained in 4D by a reflection in thexz plane
while keepingy andw fixed.G4 can be generated by replac
ing r d above withr h ~we note thatr d5tx

21ty
21r htytxr h), and

a set of generators is$tx ,r x ,ty ,r y ,r h% though in fact as few
as two elements can be found that generateG4.

28 Instead of
128 elements found by the formulaNL58L2, we find
N452434!5384. We refer the reader to Appendix A an
Appendix B for further details concerningG4 andGL , re-
spectively.

The complete table of charactersxR
(R8)(g) of G4 is given

in Table IV in Appendix A, while those ofG3, G5, andG6
are found by combining Table V in Appendix B with th
method of Ref. 20. Armed with the character tables the ch

acter projection operatorP̂R(R8) ~where the subscriptR is used
to distinguish fromS and J) can be constructed for eac
l R8-dimensional irreducible representationR8:

P̂R~R8![
l R8
NL

(
gPGL

xR
~R8!* ~g!ĝ. ~9!

Using P̂R(R8) for a given representation together with th
Van Vleck basis-function generating algorithm23,24 in the
actual or a closely related Hilbert space it is straightf
ward to construct an orthonormall R-dimensional basis
$f1

(R) ,f2
(R) , . . . ,f l R

(R)% and calculate an explicit irreducibl

representation matrixG i j
(R)(g)[^f i

(R)uĝuf j
(R)&. Finally the

row projection operatorP̂Rk(R8)(g) can be constructed:

P̂Rk~R8![
l R8
NL

(
gPGL

Gkk
~R8!* ~g!ĝ. ~10!

Both projection operatorsP̂R(R8) and P̂Rk(R8) will be employed
in the diagonalization of the Hubbard Hamiltonian.

B. SU„2… spin symmetry

It is easily verified that the Hubbard Hamiltonian, Eq.~1!,
commutes with thez component of the total spin operato
Ŝz5( i51

Ne Ŝz
( i ) as well as with the corresponding raising a

lowering operatorsŜ1 and Ŝ2 . The model therefore pos
sesses a SU~2! spin symmetry. We can therefore restrict o
diagonalization to theSz50 sector, since the other secto
can be reached using the spin-raising and -lowering op
tors. The spin operators also commute with any space s
metry operatorĝ, and so the two symmetry groups form
direct product group. The combination of two spin-up a
two spin-down electrons under the constraintSz50 leads to
a total spin quantum numberS850, 1, or 2. The explicit
construction in Appendix C withÔ5Ŝ2 yields the following
three spin projection operatorsP̂S(S8) :

P̂S~0!ua,b;c,d&5 1
6 ~12ua,b;c,d&1ua,c;b,d&2ua,d;b,c&

12uc,d;a,b&1ub,d;a,c&2ub,c;a,d&),

~11!

P̂S~1!ua,b;c,d&5 1
6 ~13ua,b;c,d&23uc,d;a,b&), ~12!

r
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P̂S~2!ua,b;c,d&5 1
6 ~11ua,b;c,d&2ua,c;b,d&1ua,d;b,c&

11uc,d;a,b&2ub,d;a,c&1ub,c;a,d&).

~13!

These expressions are generally valid; however, one sh
note that the Pauli exclusion principle reduces the numbe
terms when electron pairs are present. For example, ifa5c

andb5d, one findsPS(S8)ua,b;c,d&5dS8,0ua,b;c,d&. Finally
we note that the spin projectors of the stateua,b;c,d& in-
volve all six states generated by permutations of the
indices. In Eqs. ~11!–~13! only three orthogonal state
appear. The remaining three orthogonal states are
two S51 states ua,c;b,d&2ub,d;a,c& and ua,d;b,c&
2ub,c;a,d& and the one S50 state ua,c;b,d&
1ub,d;a,c&1ua,d;b,c&1ub,c;a,d&.

C. SU„2… pseudospin symmetry

The pseudospin symmetry of the Hubbard model has b
known for at least a quarter of century,29 but recently it was
rediscovered and put in the more generalized context of
h-pairing mechanism.30,31 As discussed in Sec. II evenL
lattices can be biparted using the site signu i as an index, and
three operatorsĴ2 , Ĵ1 , and Ĵz can be defined:

Ĵ25(
i

u i ĉi↑ĉi↓ , Ĵ15(
i

u i ĉi↓
† ĉi↑

† , Ĵz5
1

2(is n̂is2
L2

2
.

~14!

It is seen thatĴ1 creates a pair of electrons with phaseu i on
empty sitesi . These three operators form the same algebr
Ŝ2 , Ŝ1 , andŜz , hence the name pseudospin. Furthermo
the Ĵ operators commute with both the space symmetry
erators and the spin operators; and for the symmetrized H
bard modelĤ8,32 trivially related to our modelĤ, they even
commute with the HamiltonianĤ8. Hence the~symmetrized!
model possesses an extra SU~2! symmetry characterized
by the quantum numbersJ8 and Jz analogous toS8 and
Sz for the spin.33 A detailed analysis shows that the comb
nation of spin and pseudospin symmetries yie
@SU~2!^SU~2!#/Z25SO~4! rather than the full SU~2!
^SU~2!.31 The space symmetry group is completely ind
pendent of spin and pseudospin symmetries. Thus the
symmetry group forL even isG5GL^SO(4) while forL
odd it is G5GL^SU(2). In our case the symmetry is low
ered in a trivial way from spherical to cylindrical symmet
in pseudospin space since@Û,Ĵ6#56 Ĵ6 , but still we have

@Ĥ,Ĵ2#5@Ĥ,Ĵz#50 andJ8 andJz both remain good quan
tum numbers.

For a given lattice with evenL containing a fixed numbe
Ne of electrons all states haveJz5(Ne2L2)/2 ~e.g.,26 for
L54 and216 forL56). DefiningJ0[uJzu, the sizeJ of the
pseudospin in this situation takes the valu

J0 ,J011, . . . ,J01Ne/2. The projection operatorsP̂J(J8) are
found using the construction of Appendix C wit
Ô5 Ĵ25 Ĵ1Ĵ21 Ĵz

22 Ĵz . Due to the explicit reference to
pairs in the definition of the pseudospin operators, it h
ld
of

te

he

en

e
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,
-
b-

s

-
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s

s

proved useful to introduce a special notation for one-pair a
two-pair basis states as follows:

uP;b,d&[uPcP↓
† cP↑

† cb↑
† cd↓

† uvac&5uPuP,b;P,d&,

uP;Q&[uPuQcP↓
† cP↑

† cQ↓
† cQ↑

† uvac&52uPuQuP,Q;P,Q&.
~15!

For zero-pair states wherea, b, c, andd are all different,

only P̂J
(J85J0) is nonzero,

P̂J
~J0!ua,b;c,d&5ua,b;c,d&, ~16!

and for one-pair states whereP, b, andd are all different,
two projection operators are nonzero,

P̂J
~J0!uP;b,d&5

2J011

2~J011!
uP;b,d&

1
21

2~J011! (
QÞP,b,d

uQ;b,d&, ~17!

P̂J
~J011!uP;b,d&5

1

2~J011!
uP;b,d&

1
1

2~J011! (
QÞP,b,d

uQ;b,d&, ~18!

while for two-pair states wherePÞQ, all three projection
operators are nonzero:

P̂J
~J0!uP;Q&5

(RÞP,Q(SÞP,Q,RuR;S&
2~J011!~2J013!

1
~2J011!uP;Q&

2J013

2
~2J011!(RÞP,Q$uR;Q&1uR;P&%

2~J011!~2J013!
, ~19!

P̂J
~J011!uP;Q&5

2(RÞP,Q(SÞP,Q,RuR;S&
2~J011!~J012!

1
uP;Q&
J012

1
J0(RÞP,Q$uR;Q&1uR;P&%

2~J011!~J012!
, ~20!

P̂J
~J012!uP;Q&5

(RÞP,Q(SÞP,Q,RuR;S&
2~J012!~2J013!

1
uP;Q&

~J012!~2J013!

1
(RÞP,Q$uR;Q&1uR;P&%

~J012!~2J013!
. ~21!

At this stage all the group theoretical ingredients are re
for the diagonalization of the Hubbard Hamiltonian.

D. Symmetry-invariant subspaces

Using the projection operators theNH-dimensional Hil-
bert space can be broken down into smaller symmetry inv
ant subspaces. LetG be the group containing the symmet
operationsg, each being a product of a space symme
transformation, a spin rotation, and~for L even! a pseudospin
rotation,g5g^gS^gJ . HereG thus consists of one finite
group and one or two compact Lie groups. Letr be a multi-
index describing an irreducible representationG (r) of G. For
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even @odd# L we haver5(R8,S8,J8) @r5(R8,S8)#. The
‘‘celebrated’’ theorem23,24 states how many timesar each
row of the irreducible representationG (r) with character
x (r) appears in any given not necessarily irreducible rep
sentationG with characterx:

ar5
1

NL
(
GL

E
SU~2!

dgSE
SU~2!

dgJx
~r!* ~g!x~g!. ~22!

We now chooseG to be the followingNH-dimensional re-
ducible representation:

G i j ~g![^ i uĝu j &, x~g!5(
i51

NH

^ i uĝu i &. ~23!

Inserting into Eq.~22! thesex(g)’s which are directly linked
to Hilbert space yield

ar5E
G
dgx~r!* ~g!(

i51

NH

^ i uĝu i &5
1

l R
(
i51

NH

^ i uP̂~r!u i &

5
1

l R
(
i51

NH

^ i uP̂R~R8!
^ P̂S~S8!

^ P̂J~J8!u i &, ~24!

which is obtained by using x(g)5x(g^gS^gJ)
5x(g)x(gS)x(gJ) and the definitions of the character pr
jection operators. Note that only the space group projec
needs a normalizing factor 1/l R . The spin and pseudospi
are both restricted to take only one value of their respec
z component; hence their normalizing factor is 1.

The initial size of the Hubbard Hamiltonian to be diag
nalized is@L(L21)/2#2. However, only states transformin
according to the same row of the same irreducible repre
tation r can have a nonzero matrix element. Hence
Hamiltonian matrix breaks up in blocks, one per represen
tion, and within each representation a further division in
l R equivalent blocks occurs. The relationship betweenNH ,
a(R8,S8,J8) , andl R8 is NH5( (R,S,J)l R8a(R8,S8,J8) . This reduc-
tion is considerable as shown in Table I.

V. NUMERICAL DIAGONALIZATION
OF THE HUBBARD MODEL

The numerical calculation of the exact spectra of the H
bard model begins by determining the block sizear for all
the irreducible representationsr. Then for a given
r5(R8,S8,J8), whereJ8 is disregarded in case of oddL, an

TABLE I. For L53, 4, 5, and 6 are shown the dimensionNH of
the total unreduced Hilbert space and the dimension max$ar% of the
largest symmetry-invariant subspace. Since matrix diagonaliza
is ann3 operation, the number(rar

3/NH
3 provides an estimate of th

relative reduction in computer time by projecting into the invaria
subspaces.

L53 L54 L55 L56

NH 1296 14 400 90 000 396 900
maxr$ar% 38 146 1794 5490
(rar

3/NH
3 14.131025 0.731025 2.331025 1.031025
-

n

e

n-
e
a-

-

ar-dimensional orthonormal basis is found by using the p
jection operator

P̂0~r![P̂R0~R8!
^ P̂S~S8!

^ P̂J~J8! , ~25!

which projects onto the first row of the space group rep
sentationR8 with the spin indexS8 and pseudospin index
J8. The projection operatorP̂0(r) is applied on one basis stat
after another while performing an ongoing Gram-Schm
orthonormalization procedure. This yields new basis sta
uwi&, and whenar such states are found, the procedure
terminated.

The next step is to calculate the kinetic energy and pot
tial energy matrix elementŝwi uT̂uwj& and^wi uÛuwj&. These
matrix elements are stored in the computer and thereafter
a simple matter to pick any value ofU/t and diagonalize the
Hubbard Hamiltonian,Ĥ52tT̂1UÛ, using standard diago
nalization routines. The calculation of the symmetry inva
ant matrix blocks ofT̂ andÛ takes the amount of time of th
order of one diagonalization.

A. Spectrum and first-order perturbation theory
of the ground state

In this section we discuss some features of the raw sp
trum of the Hubbard model. Only later in Sec. VI are w
going to unfold the spectrum and look for universal featur
As a function of the coupling strengthU/t the spectrum
clearly falls into three classes. In the weak-coupling lim
(U/t!W/t), to be studied in more detail below, the spe
trum acquires a band widthW'32t. It consists of a number
M of well-separated minibands reminiscent of the huge
generacy at zero coupling due to size quantization.
intermediate-coupling strengths (U/t'W/t) the spectrum
becomes rather featureless. No apparent gaps or b
emerge. In the strong-coupling limit (U/t@W/t) the spec-
trum splits up into three well-separated bands cente
around the energiesE/t50,U/t,2U/t. These are the Hubbar
bands corresponding to states containing zero, one, or
pairs of electrons. In Fig. 4 are shown one typical spectr
from each of the three coupling strength regimes.

We now focus on the weak-coupling limit where
is natural to make Fourier transforms from real space
momentum space, ĉks

† [(1/L)( jexp(ik•r j ) ĉ js
† , where

k5(kx,ky), with kz52pn/L and n50,1, . . . ,L21. The
eigenstates of the kinetic energy operator2tT̂ are

uk0 ,k1 ;k2 ,k3&5 ĉk1↑
† ĉk2↑

† ĉk3↓
† ĉk3↓

† uvac&,

2tT̂uk0 ,k1 ;k2 ,k3&522t(
n50

3

E~kn!uk0 ,k1 ;k2 ,k3&, ~26!

E~kn!5cos~kn
x!1cos~kn

y!.

The Pauli principle preventsk05k1 and k25k3, and the
ground-state energyEL

(0) becomes

EL
~0!5212t24tcos~2p/L !. ~27!

For large lattices this tends toward216t and results in a
bandwidthW532t. For L53, 4, 5, and 6, respectively, th

n

t
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FIG. 4. The integrated density of statesN(E) of the Hubbard model with four electrons on the 535 lattice for the irreducible
representation (R,S)5(10,0) withU/t50.1,10,1000. ForU/t50.1 the minibands are still clearly visible andN(E) is essentially featureles
for U/t510, while forU/t51000 the three Hubbard bands at 0, 1000, and 2000 appear. The insets are magnifications ofN(E) where the
arrows point. The smoothN̄(E) is added.
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actual bandwidthsW/t are 20.0, 24.0, 26.2, and 28.0 whi
the numberM of minibands forU50 are 7, 13, 42, and 29

The limitation of perturbation theory is demonstrated b
first-order degenerate perturbation calculation for the gro
state. LetpL be the one-dimensional momentum compon
pL52p/L and construct the 5 two-dimensional momentu
vectors05(0,0),q05(pL,0),q

15(0,pL), q
25(2pL,0), and

q35(0,2pL). The 16 statesum,l&, defined as

um,l&5u0↑ ,q↑
m ;0↓ ,q↓

l&, m,l50,1,2,3, ~28!

form the ground-state multiplet separated from the next m
tiplet by an energy gapDEL52t@12cos(pL)#. In momentum
space the interaction operatorUÛ takes the form

UÛ5
U

L2 (
k1 ,k2 ,q

ĉk11q↑
† ĉk1↑ĉk22q↓

† ĉk2↓ , ~29!

and after some simple algebra the matrix elements of
perturbation are found to be

^m,l uUÛum,l&5
U

L2
~3dm,md l ,l1dm1 l ,m1l!. ~30!

The eigenvalues can be found analytically, and we end
with the following expression for the perturbed leve
EL,b
(1) (U) with degeneraciesd:

EL,b
~1! ~U !5EL

~0!1b
U

L2
, b53~d57! ,4~d54! ,5~d54! ,7~d51! .

~31!

Thus in first-order perturbation theory the ground-state
generacy is partly lifted, leaving a sevenfold-degener
ground state forU.0.

In Fig. 5 we compare the exact numerical calculation w
Eq. ~31! for L55 and 6. Note especially how in the exa
calculation the degeneracy of the ground-state energ
lifted completely. This is also demonstrated in Table
where it can be seen that also forL53 the ground state is
nondegenerate. However, the ground state ofL54 remains
threefold degenerated even in the exact calculation. This
flects the particular symmetry of the 434 lattice, where the
hyperplane reflectionr h leads to the existence of threefold
degenerate representations as shown in Appendix A.

Using the quantum numbers (kx ,ky ,bx ,by ,c) of
Table V in Appendix B to interpret the representati
label R in Table II we note that they are of th
d
t

l-

e

p

-
te

is
,

e-

same form for L53,5,6: (0,0,1,1,21), (0,0,1,21,*),
(2p/L,2/p/L,*,*, 21), (4p/L,0,*,1,*), (2p/L,2p/
L,*,*,1), and ~0,0,1,1,1!, where the first set corresponds
the unique ground state. This result extends to theL54 lat-
tice when the actual space group is replaced by the one
erated by$tx ,r x ,ty ,r y ,r d%. One state in theL54 triplet
ground state belongs to the (0,0,1,1,21) representation and
the other two states to (4p/L,0,1,1,*). In all cases the
ground state is odd with respect to the diagonal reflect
r d , which is understandable since that symmetry suppre
the ability of having pairs along the diagonal. Finally w
note that due to the aforementioned spin symmetry of
Hubbard model, the ground state of theSz50 sector is in fact
a global ground state, and furthermore since it hasS50, the
same energy level does not exist in any otherSz sector. Thus
we can conclude that the global ground state in the gen
case (LÞ4) is nondegenerate.

B. Remaining degeneracies

After taking all the known symmetries into account a
after projecting into the symmetry-invariant subspaces

FIG. 5. The evolution of the 16-fold degenerated ground st
multiplet as a function ofU/L2. The exact numerical results fo
L55 ~dotted lines! andL56 ~dashed lines! are contrasted with the
first-order perturbation calculation~solid straight lines!. The inset is
a magnification of that portion of the plot marked by a rectang
showing how the exact calculation leads to a splitting into th
submultiplets with degeneracies 1, 2, and 4 of the sevenf
degenerate perturbation theory ground state. The exact ground
is nondegenerate. See also Table II.
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TABLE II. For U/tL250.02 the sevenfold-degenerate perturbation theory ground stateEL,b53
(1) given in

row P is compared with the exact energiesE of the 16 levels splitting off from theU50 ground state
EL
(0) The degeneracies of the submultiplets are given by the dimensionl R of the corresponding irreducible

representationR of the space group. Note that except forL54 the exact ground state is nondegenerate. A
listed are the quantum numbers (R,S,J) of the levels.

L53 L54 L55 L56
No. E/t (R,S) l R E/t (R,S,J) l R, E/t (R,S) l R E/t (R,S,J) l R

P 29.94000 ~2,2! 7 211.94000 ~2,2,2! 7 213.17607! ~2,2! 7 213.94000 ~2,2,2! 7
0 29.94122 ~2,0! 1 211.94268 ~9,0,6! 3 213.18059 ~2,0! 1 213.94676 ~4,0,16! 1
1 29.94110 ~8,1! 4 211.94232 ~16,1,6! 6 213.18012 ~4,1! 2 213.94617 ~9,1,16! 2
2 29.94097 ~4,1! 2 211.90425 ~17,0,6! 6 213.18005 ~10,1! 4 213.94606 ~25,1,16! 4
3 29.92188 ~5,0! 4 211.86560 ~0,0,6! 1 213.16204 ~7,0! 4 213.92870 ~14,0,16! 4
4 29.90229 ~7,0! 4 – 213.14302 ~9,0! 4 213.91032 ~24,0,16! 4
5 29.86204 ~0,0! 1 – 213.10590 ~0,0! 1 213.87494 ~0,0,16! 1
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turns out that within each subspace some further degen
cies remain. The reason is that the low filling of the latti
allows for a kind of restricted permutation symmetry for t
particle momentum components, resulting in energy eig
states which are simultaneously eigenstates ofT̂ and Û and
therefore independent ofU ~though their eigenvalues migh
depend onU). We denote such statesT̂/Û states orucS

g&,
whereS is the spin andg the eigenvalue ofÛ. With four
electronsg takes the valuesg50,1,2 corresponding to a su
perposition of states containing exactlyg pairs, i.e., doubly
occupied sites. A generic energy eigenstate is not aT̂/Û state
and in that case we writeg5*. In Table III we show the
number of generic energy eigenstates andT̂/Û states found
numerically. The Hubbard model is thus partly integrab
The spectrum of each symmetry-invariant subspace is a m
ture of an integrable component~the T̂/Û states! and a non-
integrable component~the generic states!, and in the analysis
ra-

n-

.
x-

in Sec. VI of the spectral statistics we throw away the in
grable component and analyze only the generic nonin
grable component.

The T̂/Û states are formed by specific superpositions

eigenstates ofT̂ by permuting the eight momentum comp
nentskn

z z5x,y andn50, 1, 2, and 3, such that the sum
cosines in Eq.~26! remains unchanged. In the following w
mention some large classes of such states. The reader
ferred to Appendix D for details.

First we note that for evenL proportionally many more
states remain degenerate as compared toL odd. This differ-
ence is due to the momentum componentkn

z5p, which only
exists forL even. Because cos(p2k)1cos(k)50 independent
of k, such terms drop out whenT̂ is applied to a state con
taining this combination and a certain degree of freedom
left to form theT̂/Û state superpositions. Starting with two
pair statesg52 we find exactly one energy eigensta
each
es

ric

e
ce, spin,
st
TABLE III. For L53, 4, 5, and 6 is shown the number of energy eigenstates found numerically in
of the four main groups indexed byg. The first group, denotedg5*, contains the generic energy eigenstat

that are not eigenstates ofÛ. The three other groups, denotedg50,1,2, respectively, contain the nongene

T̂/Û states that are simultaneous eigenstates ofÛ ~with eigenvalueg) and T̂. In parentheses are given th
number of states that remain degenerated in the symmetry-invariant subspaces after taking the spa
and pseudospin symmetries into account. Note how theg5* states exhibit no further degeneracy. In the la
row denoted ‘‘%’’ are given the percentages ofg5* states out of the total number of states.

g S L53 L54 L55 L56

* 0 540/~0! 4169/~0! 31977/~0! 115896/~0!

* 1 621/~0! 4472/~0! 41662/~0! 137199/~0!

* 2 0/~0! 0/~0! 0/~0! 0/~0!

0 0 0/~0! 1176/~1143! 523/~316! 23555/~23427!
0 1 9/~0! 2548/~2519! 3188/~2823! 60306/~60160!
0 2 126/~80! 1820/~1727! 12650/~12362! 58905/~58723!
1 0 0/~0! 94/~14! 0/~0! 408/~247!
1 1 0/~0! 120/~24! 0/~0! 630/~420!
1 2 0/~0! 0/~0! 0/~0! 0/~0!

2 0 0/~0! 1/~0! 0/~0! 1/~0!

2 1 0/~0! 0/~0! 0/~0! 0/~0!

2 2 0/~0! 0/~0! 0/~0! 0/~0!

% 89.6% 60.0% 81.8% 63.8%
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FIG. 6. The spectral statisticsP(s), D3(l), andS2(l) for the invariant subspace (R,S)5(13,1) of the 535 lattice as a function of the
free parametera of the unfolding procedure using Gaussian broadening with variable width. In all three panels the values fora are 2, 4, 5,
6, 8, 10, and 20. In the first panel six of the seven curves fluctuate aroundPGOE(s), hardly visible as a smooth dotted line. In the two oth
panels the Poisson case is given as a dotted straight line while the GOE case is given by a dotted smooth curve. For all data
representative error bars are shown.
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ucS50
g52&. It depends on the momentump, and hence it exits

only for evenL. Similarly, for one-pair states only evenL

leads toT̂/Û states. A number (2
L2) of statesucS51

g51& can
easily be constructed. More care must be taken upon form
the correspondingS50 states. However, we have succeed
in constructing analytically the number of statesucS50

g51& re-
quired by Table III. Finally, for zero-pair states the existen
of the momentump is not required to form theT̂/Û states,
but it certainly helps. Thus both even and odd values oL
lead to nongeneric energy eigenstates, but relatively m
such states are found for evenL. It is easy to see that al
states with the maximal spinS52 are T̂/Û statesucS52

g50&.
This is a trivial consequence of choosing four different si
~or momenta! and forming the superposition given in E

~13!. There are (4
L2) such states. The construction of stat

ucS5S8
g50 & with S851 or 0 is more cumbersome, and so

Appendix D we have only given two examples of classes
such states.

The main result of this section is that the degenerac
that remain after space, spin, and pseudospin symmetry
been taking into account is related to a restricted permuta
symmetry of the momentum components. We have not fo
the associated projection operators, but numerically
partly analytically we have established the fact that the
generate states are simultaneously eigenstates ofT̂ and Û
with energiesE(U)5E(0)1gU. By discarding these state
we end up with nondegenerateÛ-dependent states. It is th
spectral statistics of these states we analyze in the follow
section, and this analysis confirms our claim that all symm
tries indeed have been taken into account.

VI. SPECTRAL STATISTICS OF THE HUBBARD MODEL

Having sorted the spectrum according to all symmetr
including the restricted permutation symmetry of the m
mentum components the RMT analysis can be performed
discussed in Sec. III the first step is the unfolding of t
spectrum. There we mentioned how the unfolding proced
is not uniquely determined, and so we turn to that probl
first.

A. Optimization of the unfolding procedure

We unfold the spectra by using the method of Gauss
broadening with variable width discussed in Sec. III A. T
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question now arises as to how to choose the free param
a corresponding to how many energy levels each Gaus
essentially spreads out over to each side. The problem
face is illustrated in Fig. 6 where it is seen that although
level spacing distributionP(s) is essentially independent o
the choice ofa, both the number varianceS2(l) and the
spectral rigidityD3(l) vary with a. It is seen thatD3(l) is
less sensitive to changes ina thanS2(l). The former seems
to saturate for large values ofa, while the latter continues to
grow rapidly asa enhances. We have chosen that valuea0
of a which makesS2(l) fit the corresponding GOE curve a
well as it can. In general that leads toa0'4. We note that
for this choice ofa, D3(l) is almost saturated, whileP(s)
remains unchanged. Thus, two of the three statistics are
sentially independent of variations ofa arounda0, while the
third is as close to the GOE behavior as it can be.

To illustrate the importance of sorting the spectrum
group theory we show in Fig. 7 the level spacing distributi
for L54 withU/t510 for the case where all symmetries a
taken into account~‘‘full symm.’’ ! and for the case with
lower symmetry~‘‘low symm.’’ ! where the spin and pseu
dospin symmetries are being kept intact but where the sp
group has been reduced by replacing among the gener

FIG. 7. P(s) for L54 with U/t510 is calculated after sorting
the spectra using either the full symmetry group of the Hamilton
(L) or an symmetry group artificially lowered (*) as described
the text. The full symmetry case compares well with the Wign
surmise ~smooth solid curve! whereas the lower-symmetry cas
compares well with the distribution of two GOE spectra mixed w
relative weights 0.72 and 0.28~dotted smooth curve!.
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FIG. 8. The probability distributionP(s) of the level spacingss averaged over the largest symmetry-invariant subspaces for the Hub
model with four electrons on squareL3L lattices. To the left is shownP(s) as a function of lattice sizeL at medium-coupling strength. Th
data representL54, 5, and 6 forU/t510.0. To the right is shownP(s) as a function of coupling strength at fixed low filling. The da
representU/t50.1, 10, and 1000 forL55. The solid line is the Wigner distribution found for GOE random matrices.
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the special hyperplane reflectionr h with the ordinary diago-
nal reflectionr d . For the full symmetry case a distributio
rather close to the Wigner surmise is found, whereas
level repulsion is partially lost for the low-symmetry cas
and the data fit reasonably well the distribution found
mixing two GOE spectra21 with relative weights 0.72 and
0.28. This makes sense since by lowering the symm
group artificially, spectra from the independent tr
symmetry-invariant subspaces are being mixed. For the m
severe symmetry reduction where the pseudospin is a
gether neglected and the space group is generated on
$tx ,ty%, we find the level spacing distribution to be the Po
son ~exponential! distribution ~not shown in the figure!.

B. StatisticsP„S…, S2
„l…, and D3„l… of the Hubbard model

In this subsection we present the results of the spec
statistical analysis of the Hubbard model at low filling. W
present only results forL54, 5, and 6 sinceL53 yields too
poor statistics due to its small invariant subspaces. Bes
letting L vary we are also varying the coupling streng
U/t and present results for weak-, intermediate-, and stro
coupling regimes forL55. To improve on the statistics w
have averaged over the largest invariant subspaces.
P(s) the sizesdP of the error bars shown in the figures a
estimated bydPi5CAni /hi , where ni is the number of
points in bini of the associated histogram andhi is the width
of the bin, whileC is the normalization factor rendering
total probability of 1. ForS2(l) andD3(l) the error bars
are estimated by ordinary variances obtained from the va
calculated in the many contiguous intervals of lengthl
throughout the unfolded spectrum.

The results forP(s) are shown in Fig. 8. It is seen that fo
all lattice sizes and for any value of the coupling strength
level spacing distribution is fairly close to the Wigner dist
bution of the GOE; it possesses a pronounced linear le
repulsion for smalls, a peak nears50.8, signaling spectra
rigidity, and a rapid falloff fors.2.

In Fig. 9 is shownS2(l) of the Hubbard model for the
same parameters as forP(s) just mentioned. Whenl is
small the rigidity of the Hubbard spectrum is very close
that of the GOE random matrices, while for largerl a satu-
e
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ration sets in. For all values ofU/t we find the critical value
l* where the departure from the GOE sets in to be roug
2. The precise origin ofl* remains unclear.

Finally, in Fig. 10 are shown the results for the spect
rigidity D3(l). As S2(l) alsoD3(l) displays an excellen
agreement with the GOE forl,l*'2, for all fillings and
for all values ofU/t. The deviations from the GOE beyon
l* are not so marked. The curves lie between the Pois
line and the GOE curve, but rather close to the latter.

It is remarkable how the results for the three statist
studied are fairly independent of the size of the latt
~equivalent to the filling! and of the coupling strength. W
find GOE-like behavior not only for all finite values ofU/t
including those close to the integrableU50 limit, but also
for filling factors as low as 0.06 close to the integrab
single-particle limit. However, as is evident from the beha
ior of especiallyS2(l) at large energy scales, the Hubba
model cannot be modeled exactly by a simple GOE rand
matrix model.

VII. CONCLUSIONS AND DISCUSSION

In this paper the energy level statistics of the Hubba
model for L3L square lattices (L53,4,5,6) at low filling
~four electrons! has been studied numerically for a wid
range of the coupling strength. With great care all kno
symmetries of the model~space, spin, and pseudospin sym
metry! have been taken into account explicitly from the b
ginning of the calculation by projecting into symmetr
invariant subspaces. The details of this group theoret
treatment were presented with special attention to the non
neric case ofL54, where a particular complicated spa
group appears. The resulting reduction of the numerical
agonalization is significant, and the method presented ca
a straightforward manner be extended to larger lattices
higher fillings and thus form the basis of improved numeri
studies of the Hubbard model and related models with
disorder. In particular, this work can be used as a star
point for calculating various spectral functions, for whic
explicit forms of the eigenstates are required. This will
dealt with in forthcoming work.

For all the lattices studied a significant amount of lev
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FIG. 9. The number variance
S2(l) calculated for the same pa
rameters as in Fig. 8. The data a
compared to the results of the ran
dom diagonal matrix ensembl
~Poisson! and the random full ma-
trix ensemble~GOE!, shown as
the straight solid line and the
curved solid line, respectively.
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within each symmetry-invariant subspace remain dege
ated, but except forL54 the ground state is nondegenera
We explained the degenerate states as a consequence
restricted permutation symmetry of the momentum com
nents. These states, all independent ofU, form an integrable
part of the spectrum, and after discarding them we end
with nondegenerate spectra on which the level statist
analysis could be performed.

The intricate structure of the Hubbard spectra necessit
the development of a careful unfolding procedure as a p
paratory step before the level statistical analysis. The pro
dure we arrived at tested favorably in many cases of pa
logical spectra, and it seems to be very robust and applic
in general cases were no other natural unfolding proced
exists.

Finally, we have performed a level statistical analysis
the Hubbard spectra, and we presented results for the l
spacing distributionP(s), the number varianceS2(l), and
the spectral rigidityD3(l). The statistics for the differen
lattice sizes and for a wide range of coupling strengths
essentially the same:P(s) shows good agreement with th
GOE. S2(l) agrees only with the GOE up to th
U/t-independent medium-sized energy scalel*'2 beyond
which a saturation sets in.D3(l) also agrees with the GOE
for l,l* . The deviation from the GOE beyondl* is not so
marked as that forS2(l). The curve falls between that of th
GOE and the Poissonian case, but rather close to the for
We stress that these results were also obtained for very s
coupling strengths approaching the integrable zero-coup
limit. This emphasizes the nonperturbative nature of
model revealed by our analysis: Even the smallest devia
from the integrable limits leads to spectral statistics usu
associated with nonintegrability and quantum chaos, an
r-
.
of a
-

p
al

ed
e-
e-
o-
le
re

f
el

re

er.
all
g
e
n
y
in

this sense the model seems always to be in the stro
coupling limit.

Largely, our results show GOE behavior of the spect
statistics of the typical high-lying excitations of the Hubba
model at low filling. This indicates that at least the incohe
ent part of the electronic spectral functions~related to the
coherent part describing the low-lying electronic excitatio
through sum rules! is out of reach by standard methods. O
the other hand, it should be possible to model this part b
random matrix ansatz. This is in agreement with previo
results of thet-J model near half filling.15 However, the
cause of the deviations from the GOE we found inS2(l)
andD3(l) beyondl* remains an open question. A simila
question has been answered in general for single-particle
tems with mean-level spacingD: In disordered~metallic!
systemsl*D;\/tD , wheretD is the time it takes a particle
to diffuse through the system,34 whereas for pure~ballistic!
systemsl*D;\/t0, wheret0 is the period of the shortes
periodic orbit.35 Results are also beginning to emerge f
disordered interacting lattice systems, wherel* is related to
the ratioU/W between some interaction strengthU and the
disorder-induced single-particle bandwidthW.16,36 For these
systems the deviations from the GOE are due to the pre
ential basis supplied by the given disorder potential. For
ample, the system consisting of two interacting particles i
disorder potential36 could be studied analytically by adding
random diagonal matrix modeling the disorder sing
particle states to a random GOE matrix modeling the int
actions between these states, and it was found thatS2(l)
increased as a power law forl.l* . This behavior is in
contrast to the saturation we found~see Fig. 9!, which looks
more like the result of the ballistic single-particle case.35 It is
perhaps not surprising that such a similarity exists betw
-
re
-
e

FIG. 10. The spectral rigidity
D3(l) calculated for the same pa
rameters as in Fig. 8. The data a
compared to the results of the ran
dom diagonal matrix ensembl
~Poisson! and the random full ma-
trix ensemble~GOE!, shown as
the straight solid line and the
curved solid line, respectively.
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9154 55HENRIK BRUUS AND JEAN-CHRISTIAN ANGLÈS D’AURIAC
the disorder-free chaotic single-particle case and
disorder-free Hubbard model rather than between
strongly correlated systems one with and the other with
disorder. However, exactly what physical mechanism p
duces a preferential basis for the Hubbard model at low
ing is not known, and neither is it known why a simila
mechanism is suppressed for thet-J model near half filling,
where much less pronounced deviations from the GOE
found.15 These questions are topics for future work.
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APPENDIX A: THE IRREDUCIBLE REPRESENTATIONS
OF G4

In Sec. IVA we showed how the groupG4 of the
neighbor-conserving transformation of the 434 lattice is
isomorphic with the point group of the four-dimensional h
percube. In this appendix we determine the structure of
group and we sketch how the irreducible representations
found analytically. The fundamental simplification is the o
servation thatG4 has the structure of a semidirect produ
involving an invariant Abelian subgroup. The theorem
induced representations24 can then be used to find all irreduc
ible representations. The theorem is stated below. The c
dinate set of a corner in the unit hypercube in four dime
sions is given as a 4 bit binary number. Any transformatio
of the hypercube can thus be written as a permutation of
4 bits followed by bit inversion (0↔1) of all, some, or none
of the bits.

In what follows any quadruple (x1 ,x2 ,x3 ,x4) is written in
shorthand notation as (xi). The group of bit permutations i
of course the permutation groupS4 denotedB in the follow-
ing to be consistent with Ref. 24, on which the group the
retical work in this appendix is based. Any elementbPB is
written asb5(bi)5(b1 ,b2 ,b3 ,b4), listing the permutation
of the numbers 1, 2, 3, and 4. The group of bit inversions
denotedA. It is easily seen thatA5Z2^Z2^Z2^Z2, since
bit inversions do or do not take place on each of the 4
positions. Any elementaPA has the form a5(ai)
5(a1 ,a2 ,a3 ,a4), with ai561, where11 means no bit in-
version and21 means bit inversion. Any element ofg
PG4 can be written asg5ab5(aibi) and conversely all
productsabPG4. A contains 16 elements andB contains 24
so thatG4 contains 384 elements. It is readily verified th
A is an Abelian subgroup ofG4. Furthermore,A is an in-
variant subgroup since for;aPA,;bPB: bab21

5b(ai)b
215(ab( i ))bb

215(ab( i ))PA. Finally, the only
common element ofA andB is the identity. We can there
fore conclude thatG4 is a semidirect product of the invarian
Abelian subgroupA with B:

G45AssB5~Z2^Z2^Z2^Z2!ssS4 . ~A1!
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The first step in calculating the irreducible representatio
for G4 is to construct the character tablexq(a) of A. This is
easily found as the product of the character table

for Z2 with itself 4 times. The 16 irreducible representatio
are identified by the indexq5(q1 ,q2 ,q3 ,q4), with qi50 or
1, and theqth characterxq(a) is given by the product of
ai to the powerqi :

xq~a!5)
i51

4

ai
qi . ~A2!

Next step is to pick anyq8 and construct the associated litt
groupB(q8)#B defined as

B~q8![$bPBuxq8~bab21!5xq8~a!, for ;aPA%.
~A3!

The groupB is then written in a coset decomposition aft
B(q8):

B5B~q8!b1%B~q8!b2% •••%B~q8!bM8. ~A4!

For each of theM 8 coset representativesbj an indexqj8 is
determined such that

xq8j5xq8~bjabj
21!, for ;aPA. ~A5!

Note thatb1 is the identity and thatq18 hence equalsq8. The
set orb(q8)5$q18 ,q28 , . . . ,qM8

8 % is called the orbit ofq8.
Now pick a q9 outside orb(q8) and repeat the procedure
This is continued until each of the 16q’s are associated with
an orbit. The last thing to do before constructing the irred
ible representations ofG4 is to find the irreducible represen
tations Dq8p of the little groupB(q8). This is usually a
simple step due to the small size ofB(q8).

The theorem of induced representations24 states that all
irreducible representationsGq8p of the semidirect produc
AssB, A being an invariant Abelian subgroup, are found
follows. ~i! Pick oneq8 from each orbit.~ii ! Construct the
little group B(q8) and its np8 irreducible representation
Dq8p, p51, . . . ,np8 . ~iii ! Find theM 8 coset representative
bjPB, j51, . . . ,M 8, of B with respect toB(q8). ~iv! Then
the matrix elements ofGq8p for elementab are given by

Gq8p~ab!kt, j r

5H xq8~a!@Dq8p~bkbbj
21!# tr if bkbbj

21PB~q8!,

0 if bkbbj
21¹B~q8!.

~A6!

Here we will not give the explicit expressions of the irr
ducible representations ofG4, but rather just briefly sketch
the construction of them and calculate how many there
and what is the dimension of each of them.

First we choseq85(0000). From Eq.~A2! it is easily
seen that x (0000)(a)51 for ;aPA. Hence
x (0000)(bab21)5x (0000)(a) for ;aPA, ;bPB, and ac-
cording to Eq.~A3! we find B(0000)5B. The coset repre-
sentation ofB consists of only one term and the single cos
representativeb1 is the identity. As a consequence we ha
orb(0000)5$(0000)%. Finally, the irreducible representa
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TABLE IV. The character table ofG4 defining the indexR for each of the 20 irreducible representatio
and the indexC for each of the 20 classes. ColumnC50 contains the dimensionl R ranging from 1 to 8 of
the representations.

R\C 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 1

0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 121 21 21 21 21 21 21 21 21
2 1 1 1 1 1 1 1 21 21 21 21 1 1 1 1 21 21 21 21 21
3 1 1 1 1 1 1 1 21 21 21 21 21 21 21 21 1 1 1 1 1
4 2 2 2 2 2 21 21 0 0 0 0 0 0 0 0 1 122 22 22
5 2 2 2 2 2 21 21 0 0 0 0 0 0 0 0 21 21 2 2 2
6 3 3 21 3 21 0 0 1 1 21 1 21 21 1 21 0 0 1 23 23
7 3 3 21 3 21 0 0 21 21 1 21 1 1 21 1 0 0 1 23 23
8 3 3 21 3 21 0 0 21 21 1 21 21 21 1 21 0 0 21 3 3
9 3 3 21 3 21 0 0 1 1 21 1 1 1 21 1 0 0 21 3 3
10 4 24 0 0 0 1 21 22 2 0 0 2 22 0 0 21 1 0 22 2
11 4 24 0 0 0 1 21 2 22 0 0 22 2 0 0 21 1 0 22 2
12 4 24 0 0 0 1 21 2 22 0 0 2 22 0 0 1 21 0 2 22
13 4 24 0 0 0 1 21 22 2 0 0 22 2 0 0 1 21 0 2 22
14 6 6 2 22 22 0 0 0 0 0 0 22 22 0 2 0 0 0 0 0
15 6 6 22 22 2 0 0 22 22 0 2 0 0 0 0 0 0 0 0 0
16 6 6 22 22 2 0 0 2 2 0 22 0 0 0 0 0 0 0 0 0
17 6 6 2 22 22 0 0 0 0 0 0 2 2 022 0 0 0 0 0
18 8 28 0 0 0 21 1 0 0 0 0 0 0 0 0 121 0 24 4
19 8 28 0 0 0 21 1 0 0 0 0 0 0 0 021 1 0 4 24
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f.
tionsD0p of B(0000) are simply those ofB5S4 ~or Td as the
group also is called24!; i.e., there are five differentD0p ma-
trices with dimensions 1, 1, 2, 3, and 3, respectively. Fr
Eq. ~A6! we find that j ,k51 and thus we have found fiv
irreducible representations ofG4 with dimensions 1, 1, 2, 3
and 3 of the formG (0000)p(ab)5x (0000)(a)D0p(b).

Next we chooseq85(1111). We find that, for;a
PA, ;bPB, x (1111)(bab21)5) iab( i )

1 5) jaj5x (1111)(a).
So in analogy withq85(0000) we haveB(1111)5B, and
like before we find five irreducible representations ofG4
with dimensions 1, 1, 2, 3, and 3 of the for
G (1111)p(ab)5x (1111)(a)D0p(b), with the sameD0p matrices
but differentx prefactors as forq85(0000).

We go on with q85(1000). This yields
x (1000)(bab21)5ab(1) which equalsx

(1000)(a) for ;aPA if
and only if b(1)51. ThusB(1000) is the six-element sub
group ofB which leaves the first axis invariant. The cos
decomposition ofB contains four terms with coset represe
tatives that each leaves one of the four axis invariant.
surprisingly we find orb(1000)5$(1000),(0100),(0010),
(0001)%. The little groupB(1000) is isomorphic withC3v
and has thus three irreducible representationsD1p with di-
mensions 1, 1, and 2, respectively. This combined with
fact that indexj ,k in Eq. ~A6! runs over the four coset rep
resentatives means that we have found three more irredu
representationsG (1000)p of G4 with dimensions 4, 4, and 8
and with entries of the form 0,x (1000)D1p, x (0100)D1p,
x (0010)D1p, or x (0001)D1p.

Then we considerq85(0111). The characterxq8 now
gives x (0111)(bab21)5ab(2)ab(3)ab(4) which as above
equalsx (0111)(a) for ;aPA if and only if b(1)51. The rest
of the analysis is similar as the previous ca
t

t

e

ble

:

orb(0111)5$(0111),(1011),(1101),(1110)% andB(1000) is
isomorphic withC3v . We end up with three more irreducibl
representationsG (0111)p of G4 with dimensions 4, 4, and 8
having entries of 0,x (0111)D1p, x (1011)D1p, x (1101)D1p, or
x (1110)D1p.

The last choice forq8 turns out to beq85(0011), and we
obtainx (0011)(bab21)5ab(3)ab(4) , which equalsx (0011)(a)
for ;aPA if and only if b does not mix the pairs~1,2! with
~3,4!. It is easily seen thatB(0011) is a four-element group
isomorphic withZ2^Z2, and thus has 4 one-dimension
irreducible representationsD2p. The coset representation o
B consists of six terms in this case, an
orb(0011)5$(0011),(0101),(0110),(1001),(1010),(1100)%.
At this point we note that all 16 possible values ofq8 now
are a member of an orbit. The six coset representatives c
bined with the 4 one-dimensional irreducible representati
of B(0011) yield through Eq.~A6! four new irreducible rep-
resentations ofG4 each being six dimensional and each ha
ing entries of the form 0, x (1100)D2p, x (1010)D2p,
x (1001)D2p, x (0110)D2p, x (0101)D2p, or x (0011)D2p. In conclu-
sion we see thatG4 has 20 irreducible representations wi
the dimensions listed in the first column of the charac
table shown in Table IV. This result is to be contrasted w
the list of representation dimensions given in Ref. 20, wh
only translations and reflections are taken into account in
analysis of the space group of the 434 lattice. Note espe-
cially the three- and six-dimensional representations fou
here as opposed to dimensions equal powers of 2 in Ref.

APPENDIX B: THE IRREDUCIBLE REPRESENTATIONS
OF G3, G5, AND G6

The irreducible representationsR of the space groups
GL with L53,5,6 can be derived analytically following Re
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TABLE V. The irreducible representationsR of GL for L53, 5, and 6, their corresponding quantum numbers (kx ,ky ,bx ,by ,c), and their
dimensionsl R . The symbol * refers to indefinite reflection quantum numbers.

333 lattice

R 0 1 2 3 4 5 6 7 8
kx 0 0 0 0 0 2p

3
2p

3
2p

3
2p

3

ky 0 0 0 0 0 0 0 2p

3
2p

3

bx 1 –1 1 –1 1 * * * *
by 1 –1 1 –1 –1 1 –1 * *
c 1 1 –1 –1 * * * 1 –1
l R 1 1 1 1 2 4 4 4 4

535 lattice

R 0 1 2 3 4 5 6 7 8 9 10 11 12 13
kx 0 0 0 0 0 2p

5
2p

5
4p

5
4p

5
2p

5
2p

5
4p

5
4p

5
2p

5

ky 0 0 0 0 0 0 0 0 0 2p

5
2p

5
4p

5
4p

5
4p

5

bx 1 –1 1 –1 1 * * * * * * * * *
by 1 –1 1 –1 –1 1 –1 1 –1 * * * * *
c 1 1 –1 –1 * * * * * 1 –1 1 –1 *
l R 1 1 1 1 2 4 4 4 4 4 4 4 4 8

636 lattice

R 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
kx 0 p 0 p 0 p 0 p p 0 p p p p 2p

3
2p

3
p

3
p

3
p

3
p

3
2p

3
2p

3
2p

3
2p

3
p

3
p

3
p

3

ky 0 p 0 p 0 p 0 p 0 0 0 p 0 0 0 0 p p 0 0 p p 2p

3
2p

3
p

3
p

3
2p

3

bx 1 –1 –1 1 1 –1 –1 1 –1 1 1 1 –1 1 * * * * * * * * * * * * *
by 1 –1 –1 1 1 –1 –1 1 1 –1 1 –1 –1 –1 1 –1 –1 1 1 –1 –1 1 * * * * *
c 1 1 1 1 –1 –1 –1 –1 * * * * * * * * * * * * * * 1 –1 1 –1 *
l R 1 1 1 1 1 1 1 1 2 2 2 2 2 2 4 4 4 4 4 4 4 4 4 4 4 4 8
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20. In Table V each of them is specified by the lattice s
L and by its representation quantum numb
(kx ,ky ,bx ,by ,c) related to the translation and reflection o
erators$tx ,ty ,r x ,r y ,r d%, respectively. Furthermore, the d
mensionsl R of the representations are listed.

APPENDIX C: PROJECTION OPERATORS
OF CONTINUOUS SYMMETRIES

There exist several methods for calculating the project
operators corresponding to a continuous symmetry given
a Hermitian operatorÔ; here we think ofÔ as being either
the spin operatorŜ2 or the pseudospin operatorĴ2. In this
appendix we present an algorithm based on successive a
cations ofÔ. Let uf0& be a given normalized state we wa
to project into Ô-symmetry-invariant subspaces. WhenÔ
acts onuf0& a term proportional withuf0& is generated to-
gether with a rest term. The rest term is denotedf 1uf1&, and
it defines a new unit vectoruf1& perpendicular touf0& while
f 1 is a prefactor:

Ôuf0&5^f0uÔuf0&uf0&1 f 1uf1&. ~C1!
e
s

n
y

pli-

If f 150, we are done; if not, we continue by applyingÔ to
uf1& and expand the result onuf0&, uf1&. The rest term is
now denotedf 2uf2&, whereuf2& is a unit vector perpendicu
lar to bothuf0& and uf2& and f 2 is a prefactor:

Ôuf1&5^f0uÔuf1&uf0&1^f1uÔuf1&uf1&1 f 2uf2&.
~C2!

Since we are working in a finite Hilbert space, this proces
guaranteed to yield a zero rest term afterM steps, i.e.,
f M50. The setSÔ(uf0&)5$uf0&,uf1&, . . . ,ufM21&% thus
yields the smallestÔ-invariant subspace containing the sta
ing vectoruf0&. The symmetry operatorÔ is then diagonal-
ized withinSÔ(uf0&), yielding the eigenvaluesvk and eigen-
vectorsuvk&:

Ôuvk&5vkuvk&, with uvk&5 (
i50

M21

ckiuf i&. ~C3!

The projectionP
Ô

vk of uf0& into the Ô-symmetry-invariant

subspace corresponding to the eigenvaluevk is thus simply
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P
Ô

vkuf0&5ck0* uvk&. ~C4!

Based on this equation we find the expressions for the
jections in spin space, Eqs.~11!–~13!, and in pseudospin
space, Eqs.~16!–~21!.

APPENDIX D: SIMULTANEOUS EIGENSTATES

OF T̂ AND Û

In this appendix we present the analytical construction

simultaneous eigenstates ofT̂ andÛ. The existence of thes
states explains the remaining degeneracies in the symm
invariant subspaces, and they~found numerically! are listed

in Table III grouped after theÛ eigenvalueg ~50,1,2 for
four-electron systems! and the spinS. We denote these state

T̂/Û states orucS
g&. A priori, eigenstates ofÛ are most con-

veniently described in real space whereas eigenstatesT̂
are naturally given in momentum space. To require a stat

be a T̂/Û state imposes severe constraints. Below we fi
many of these states analytically. Since in the following
will be using both real space states and momentum sp
states, we will reserve the lettersa, b, c, andd for sites in
real space and the lettersk, q, p, andr for momenta.

We begin from below in Table III by studying two-pa
states, i.e.,g52. In a naive sense, such a state must b
superposition of extremely localized states in real space
correspondingly of very out-spread states in moment
space. This involves superpositions of many states with
ferent wave vectorsk and hence different energies given b
Eq. ~26!. It turns out that to obtain an energy eigenstate s
only states wherek enters together withp2k, where
p5(p,p), can be used since cos(kz)1cos(p2kz)50, and
consequently these states only exist for evenL. We construct
the desired stateucS50

g52& by superposing two-pair states:

ucS50
g52&[(

ab
eip•~a1b!ua,b;a,b&5(

kp
uk,p;p2k,p2p&.

~D1!

From the real space representation it is seen immediately

ÛucS50
g52&52ucS50

g52& and thatP̂S(0)ucS50
g52&5ucS50

g52&, while the
momentum space representation directly yie

T̂ucS50
g52&50ucS50

g52&. In fact, as can be seen in the row

g52 of Table III, this is the onlyT̂/Û state withg52; e.g.,
it is easily seen from Eqs.~11!–~13! that nog52 state can
have S51 or 2. Note howucS50

g52& is independent of the
coupling strengthU, but that its energy isU dependent and
of the formE(U)5E(0)12U.

Having explained theg52 rows of Table III we turn to
theg51 rows. From Eqs.~11!–~13! we find that there exis
no g51 states withS52. To find theg51 states with
S50,1 we construct statesuckq& which manifestly contains
exactly one pair, such thatÛuckq&5uckq&:
o-

f

ry-

to

d
e
ce

a
or

f-

te

at

s

uckq&5(
a

eip•aei [k•b1~q2k!•d]~12db,d!ua,b;a,d&

5(
p

up,k;p2p,q2k&2
1

L2(pr up,r ;p2p,q2r &.

~D2!

Note how the double sum in Eq.~D2! involves allk vectors
but that it only depends onq. To obtainS51 we simply
form antisymmetric combinations of such states:

uckq
2 &5uckq&2uc~q2k!q&

5(
p

~ up,k;p2p,q2k&2up,q2k;p2p,k&).

~D3!

First, we note thatuckq
2 &Þ0 if and only if qÞ2k. Second,

since only permutations of the vectorsk and (q2k) are in-
volved, we find that Ĥuckq

2 &5Euckq
2 &. And third,

P̂S(1)uckq
2 &52uckq

2 &. Thus we have found (2
L2)T̂/Û states

ucS51
g51&. This yields exactly the number of states listed in t

g51/S51 row of Table III:

ucS51
g51&5uckq

2 &. ~D4!

The statesucS50
g51& must be sought among linear combin

tions of uckq
1 & defined as

uckq
1 &5uckq&1uc~q2k!q&

5(
p

@ up,k;p2p,q2k&1up,q2k;p2p,k&]

2
2

L2(pr up,r ;p2p,q2r &. ~D5!

The problem now, however, is that the double sum does
vanish, hence preventing the state of being an energy ei
state. Only upon forming differencesuckq

1 &2uck8q
1 & with k8

Þk can we get rid of it. But the resulting state will only b
an energy eigenstate if(z@cos(k

z)1cos(qz2kz)# equals
(z@cos(k8

z)1cos(qz2k8z)#. This is easily obtained if
k85(qx2kx,ky), since then we are only permuting the m
mentum components.

ucS50
g51&5uckq

1 &2uck8q
1 &. ~D6!

By accident there can also exist other values ofk8 which
fulfill the requirement, and besides combine pairs such
uckq

1 &2uck8q
1 & we can also in some cases combine th

states, 2uckq
1 &2(ucpq

1 &1ucp8q
1 &), or four, (uckq

1 &1uck8q
1 &)

2(ucpq
1 &1ucp8q

1 &), or even more. By a straightforward com
binatorial search we find the number of states listed in
g51/S50 row of Table III, and we have thus identified a
states in theg51 rows, and found them to be independent
U but with an energy dependence of the for
E(U)5E(0)1U.

Finally, we turn to theg50 rows of Table III. First we
note that allS52 states of the systems are found here. T
is easily proved by noting that the states wi
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(S,Sz)5(2,0) are formed by applying the spin-lowering o
eratorS2 ~which commutes withH) twice to states with
(S,Sz)5(2,2). But the latter states cannot contain any d
bly occupied sites since that would yield a lower than ma
mal value ofSz . Clearly, these states as well as their en
gies are independent ofU. Then we consider a large class
energy eigenstates withS50,1 andg50, which does not
require the momentum componentp, and which therefore
accounts for degeneracies for any value ofL. Writing
u(kx,ky)&5ukx& ^ uky& we constructg50 statesuf& obeying
Ûuf&50 by symmetrizing one component, say, thex com-
ponent, and lettingP̂S(2) act on the other:

uf&5uk1
x ,k2

x ;k3
x ,k4

x&s^ P̂S~2!uk1
y ,k2

y ;k3
y ,k4

y&,

uk1
x ,k2

x ;k3
x ,k4

x&s[uk1
x ,k2

x ;k3
x ,k4

x&1uk1
x ,k2

x ;k4
x ,k3

x&

1uk2
x ,k1

x ;k3
x ,k4

x&1uk2
x ,k1

x ;k4
x ,k3

x&.

~D7!

Since only momentum permutations enter,uf& is clearly an
energy eigenstate. The proper spin states are found by
standard projections:

ucS5S8
g50 &5P̂S~S8!uf&. ~D8!

Simple combinatorics yields 0, 30, 300, and 1680S50
states and 0, 90, 1050, and 6300S51 states forL53, 4, 5,
and 6, respectively. In analogy with theg51 case many
more T̂/Û states can be constructed forL54 and 6 and
g50 when the momentum vectorp is taken into account
We give one example of a class of such states. For a g
momentum vectork5(kx,ky) we define ford5x,y,xy the
functionspd(k),

px~k!5~kx1p,ky!, py~k!5~kx,ky1p!,

pxy~k!5~kx1p,ky1p!, ~D9!

based on which we introduce two operatorsP̂d
s,s and

P̂d
s̄ ,s :
v

-

-
i-
r-
f

the

en

P̂d
s,suk1 ,k2 ;k3 ,k4&5uk1 ,k2 ;k3 ,k4&

1upd~k1!,pd~k2!;k3 ,k4&

1uk1 ,k2 ;pd~k3!,pd~k4!&

1upd~k1!,pd~k2!;pd~k3!,pd~k4!&,

P̂d
s̄ ,suk1 ,k2 ;k3 ,k4&5upd~k1!,k2 ;pd~k3!,k4&

1upd~k1!,k2 ;k3 ,pd~k4!&

1uk1 ,pd~k2!;pd~k3!,k4&

1uk1 ,pd~k2!;k3 ,pd~k4!&.

~D10!

Direct inspection showsÛ(P̂d
s,s2P̂d

s̄ ,s)uk1 ,k2 ;k3 ,k4&50,
and by enforcing certain constraints on all eight moment
components this state also becomes an energy eigen

with energyE50, while applying the projectorP̂S(S8) renders
the correct spinS5S8:

ucS5S8
g50 &5P̂S~S8!~P̂d

s,s2P̂d
s̄ ,s!uk1 ,k2 ;k3 ,k4&,

with

kn
x5p2kn

y , n51,2,3,4. ~D11!

Finally, we note that for lattices containing the momentu
p/2 as is the case forL54, even moreT̂/Û states can be
constructed, in accordance with Table III. An example of t
can be obtained from Eq.~D11!. If, for example, we let
d5x, then it suffices to enforce the constraintkn

x56p/2
while allowing any value for they components. The result i
energy eigenstates with energyE5(ncos(kn

y).

We conclude that many of theT̂/Û statesucS
g& found

numerically have been constructed analytically, and in agr
ment with the numerical findings all these states are indep
dent of U, while their energies are of the form
E(U)5E(0)1gU. The analytic constructions reveal th
these states are due to a restricted permutation symmetr
the momentum components of states in momentum spac
b

ys.
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