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Abstract. Some main experimental and theoretical aspects of chaos in semiconductor microstric-
tures are reviewed in these lecture notes. The lecture, which is meant for non-specialisis, evolves
from a general introduction to basic concepts of semiconductor microstructiurss, through a presen-
tation of various studies of chaos in these structures, to a more thorough discussion of the specific
topic of hew to probe quantum chaos with deformable semiconductor quantum dots. Only broad
outlines and simplified arguments are used to explain the central ideas.

1. Introduction

The relevance of concepts from the theory of “quantum chaos” to mesoscopic
physics has become increasingly clear as microstricture technology has achieved
controlled fabrication of systems smaller than both the elastic and inclastic seat-
tering length [1]. Quantum chaos is Lthe generally accepted term for properties of a
quantum system associated with classical chaos ar with the classical transition Lo
chaos. ln the most recent high-mobility semiconductor microstructures transport is
ballistic and the dominant scattering mechanism is the reflection of the electrons
at the boundaries of the structure which, depending on the nature of the con-
fining potential, may generate classically chaotic, mixed or integrable dynamics.
Thus they present experiinental possibilitios for the application aml testing of cou-
cepts from the theory of quantum chaos in condensed matter physics. Disordered
mesoscopic systems also are, no doubt, classically chaotic, and recent work has
emphasized the similarity between disordered quantum systems and the hallistie
systeins which have chaotic boundary scattering. In particutar, atl low temperature
both types of systems exhibit sample-specific mesoscopic fluctuations in various
physical properties as a function of external parameters such as magnetic field. The
ballistic systems differ from the disordered ones however in two ways. First, as we
will use the term, a disordered system generates clastic scattering of electrons on
a seale L. which is short compared to typical sample dimensions L. This means
that transport is diffusive on a scale smaller than the system size, and hecause the
diffusion process is dependent on dimensionality, the statistical properties depend
in general on the spatial dimension. Chaotic ballistic systems on the other hand
have no relevant transport length smaller than the systemn size and thus many of
their properties are insensitive to the spatial dimensionality and they are said to
he “quasi-zero-dimensional™, It turns out that this difference leads Lo differences
in the statistical properties of disorderad and chaotic systems in cortain reginies of

*Present address: Niels Bohr Institute, Blegdamsvej 17, DK-2100 Copenhagen &, Denmark
{email: Lruusanbi.dk)



408 Henrik Bruus

energy and temperature [2, 3]. Second, there is reasonable evidence that ballistic
systems may be fabricated with geometries and potential profiles which generate
nearly integrable classical dynamics, thus it becomes worthwhile to consider maod-
els which describe the transition to chaos and not just fully chaotic dynamies.

There are two main approaches to the quantum theory of chaotic systems. 'The
approach through semiclassical quantum mechanics pioneered by Gutzwiller [4],
and the approach based on the random matrix theory [5] first applied to quantum
chaos by Bohigas, Clannoni and Schmit {6]. The former approach makes a more
direct connection to the classical mechanics and has recently had major successes
recently in atomic physics. However the confining potential in the microstructures
studied exporimentally is seldom known well enough to justify theoretical work
relving on speeific classical orbits. Instead, either a wholly statistical approach,
or a combination of semniclassical and statistical ideas have been applied to quan-
tum chaos in mesoscopic systems. Three measured physical effects which have
been proposed as manifestations of quantun chaos In Mesoscopic Transport are;
1) The resistance fluctuations in GaAs quantum wires coupled strongly te an
eleetron cavity [L, 7, 8, 9]. 2) The weak localization effect in the same system
[9, 10]. 3) The finctnations in the Coulomhb blockade conductance peaks [11, 12]
i quantumn dots weakly coupled to leads [L3, 14, 15, 16, 17]. The electron cavily
conductance fluctuations have heen described by a combination of statistical and
semiclassical theory, and most recently certain properties have been derived fram
random-matrix theory [18, 191, whereas the Coulomb blockade peak fluetuations
in quantum dots have been completely described statistically, using only random-
matrix theory. The quantum dot conduction experiments are analogous to strongly
resonant scattering In atoms or niuclel for which the properties of a single quasi-
bound state can be probed. In micron-size semiconductor quantum dots at the
typical experimental density it is estimated that the single-particle levelspacing
{or the excitation energy to ihe first excited state) As ~ 0.03 meV ~ 300 mK,
and therefore these systems may be studied in the regime kT < Ae, where indeed
only a single quasi-bound state participates in the resonance.

The paper is organized as follows. In Section 2, a brief overview is given ol the
fahrication of semiconductor microstructures and of the basic transport measure-
ments. We discuss the macroscopic regime at high temperatures (T is helween a2
50 K and room temperature), where the size L of the devices is larger than any
of the microscopic lengths, such as the elastic free mean path L. {the distance
the eloctrons move between two successive elastic scattering events) and the phase
coherence length Ly in short: Ly, L, < L. In this regime the conduction electrons
move diffusively; they behave as classical hilliard balls performing a randem walk
due to the elastic scattering against impurities in the material,

In Seetion 3 the phase coherence length, Ly, ol the electrons is introduced.
Roughly speaking Lg, is the lenglh scale over which the electrons maintain their
yuautum mechanical wave nature (Lheir phase) before losing it in (he scattering
processes., A discussion is then given ol two very important quantum effects in
resistance measurements in the macroscopic regime at low temperatures (T2 1 &
and . < L, < LY: weak Incalizalion and Aharonon- Bohm nseillntinns

In Section 4 the mesoscopic regime is introduced as the regime where the sample
size [ is smaller than or comparable to L, but still larger than L. (L. < L < L),
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The main characteristics of this regime is the appearance of sample spacific random
but still reproducible, resistance fluctuations — the so called universal conductance
Jluectualions.

In Section 5, we move on to the ballistic regime, where ilie sample size becomes
the smallest length scale (L < L, < Lg). This regime is where we expect to find
quantum chaos since the scattering is now dominated by specular reflections of the
walls of the system and because the electrons majntain their quantum mechanical
phase coherence during many bounces inslde the system. Current experimental and
theoretical work on conductance fluctualions and weak localization is discussed.

In Section 6, we study in more detail a specific example of quantum chaos in a
condensed matter system: quantum chaos in a deformable quantum dot. This is the
result of recent work presented here to give the student a flavor of new directions
within the field of quantum chaos in semicondnctor microstructures. Finally, in
Section 7, we present concluding remarks.

2. Device Fabrication and Basic Experiments

To be able to perform studies of quantum chaos in condensed matter systems
it is indispensable to manufacture systems where the conduction electrons have
very long mean free paths. Long mean free paths mean that the electrons can
move over long distances inside the dovice without seallering against impuarities.
The best and the most widely used system today to obtain this situation is the
Gads/Gag . Al As heterostructure in which the motion of the conduction clec-
trons is confined to a 2-dimensional plane near the interface between the GaAs and
the Gaj—AlgAs interface, The reduction of dimensionality frem 3 to 2 reduces the
offect of scattering significantly. For example the (low temperature) clastic mean
free path L. in 3D GaAs is of the order 0.1 pm , whereas it can be as high as
10 pom in Lhe 2D electron gas ol the heterostructure.

2.1. Tne GaAs/GA; AL, AS IETEROSTRUCTURE

The first GaAs/Ga;_, Al As heterostructure was created in 1979 and the existence
of a 2-dimensional electron gas (2DEG) in it was demonstrated [20]. Since then
the 2DFCGs has played a central role in the investigation of quantumn effects in
electron transport, e.g. the lractional quantum Hall [21] and the quantization ol
conductance {22] was discovered in 2DEGs in GaAs-based heterostructures,

The GaAs/Gaj_;Al, As heterostrueture can be fabricated by using molecular
beam epitaxy. On top of a conventionally grown (GaAs substrate the heterostruc-
ture is grown atomic layer by atomic layer in an altra high vacuum chamnber. Beams
of various molecules cach containing either Ga, Al, or As is directed towards the
substrate which, in order to obtain the most uniform and perfect crystal, is rotating
and kept at an elevated temperature {(several hundred degrees centigrade) during
growth, The growth rate is about one atomic layer per second and it is possible to
change the chemical composition abruptly {from one layer to the next. The GaAs
erystal and the Gaj_ Al As crystal (where a fraction @, typically 30 %, of the
(va atoms are substituted with Al atoms) have the same crystal structure {the
zine-blende structure} and almost the same lattice constans (distance hetween the
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atoms). Therefore, it is possible to grow very stable helerostruciures without any
significant mechanical strain at the interface. The two crystals are both semicon-
ductors. That means that at very low temperatures almost all electrons have left
the conduction band and gone down to the valence hand leaving the system in
an insulating state. To ensure that a sufficient number of conduction electrons
are present even at the lowest temperatures, a part of the Ga,_, Al As erystal is
doped with Si atoms. Bach of these atoms can give off one electron to the con-
duction band (hence their name: donors) and the crystal therefore remains able
to conduct electrical currents at low temperatures. A crucial feature which allows
very long mean free paths is the placement of the Si donors relatively far away
from the intetface where the clectrons move around. By growing a layer {the so
called spacer layer) of pure Gaj_,Al,As typically 10 nm thick immediately after
the interface, and only thereafter starting to (lopn with 5i, the resulting potential
from the donors at the position of the 2DEG is very smooth and scattering due to
the ionized donors is minimal. A typical heterostructure containing a 2DEG 65 nm
below the surface is shown in Tab, 1,

I 10 nm thick  Cap layer GaAs:Si N+ doped (2 x 10%45i/m?) |
| 35 nm thick  denor layer  GagraAlgsAs:iSi N+ doped (2 x 10281 /m) |
| 15 nm thick  spacer laver  GagraAlp 2sAs undoped |
‘ I pm buffer layer  (GaAs P unintentionally doped |
‘ 630 pm substrate GaAs (LEC) undoped |

Tab. 1. A typical GaAs/(Gaj_; Al;As heterestructure, The mean [ree path at 4 K is 10 pm, ile
clectron density 5 4.2x10'° m™2, aund the mubility (an often quoted gure of merit) is 100 T,
A 2-dimensional electron gas is formed in the undeped (GaAs layer close to the undoped GaAlAs
layer.

The 2DEG is formed beeauae the conduction electrons in (aj—zAl,As have a
higher energy than in GaAs in spite of the similarity of the erystal strictures.
The electrons are therefore transferred to the GaAs. However, since the positively
charged Si donors, from where the electrous originated, are immobile and remain
in the Ga;_,Al As crystal, the electrons in the GaAs crystal are hound close to
the interface by clectrostatic forces. The effective potential experienced by the
electrons in the direction perpendicular to the interface (the z direction) is shown
In Tig. 1. It is seen that the electrons move in a very narrow triangular polential
well only about 10 nm wide. This is only 100 times the diameter of the Hydrogen
atom. Conscquently a large size-quantization is present. It turns out thal the
energy difforence Fy — Iy between the eloctron state with zero nodes in the = part
of the wave function {(s) and one node ((;) is about 10 meV corresponding to a
thermal energy at 100 K. 1t is therefore clear that at temperatures near 1 5 all

electrons will be in the lowest (zero node) state and stay there. Any change of the
electronic wave functions in the z direction is prohibited and hence no movement
in Lhat direction is possible. In the plane parallel to the interface the electrons can
move freely. It is in this sense we talk about a 2-dimensional system or 2DEG.
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Fig. 1. The band structure in ihe = direction perpendicular to the interface between the GaAlAs
layer {z < 0) and the GaAs layer (z > 0) In a GaAs heterojunceion. The elfective triangular
potential well giving rise to the 2DEG 18 shown. The Fermi energy is indicated by the horizontal
straight full line inside the well. The ground stale energy Eo is indicated by the long dashed
straight line, and the corresponding (envelope) wave function (o is given by the dashed curve.
Likewise the first exited state ¢; and its energy 1 is indicated by the dotted lines. More details
are given 1 [3U].

2.2, RESISTANCE MEASUREMENTS ON A 2ZDECG

To he able to make well defined measurements of the electrical transport properties
of the 2DEG we want to make a device which, for example, allows us to measure
the longitudinal resistance as well as the Hall resistance. A generic device, a so
called IIall bar, for such measurements is shown in Fig, 2. Let Vi; = j4; — g5 denote
the voltage difference measured between contact @ and j and let fy denote the
cutrent Jowing between contact k and {. Resistances are defined as:
- Yy
Riu = T (1)
ki
An example of a longitndinal resistance could then be Haa 14 and of a Iiall resistance
135,14 1t is In anticipation of the discussion of the phenomena in the mesoscopic
regime that we deal with resistances and specification of measurement procedures
rather than the notion of intrinsic resistivities.
To fabricate a Hall bar in a 2DEG some processing of the heterostucture is
needed. This is sketched in Fig, 3. First a mask containing the geometrical shape of
the device is made by photographic techniques. Next a layer of photoresist is spun



412 Henrik Bruus

He Hg
Fig. 2. A typical Iall bar gecmetry used in transport measurements. Contacts | and 4 are

often used as current centacts while contacts 2, 3, 5, and 6 are used as voltage probes. The wavy
lines mark the borderline between the sample containing a perfect 2DEG and the ohmie contacts
(known as electron reservoirs) each with a electro-chemical potential .

aver the heterojunction. The mask is then placed an top of the hoterojunction and
the system is exposed to ultra-violet light. Where the mask protects the photoresist
nothing happens, but where the resist is exposed to the UV-light it breaks down.
After tllumination the heterojunction is placed in a chemical active liquid which
dissolves and removes the irradiated part of the resist. Finally, the heterojunction is
placed in an acid which etches away the unprotected part of the surface hut leaves
the structure underneath the undissolved resist intact. As a result we are left with
a heterojunction containing a 2DEC shaped as the original phuto mask. Using
this method the smallest features that can be made is of the order of 1 g . Finer
details down to the size of about, 0.01 um can be made by using & sharply focused
electron beam instead of UV-light to wrife on the resist. This finer seale will be of
crucial importance in Section 5, where we want to study effects in the mesoscopic
regime. To make electrical contacts to the 2DEG one last process step is NOCOSSATY.
Through a new mask metal atoms (mostly Au, Ge, and Ni) are evaporated to the
six contact areas shown in Iig. 2. After evaporation the mask is removed and the
whole device is placed in an oven where it is heated until enocugh metal atoms have
dilfused from the surface down to make contact 1o the 2DEG. It is now possible
to attach wires to the metal pads on the surface enabling reslstanee measurements

of the 2DEG.

3. Quantum Effects in Low Temperature Resistance Measureiuents

In the standard Drude theory of the resistance 12 in a 2DEG of width W, length L,
and electron density n, all temperature dependence is contained in the scallering
time 7 {the typical time hetween scattering processes).
Lom 1

Wone2 v

At high temperatures the scattering is dominated by inclastic processes {electron-
phonon scattering). As the temperature is lowered the lattice vibrations die out

kR = {2)
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Fig. 3. A sketch of the four process steps in the device fabrication. (a) Photoresist is exposed to
UV-light outside the mask. {b} Exposed photo resist is removed. (¢) Etehing of the heterajunction
where it is not protected by resist. (d) Removal of the resist,

leading to a decrease in the resistance. The decrease stops al low temperature,
where the temperature independent elastic scattering processes involving station-
ary lattice defects dominate. This scattering is characterized by the elastical mean
free path L. which the electrons travel between scattering events. In macroscopic
samplos the mean free path L, < L, W and we are in the diffusive regime illustrated

in Fig. 4a.

(a) \_ )

A .

~

~

Fig. 4. [Mustration of a sample of length L and widil: W in the (a) vhe diflusive regime where
Lo < Lo & LW and (b) the ballistic regime where L W € Ly, L.

At low temperatures the 2DEG is deseribed in terms of a degenerate Fermi gas.
Therefore, the only electrons responsible for the clectrical transport properties are
the ones with energies £ near the Fermi energy <p cotresponding to a velocity op,
the Fermi velocity. On length scales larger than L. the diffusion s governed by
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the classical diffusion cquation which conncets gradients in the electron density »
with the flow of particles j (equal to nv):

j=-DVn, {3)
where £)1s the diffusion constant. Differences dn in the density are typically decay-
ing an the length scale L., while typical currents are of the order du vy, Hence,

we have the following estimate dnvr & Dén/L, so that 1) = vpl.. An accurate
caleulation yiclds

1
D= —vpl.. (4)
2
Now, imagine that at time ¢+ — 0 a number of electrons N are placed at the point
N T [ o . tt H L On : . " R
rg. Solving (3] using tho continuily equation, V.j = — 55 yields the [ollowing
solution for the resulting density, n(r,{), as a function of space and time:
N (r— ro)? -
nirt) = ——exp| —————1. ¥
0 = 5ehi ‘( 2Di %)

The electrical conductance, (7 = 1/R (the inverse of the resistance), is connected
to the diffusion process through the Einstein relation

fﬁ‘.&m.{) | ()
It L &

where €%/ is the quantum unit of conductance to be encountercd often in the
following.

=

3.1, WEAK LOCALIZATION IN THE DIFFUSIVE REGIME

The Drude theory neglects the quantum mechanical wave nature of the electrons
between scattering events (which themsclves are treated quantum mechanically).
At high temperatures this is an accurate description because electron-electron and
electron-phonon scattering destroys phase coherence of the electron waves on a
length scale Ly (the phase coherenve length) whicl: is much shorter than L. As
the temperature is lowered below ~70 K the plonons becomes unimportant, while
the electron-electron scattering still hreaks the phase coherence significantly down
to ~1 K. Below 4 K, however, L, becomes comparable Lo and even larger than 7.,

[n this regime, an increase in the otherwise constant residual resistance ovenrs. This
effect, known as weak localization [24, 25, 26, 27], is due to quanium interference
effects, and consequently it cannot be treated in the Drude theory.

To understand the effect qualitatively we use the loynman path integral for-
mulation of quantum mechanics. According to this formulation, the probability
P(ry, ;) of going from point ry to point ry is found by taking the ahsolute square
of the sum over all possible paths f leading from ¥y to ry of the probability ampli-
tudes A; of each path. The A;s are complex numbers given by A; = \/Pje's,
where £ is the classical probability for path j and where ¢, is the quantum phase
an electron acquires by traversing path j,

P(ry,ry) = |Z Aj‘z =3 AP+ AAL =Y P+ S PRt
; i=k I '

J iFk
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IMig. 5. A closed loop traversed clockwise, A4, and counterclockwise, A_, by a particle in the
regime where Ly > Lo,

The first term in the result above is just the classical probability for the process,
The second term contains interference helween different paths. Normally these
interferences average Lo zero due to Lhe randomness of the large nunnber of pliases
and due to phase breaking processes. However, in the limit Ly > L. a certain
class of interference does not vanish. If we consider the probability P(ry,r,) of
returning to the starting point vy we nate that a given closed lonp, as ilustrated
in IYig. 5, can be traversed both clockwise, with amplitude A4 and counterclock-
wise, with amplitude A_. Since such a paiv of paths are identical except for the
direction of traversal, the two phases, ¢4 and ¢, are identical and the eross term
VI P_eile=0=1 — P P does not vanish upon averaging. Thus, all closed
loops give rise to a correction to the classical probability of returning to the start-
ing point. This of course alfects the diffusion. A negative correction ¢D 1o the
diffusion constant 7 appears because of Uiie colianced probability fou an electron
Lo reiurn to its point of injection. The relative correction (612) /1) can be estimated
as follows. The probability for one electron to return to within the infinitesimal
area A% of the starting point in time [ is found from (3) by setting N = L. r — rg
and multiplying with ¢*r = k' vpdt = 26/m, ]i,';-i being the width of the wave
packet and vpdf the distance it covers in the time step df. This probability is then
multiplied by the probability (1 — f*_”T) for an electron to scaller at least onee
{enabling it to return) and by the probability (1 — ¢772) for an clectron to stay
phase coherent in the time interval £ Tinally, an integral over thine is performed,

(e

5G 8D Tan e B ( oy
- 7_‘/ dey (L= T T = 1+?). ()
0

m 2wl

The weak localization eltect can be suppressed by an external magnetic field
B, This suppression follows from basic quantum mechanics acrording to which an
electron picks up an extra phase +B5¢/h when it completes clockwise a closed loop
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enclosing the area S, The sign changes under counterclockwise motion. Therefore,
when B Is present the phases of Ay and A_ no longer cancel and interference
beging to play a role. Suppression of the weak localization sets in at a critical
magnetic field B, when the phase difference 28,58¢/# for the time-reversed paths
enclosing the typical area § = L2 is of the order 1. We therefore find B, ~ hjelL?.
This effoct gives a method to measure Ly: measure conductance as a function of B
and estimate the field B. at which the weak localization hegins to be suppressed.

‘Then calculate Lg ~ \/hi/eB,.

3.2, AHARONOV-BOHM OSCILLATIONS WITH PERIOD &i/2e

A more dramatic dependence on B is seen in 3D-cylinders. In the famous experi-
ment by Sharvin and Sharvin [28] a 1 em long Li cylinder of radius 1.1 pm and wall
thickness 0.12 pm was placed in a magnetic field paraliel to its axis. Electrons were
injected at one end and extracted at the other end. In this sample Ly is 2.3 pm.
Hence, phase coherence all the way along the cylinder is impossible. However,
phase coherence around the eylinder is possible [20]. Because of the geometry all
loops around the cylinder enclose almost the same area Sy and the same magnetic
flux. Hence, superimpaosed on the general suppression of the weak localization clear
oscillations are seen with a period AB determined by the requirement that the
phase difference 2AB5ye/h between clockwise and anticlockwise moving electrons
is 27, i.e. AB = h/2e5n. Often magnetic flux ¢ (= B x area) is used as variable
instead of B. Thus the flux period A® = ABSy; = h/2e, and hence the namne
fef2¢-vscillutions,

4, Mesoscopic Physics

We now move on to study the regime where L. < LW < Ly, which allows
the electrons to stay phase coherent through the entire sample. A typical path
still looks like the one shown in Fig. 4a, but now the quantum phases are main-
tained along the path. The pronounced wave-like behavior of the electrons makes
it natural to discuss electron transport in the wave guide picture of Landauer
and Biittiker [30, 31]. The electrons are emitted into the system from complesely
phase randomizing electron reservoirs (the contacts) through perfect leads which
does not reflect any electron waves and which allows an identification of electronic
wave mades denoted o and/or 3 in the following. As an example « could be the
number of nodes in the transverse wave function. Conductance, ¢ = 1/R, is then
calculated as

G = 2e? 2 9
i= 5 3 Jtasl?, 9)
t Q,H

where t,z3 is the quantum mechanical transmission probability amplitude from the
incoming mode « to the outgoing mode 3 (the factor 2 is due to spin).
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4.1. QQUANTIZATION OF THR CONDUCTANCE

A simple but very important example of how this picture works is the quantum
point contact experiment [22]. A 2DEG shaped as a simple straight transmission
line is partly blocked at the midpoint by a saddle shaped potential generated by
negatively charged metal gates coming in from the sides on the top of the structure.
At large negative bias the opening is very narrow blocking all transmission through
the device, and (' is zero. As the bias in brought up towards zero the opening
widens, the energy bound in the transverse motion lowers, and at some point the
mode with zero nodes in the transverse wave function have enough longitudinal
energy to pass the saddle shaped constriction. The transmission for going from the
0-node made on the left to the 0-mode mode on the right becomes 1 and 7 jumps
from zero to 2e?/h. Tor slightly higher gate voltages the l-node mode can also
pass and (7 jumps to 4e2/h, and so forth. This explains the beautiful staircase-like
graph of the conductance plotted versus gate voltage seen experimentally.

4.2, UUNIVERSAL CONDUCTANCE FLUCTUATIONS

In the mesescopic regime the conductance fluctuates significantly between indi-
vidual members of an ensemble of macroscopically identical samples and as a
function of magnetic field or Fermi energy. The ergodic hypothesis [32] states that
averages over external parameters are the samne as sample averages. The phase
coherence is maintained on the length scale Ly which is comparable to or larger
than the device size L, so in contrast to the classical case, where the root-mean-
square fluctuations 87 typically is emaller than the average conductance (& by
a factor \/L./L < 1, 8G remains non-negligible here. In fact, it was discovered
a decade ago [32, 33, 34] that in the mesoscopic regime the conductance fluctua-
tions are universal, the variance of the fluctuations are ronghly #2/h independent
of L and {G) and only weakly dependent on geometry. A simple argument due
to Lee [35] gives an insight to the effect. Instead of using transmission proba-
bilities |to5l? as in (9), the reflection probabilities |rys|? are used. The r’s and
t’s are connected by current conservation: 3. [{{* = N — 3 |r|%, where N is the
number of channels. The variance of the conductance can now be expressed as
Var(G) = (e2/h)*Var(3 |r|%) = (e*/h}2N?Var(|r|?), where we have used that the
s are independent of each other (this is not true for the t’s which is why the r’s
are studied). To calculate Var(|r|?) = {|r|*) — (Ir|%)? we introduce the amplitude A;
for path ¢ through the system. This is a meaningful concept due to the global phase
roherence in the mesoscopic regime. We find {|r|%) = S(A*()A() A* ()AL ~
2X (AP AR 28i50) = 2{|r|H)2. As a result we have Var(|r|2) = {|r|?)?. Since
(Ir[*) = 1/N we finally obtain §G' = /Var(@) = e%/h. Another result of the anal-
ysis is that the fluctuation pattern can he campletely rearranged by moving just
a few impurities, This reflects the global phase coherence in the system.

4.3. AHARONOV-BOHM OSCILLATIONS WITH PERIOD h/e

The last example of a mesoscopic effect is the Aharonov-Bohm effect in a flat
mesoscopic gold ring in a perpendicular magnetic field measured by Washburn et
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al. [36]. The diameter of the ring is 825 nm in diameter, while the thickness is less
than 100 nm. In contrast to the long cylinder mentioned in Section 3.2 the electrons
mairtain their phase coherence globally in the flat ring. As a result, interference
between electron waves propagating through the left and the right side of the ring
occurs. The ininimal area thus enclosed by phase coherent electrons is equal Lo Lhe
area .S enclosed by the ring. Like in the cylinder we can also consider electrons
going all the way round clockwise and counterclockwise resulting in an effective
arca af 25 In the flat ring we therefore observe hath L/e and L/2e oseillations.

5. Quantum Chaos in Open Microstructures

The last regiime to be treated in Lhis overview is the ballistic regime characlerized
by the inequalities LW < Lo, Lg (see Fig. 4b). In this regime, single eclectrons
move coherently through the sample and the dominant scatlering is collision with
the walls of the sample.

5.1, THE BALLISTIC REGIME

Some of the first direct experimental proaf of the existence ol the ballistic regime
came from studies of the Hall effect in narrow wires. [n mesoscopic Hall bars it was
found that the Hall effect was quenched in narrow wires. The electrons shoot past
the llall probes without deflection and ne Hall voltage is measured. By changing
the sharp 90° corners of the Hall bar to soft slanted corners it is even possible to
reverse the sign of the Hall voltage, The electrons are deflected slightly upward by
the magnetic field but a majority hits the slanted wall and are reflected into the
opposite voltage probe, A [all voltage with the “wrong” sign results [37].

5.2, QUANTUM CHAOTIC SCATTERING

The existence of hallistic transport in semiconductor microstructures at low tem-
peratures makes it possible to use these systems for testing theoretical concepts
developed in the study of quantwn chiaotic scaltering. A generic exanple ol how
such experimments are performed is the experiment by Marcus et al. [38]. A metal
gate structure is evaporated on the surface of a heterojunction. When the gate
is charged negatively the resulling confinement potential expels the 2DEG away
from the gate region and the 2DEG is forced into the shape of the gate. In this
exainple two devices are made, one shaped as a circle and the other as a stadium,
The circular device ought to generate integrable motion and the stadium chaotic
motion. Several guestions can be addressed in such systems, e.g. how do the sta-
tistical properties of the conductance in the chaotic shape differ from those in the
integrable (or nearly integrable} shape? And can the quantum interference elfects
ke related to properties of the corresponding classical system? In the following we
will provide partial answers to these questions.

As before a good starting point for calculating the conductance is {9). The
transmission coefficients t,5 is given by

tog = —'rih-\/vavﬁfdy[dy’@"??l(y’)@éﬁ(y)(v’(y’,y’ﬁp), (10}
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where vy (vg) and ¢, (y") (¢5(y)} are the longitudinal velocity and transverse
wave function for the mode o (8). (7 is the retarded Green’s funection hetween
points (x,y) on the left lead and (2/,y") on the right lead. Exact (numerical)
calculations of {4 can be performed using the recursive GGreen’s function technigue
[39]. f\ﬂalyl’i( al results can be obtained by using the semiclassical method [7] where
Gy y,ep) is approxmntod by its semiclassical path-integral expression [4],

T
Z Vi, FXP( (v ?;,Ew)ﬁ'?aus)e (11)

Arod N .
Gy yer) = th W
where S is the action mtegml dlong the clussical path s, at energy g4, [y =
(veos 8 /m)™" x[(08/0y),], # and & are the incoming and outgoing angles, and
g is the Maslov index. After inserting (11) in {10) ¢ L. can be calculated using the
method of steepest descent, The rosult is a sum over classical paths through the
systom over a quantity depending only on elassical parameters.

5.3, CONDUCTANCE FLUCTUATIONS IN THE BALLISTIC REGIME

Jalabert et al. [7] studied the correlation function C'(AB) = (G (B)dg{B + AB))
of the magnetoconductance for weak fields theoretically and Marcus et ai. [38]
studied it oxperimentaily nsing the devices mentioned in Section 5.2. Here tle
important (nantity is the phase differonce Ag between the phase of the classical
path s at B and the same path at B+ AB: Ag = AS,/h ~ —QAB This allows

us to define a generalized area A given by A¢ = ‘27r/1/_\.B/{h/(, . In the chaotic
case the clectrons sweep out areas like in a random walk. The root-mean-squared
area rw;], which is a purely classical entity, shows up in the distribution P(A) of
arcas: P(A) o< exp(—2ma|A|). This distribution is then used to caleulate the sum
over classical paths mentioned above, and the final result for C{AR) is:

, (0

C'{AB) (0) — -
(I + (ABe/ngh)?)
To compare with experiment we caleulate the Fourier transform Sg(f) of (A
and oblain

So(f) = FICAB)) = S,00) [t + 2ragh/e) flexp(—2reagh/e) f) . {13)
The theoretical S, (f) agrees with experimental one over three orders of magnitude.
Furthermore, the extracted values, 0.87 pin =2 and 0.94 pm "2 of ey for two
diflferent 1oall7atluns of the same stadium is in rough agreement with simulations
({) 62 pm T2} and simple analytical work based on escape probabilities (0 T6 pmn

) Finally, the power spectrum of the circle has more weight at higher “areas”
B This Is expected since a particle moving in a circular cavity accumulates
area. linn:\rly in time, A(#) ~ f, whereas in the chaotic case the pracess is diffusive,

A(t} ~ v/t. An enhanced large area content is therefore expected for the cirele.

(12)

5.4. WEAK LOCALIZATION IN TIHE BALLISTIC REGIME

A second example of quantum chaos versus integrability in microstructures is the
weak localization. In Section 3.1, we discussed how weak localization occurred
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in the diffusive regime due to coherent backscattering frowm hnmpuritics. A similar
effect occurs in the ballistic regime due to coherent backscattering from the walls.
A semiclassical treatment analogous to the one mentioned above yields the fol-
lowing result for the ensemble averaged weak localization correction (318} to the
resistance:

(BRY o 1/[1 4 (28e/al)?], chaotic shapes, {14)
(04t x —|B], integrahle shapes . (15)

In the diffusive regime where L; < L the weak localizalion is an average over
many cells of size Ly x Ly and therefore the effect is clear, In the ballistic regime
no such (self-} average is performed since Lg; > L, and the effect is sherefore
masked by the universal conductance fluctuations. It is not possible to enlarge
the sample to obtain sell-averaging because then we are no longer in the hallistic
regime. To oblain an ullzullbigluﬂlﬁWt"d,k locatization offect it is therelore necessary
to make a real sample average. Such an experiment has recently been carried out
by Chang et al. [40]. One array of 48 stadinm shaped devices and another array
of AR circular shaped devices made it possible to measure the resistance of many
devices in parallel. The universal conductance fluctuations are averaged out and
the weak localization line shape is very clear. The experimental results exhibit a
good agreement with {14) ane (15},

6. Quantum Chaos in Closed Microstructures: Quantum Dots

In open microstructures many quantum levels, or rather scattering states, play a
role simultaneously. It is also of Interest to study quantuin chaotic systems, where
only oue or a few lovels are important at a given instant. Such systems are closed
mwicrostructures also known as quantum dots.

fi.l. CoULOMB BLOCKADE IN QUANTUM DOTS

The main feature of a quantum dot is the Coulomb blockade phenomenon, Because
ol the smallness of the dat (£ ~ 1 gm} its capacitance is minute ("~ 107" F) and
hence the electrostatic charging encrgy Fo = /207 associaled with one clectron
is relatively large (Ep ~ 0.5 meV ~ § K). At temperatures lower than Fg the
presence of one extra clectron on the dot can effectively block the appearance of
the next. In transport measurements on the guantum dot in the Coutomb blockade
regime i is thus only the last occupied electron state wiich is probead.

One example ol a semiconductor guantum dot is shown in Fig. Ga. The pat-
terned metal gate on top of the GaAs/Ga;_ Al As heterostructure defines a nar-
row channel with two patential harriers. The electrons can mave along the narrow
channel (the left lead), tunnel into the region between the harrlers (the quantum
dot), and then tunnel out again and continue along the chaunel (the right lead).
With the gate voltage V), the electrostatic energy of the system can be thdllﬂm[
In a simple madel of the’ ‘Wstem the an{_,v E of the dot is a quanlzatu funetion ot
the charge @ on the island: £ = QV, + Q*/2C". (), however, is quantized in units
of the clectron char ge —c: Q = —Ne, N being the number of clectrons on the dot,
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(=) (b)

Energy
GaAs N*\/\/
N
AlGaAs N \/
n+ GaAs
substrate NHTTN [
N+

Substrate voltage

[g. 6. (a) Schematic drawing of the device structure, The quantum det is formed hetween the
two barriers in the narrow channel. The density of the 2DE( can be controlled by the aubs
voltage Vy (from [11]). (b} The electrostatic energy of the dot as a function of V,. Only disercte
values of charge on the dot is allowed as marked by the dots. In particular, the energies F(N)
and E{N 4 1) are shown.

riul G

soonly a discrete set of points B{N) on the energy parabola is available for the
system. If one particular value of N brings the system close to the bottom of the
energy parabola, the Coulomb blockade is effective; it takes too much energy to
reach any other state, E{N) < F(N £ 1), whereas if the states N and N + 1 lie
symmetrically around the minimum, the system is at resonance, E(N) = E(N41),
and electrons can flow through the dot. This behavior is sketched in Fig. 6h.

lead

tunnel barrier

tunnel barrier

\__/

Fig. 7. The model studied to explain the fluctiating peak heighte The loads, the tunnel barriers,
and the quantumn dat is shown. The lines inside the dot represent the nodal lines of an eigeustate.
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I a typical experiment, of conductance versus gate voitage a pronounced series
of peaks are seen. Two regular features are noted: First, the peaks are (nearly)
equidistant. This is related to the constant voltage which is required to accom-
modate one extra electron in the dot. Second, all the peaks have the same width
(~ AET). This is becausc the intrinsic widths of the resonances are much swmaller
than the temperature, so thermal broadening dominates. One irregular feature is
seen: the amplitudes of the peaks vary in a random way. In the following we are
going to focus on this phenomenon.

Let us first establish the different energy scales. The largest energy is Fg ~ 5 K.
Then follows the single-particle level spacing Ag ~ 500 mK. It is thus possible Lo
achieve T < Ag so that only one level participates in the resonance. The smallest
encrgy is the level width Iy of a quasi-bound level A inside the quantum dots. The
regime where 'y < kT < Ag < Ey will be denoted the single level regime. Becauze
ET is no longer the smallest energy, we have to generalize the zero-temperature
Landauer-Biittiker formula (9) to finite tetuperature. This is done simply by [olding
with the derivative f’{z} of the Fermi distribution function,

32
= 2 [N o) P (16)
’ o, {3

Al resonance in the single level regime only one level dominates. The sum in
(16) therefore reduces to one term. Furthermare, sinee [y s very small, t]Q 13
described by a very narrow Breit-Wigner resonance. Therefore, f'(g) varies slowly
as compared to [#|? and it can be taken outside the integral, which then resuits in
the well known expression for the total area under a Breit-Wigner resonance,
thus becomes [41] )

2e? B
G = T (=flle)) 22—, 17
A (7
and the amplitude (V"™ for the resonance due to level Ais
, 2¢2 7l AT 2¢ 7l
e = oAb = Se ey, (1)
h 2kT D{F} + I'}) ho2KT

where I" is an average value of the collection of conductance peaks under consid-
eration, and where «, is introduced as a normalized area of the resonance peak A,
From {17) it is evident that the shapes are determined solely by f"(}. lu fact, the
line shapes are so perfect that the true electron temperature can be determined hy
fitting with f'(g) [11]. From (18) it is clear that the fluctuating peak heights must
be understood by analyzing the statistics of I"f\ and T for a collection of peaks.
The main idea is illustrated in Fig. 7: the probability for an electron to tunnel
into the dot at a resonance A is dependent on the amplitude of the cigenfunction
near the barrier. If many nodal lines are present in that region, the amplitude is
small and tunneling {and hence conductance) is suppressed. If only a few or no
nodal lines are present, tunneling is very likely and the conductance is high. The
fluctuations in the peak heights are due to the fluctuations in the wave function
spructures of the individual (quasi-) eigenlevels of the dut, However, these Huctu-
ations are only random if the shape of the dot is irregular. In the following we
therefore study a deformable dot. We rely heavily on [16].
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6.2, DEFINITION OF THE DEFORMABLE DOT

The deformed quantum dot is modeled by billiards defined below. A mathematical-
ly simple way of defining a continuous deformable family of billiards was introduced
by Robnik [42] and Berry and Robnik [43]. It is based on a conformal mapping, of
the unit disk. To make this paper self-contained and Lo facilitate the presentalion
of some new developments of the method we shall briefly describe the technique
Leduw,

c LG NN 5

z = X + iy w = u + iv

Fig. 8. The deformed billiard D is the image of the unit disk € under the mapping w(z), which
is conformal (w'(z) # 0, ¥z £ €) and arca preserving (jl jw'{z)fdz = 7).

As shown in Fig. 8, we study a simply connected domain P with a possibly
irregular boundary 4D in the uwv plane, The interior of the domain is denoted
DAOD. The deformed billiard is defined by the infinitely hard wall potential V{u, v)
satislying

. 0, (u,v) c NP
Viiu, ) = ’ ' . 19
(u,v) {oc, (v, v) & D, (19)

Following Robnik [44] we define the shape of P by a conformal mapping w of
the unit disk C in the «y plane W D iu the ou plane. Parts of the Lrealment are
more conveniently carried out by introducing complex coordinates z = & + iy and
w{z) = u(z) + iv(z). The boundary 4D in the w plane is thus given as the image
w{() of the boundary of the unit disk #C in 1he z plane. Thronshont this work we
study the cubic mapping [43],

. 2 it o3
w(z) = ﬂi‘_f‘__f__ , z e, (20)

V14207 4 3c?
where b, ¢, and & are real parameters chosen such that |w'(z)| > 0 for z € C.
The normalization in {20) ensures that the area of D remains 7 for any value
of the parameters. Two sequences of deformed billiards are show in Fig. 9. The
cubic form of w(z) is the simplest conformal map resulting in a billiard with
no spatial symmetries (see Fig. 9b). Fig. 9a shows even simpler quadratic map
(¢ = 0) with reflection symmetry; Robnik and Berry [45] pointed out that such
spatial symimetries can prevent a magnetic flux from generating the orthogonal to
unitary transition known from random matrix theory [4], hence we maintain the
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more general form althoungh the simple quadratic case is siufficient for many of our
calculations.

c=0 o06=0

b=0.00 b=0.15 b=0.25 b=0.35 b=0.50
b=0.2 ¢=0.2

6=0.00 6=1.00 6=1.50 6=2.00 6=3.14

Fig. 9. Twao sequences, (a) and (b), of billiard shapes as a [unction of changing parameters.
Sequence (a) was studicd by Robnik [42] and sequence (b} by Bruus and Stone {16]. For the very
last shape in each sequence w(z} is In fact not conformal. In both of these extreme cases w'(z) = 0
just at the point = = —|,

G.3. THE CLASSICAL DYNAMICH OF THE DEFORMED DOT

Robnik conducted a thorough study [42] of the clagsical mechanics of a point
mass moving freely in the deformed billiard for the gnadratic case (¢ = 0., see
Fig. 9a}. More recently [46] Hayli et al. have extended his resalts. Thus in contrast
to many previous works on ballistic microstructures in which a discretized version
of the Schrodinger equation has been studied [13, 47, 48], in this case one has
a detailed knowledge of the classical dynamics of the relevant quantum system.
Robnik showed how as a function of b, starting from & = 0, the system evolves
according to the KAM theorem into a mixed phase-space exhibiting soft chaos
and eventually to fully developed chaos. One tool for determining the degree of
chaos was to construct the Poincaré surfaces of section for the bounce map and to
calenlate the I\Ulmogmﬂv entropy {we will define these notions wluw) The last
large istand of stability in the Poincaré section disappears around & = .25 (the
value at which the billiard coases to be cone ave} and Robnik originally conjectured
that the transition to hard chaos occurred at this value [42], However recent work
has shown that very small islands of stability spawned by the bifureation of the
final stalle two-uycle persist up Lo & 55 0,28, bul the precise value of & at which
hard chaos sets in is not known. Recently it has been proved [49] that the quadratic
billiard at & = 0.50 is indeed fully chaotic. In practice, the islands of stability have
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negligible weight for & > 0.25 and the statistical properties of both the classical
and quantum mechanics are consistent with fully developed chaos.

The Poincaré section is constructed by plotting the phase space coordinates of
the particle each time it refiects specularly from the boundary of the billiard. The
Poincaré section is area-preserving if it is constructed using conjugate canonical
variables: a useful set of coordinates for billiards is the are length o, measured from
the origin Lo the point the particle hits the boundary, and the tangential momen-
tum sin(x) al this point (y denotes the angle of incidence) [30]. The surfaces of
section clearly reveal how the deformed billiard gets more chaotic as the delorma-
tion is increased from zero as in Fig. 9a. Many large stable islands exist at the
beginning of the sequence, bui as lhe deformation grows they shrink and vanish
sequentially until one obtains the featureless surface of section plot. In contrast,
il one starts from a deformed billiard as in Fig. 9b and progresses through [urther
deformations, all the surface of section plots are featureless indicating that all of
these billiards are close to hard chaos. '
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Fig. 0. The Kolmogorov entropy plutied versus the normalized deformation parameter X for
the two deformation sequences (a) and (b) in Fig. 9. In {a) X =b, and in (b) X =4.

—
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Quantitative information on the degree of chaos can be ohtained by ealculating
the Lyapunov exponent and tle related Kolmogorov entropy [42, 51]. Following
Benettin [51], the Lyapunov exponent can be estimated numerically by examining
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twn frajectaries starting at the phase space points £8 = {ad, sin(xg)} and €& =

{cb.sin(x4)} separated by a small distance dy = |€5—£81 a2 10710, After one hounce

the two points £ and ffl’ are reached, the distance dy between therm is calculated,

and the reduction 1'atio ‘,{'31 = dy/dy Is formed. A nnw rescaled point £ is defined

by &% = &4 + 3 . Starting from £} and a sccond bounce is calculated,
¥ <1 1+ 1 £ 1

and from £ and 52 a new reduction ratio 3y and a new rescaled point £3* s formed

and the process is repeated. The Lyvapunov exponent A wlich generally depends
on the initial phasge space point can then be calculated as

Alad, sin(yH)) = "nl-i-?go( Zhl ’j) (213

L

where ¢, is the traversal time or the total length in real space of the total n-bounce
orbit. From the local measure of chaoticity constituted by A, which depends on
the initial points in phase space, a global measure, the Kolmogorov entropy I, can
be formed:

/ d(sin(x fd(rA{(T sind y)) , (22)

where £ is the perimmeter of the billiard and (g,sin(x)} is the initial phase space
point. The Kolmogorov entropy h provides a quantitative measure of the degree of
chaos 1n the billiard. In Fig. 10 & is shown for 1he deformation seqences of ] ig. 0.
Note how /i grows moenotonically for the sequence (a), while it is [airly constant
and significantly higger for the sequence {b). Thus, the Kolmogorov entropy caleu-
lations Indicate that the deformation sequenee Fig. 9b is “more chaotic” than the
quadratic billiard even at b = 0.50, where it is known to be fully chaotic. Of course
the K-entropy is essentially an average property of the phase-space and does not
allow us to exclude the existence of some very small regions of stability in the
sequence, Fig. 9b,

6.4. QUANTUM MECHANICS OF THE DEFORMED BILLIARD

Iollowing Berry and Robnik [43], one can caleulate the quantum states of a single
particle moving in the interior of the deformed billiard given by (20). The billiard
ia threaded by an Aharonov-Rohm flux tube of strength a®g through the origin
of the uv plane. Here @ is the flux quantum h/e and v iz a dimensionless real
number, Choosing the gauge

_ o ﬂ af _ l oz N
Al ) = EE‘I’"(av"a_u’O) T = sl (23)
the Schrodinger equation in w coordinates,
E}“(—ihv,u + eA(w)) U (w) = BEY(w), (24)
n

becomes the following in the polar coordinates {r, #) of the zy plane:

12¢v

2 o
ViU(r,8) - ——dg‘l’( #) — Z—B—‘l’(r,ﬂ) Jw' (v P (r, 0) = 0, {25)
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where now the energy £ is given in unlts of sz/‘znlhl,? and lengths in units of 12, 12
being the radius of the circle C. The spectrum of the Hamiltonian is periodic in o
with peried 1. Except for the two values o = 0, 1/2 for which a real nondiagonal
representation ol the Hamiltonian can be found, the Hamiltonian is a full complex
Hermitian operator. lence, in terms of random matrix theory [5] Gaussian Unitary
Ensemble (GUE)} statistics is expected for the level spacing for all v except for
values close 1o 0 and 1/2 at which Gaussian Orthogonal Ensemble (GOIS) statistics
Is anticipated. When focusing on the GUE case we choose o = 1/4 to stay as far
away as possible from the GOT values.

Thus, using the fact that the deformed hilliard iz obtained by a conformal map
of the unit disk, we may replace the original problem on the irregular domain 7% by
an equivalent. problem on the unit disk moving under a rather simple “potential”
proportional to |w’{re)|2. In the simplest eases of Dirichlet or Newmann boundary
conditions (denoted DBC and NBC, respectively) the boundary conditions of the
equivalent problem are identical to those on the original domain. Since a convenient
hasis which satisfies these boundary conditions is available (products of Dessel
functions, J,{yr), and exponentials, exp(ilf}) {25) may be expressed as a linear
equation in that (infinite) basis which alter truncation may be solved numerically.
Typically in this study we trancate (25) to the subspace of the 1000 lowest energy
Bessel solutions. The dependence of this linear equation on the shape parameters
b, e and & can he factared ont allowing a very efieient nnmerieal method of salution
as the shape is varied. To discuss physical properties relating to isolated quantum
dots it s reasonable to consider this model with Dirichlet boundary conditions;
however, we are interested in fluctuation propertics related to conductance, In this
case the deformed dot must be coupled to leads (typically through tunnel barriers)
and more general boundary conditions must be imposed to describe its scatlering
FOSONANCES,

Therefore, we have to abandon the DBC which are relevant only for closed
systems. A partially open system will require not just houndary conditions but also
matching conditions for the solutions inside and outside, Such matching conditions
can he expressed in terms of any basis set for the region D which does not cause
the wave function to vanish identically {as DBC do). The mathematically simplest
alternative choice is Neumann boundary conditions (NBC) for which the normal
derivative and hence the particle current vanishes everywhere on the houndary,

n-Vi¥(w) = 0, w € dP, (26)

where n is the outward pointing normal of the boundary at the point w. For a
complete treatment of the quantum mechanics of this problem as well as for a
more realistic choice of boundary conditions see [16].

Although the change from DBC to NBC leads to relatively minor changes in the
method of solution, the relation between the quantum mechanics and the elassical
mechanics studied in Section 6.3 becomes less clear since it is natural to associate
hard walls in the classical problem with 1IBC in the quantum problem. Thus, it
is of some interest to see if the relation between classical chaos and RMT is inde-
pendent of this change in the boundary conditions of the quantum problem. The
histograms of the level spacing distributions for the NBC case are calculated and
v-tests for the GOE and GUE level statistics are performed. The result is shown
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IFig. 11, The x* test for the deformation sequence showu in Fig. 9b in the case of NBC and with
an AB-lux of 2@, The solid line (#) is the test for GUL statistics while the dashed line (o) is
for GHOF statistics. The horizontal line is the (logarithm of the) mean value 1/2 around which
a suceessful v2 —test ought to fluctuate. Note the rather wide crossover region between the two
statistics near the symmetry point § = 0.

in Fig. 11, where it is seen that the level spacing distributions are well described by
CUE statisties, except near the special values of & — 0, 1/2. We observe that the
crossover region between GOE and (GUE statistics near the § = 0 is quite wide,
This might be due to the fact that we are not very deep into the semiclassical
regime. Nonetheless the results overall indicate that the correspondence between
classical chaos and RMT behavior for the spacing distribution is independent of
the boundary conditions.

6.5, STATISTICS OF COULOMD DLOCKADE CONDUCTION PRAKS

Fluctuations in the spectrum of quantum dots are not yet easily accessible exper-
imentally. The most striking fluctuation effect evident in the experimental data
[11, 12, 15] are fluctuations in the peak height of Coulomb blockade resonances.
These fluctuations reflect properties of the quasi-bound states (level-width fluctu-
ations) and not of the spectrum. This contrasts with nuclear scattering resonances
in which both spectral and level-widih fTuctuations are equally accessible. The
reason for this difference [13, 15] is that the quantum dot resonances correspond
to the ground state energy of the system with ¥, N + [, N+ 2, ... electrons and
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thus include the charging energy 2/ associated with the addition of a particle,
since this charging energy is approximately constant and is typically an order of
magnitude larger than the single-particle exeitation energy, Ac {or more precise-
ly the energy to the first excited state for fixed N) the observed resonances arc
equally-spaced to a good approximation. In addition, typically &7 3 1" (the mean
level-width at zero temperature} so the resonances are thermally-broadened to a
width ~ kT and only their amplitude reflects the level-width fluctuations. The
amplitede floctualions become maximal when &7 < Ag and only the ground-stale
contributes to the resonance. In recent experiments [L1, 15] Az ~ 0.5 K so that this
single-level regime is accessible. The crossover between multiple-level and single-
level tnnmeling leads ta unusual and finctuating temperature-dependences for the
resonatces until AT <€ Az, as was first understood by Meir et al. [52]. In carlier
work [13, 14, 13] we have developed a detailed theory of the amplitude luctiations
in the sinple-level regime assuming that RMT describes the quasi-bound eigenstate
fluctuations. Numerical tests of the theory agreed well for the GOFE case but not
as well for the GUE case [13], and were performed for a disordered model which
was assumed to generate chaotic classical dynamics. Here we extend and improve
these numerical tests by using the conformal billiard model treated above.,

o L T T ]
4 (a) - 4 (b) A
5 5 1 g ]
ol 2 - AR -
1- _ 1 ]
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Fig. 12, Predicted disiribution of peak amplitudes ¢ in the presence (a) and in the ahsence (b} of
time-reversal symmetry, compared to the numerically generated amplitude distribution obtained
with the shape parameters b= =0.2 and § = 7/3.

As bofore, we mode! the quantum dot as a delormed hilliard accensible by
tunneling from leads as shown in Fig. 7. We neglect electron-eleciron interactions
[or the following reasons. First, they will add a charging energy which is irrelevant
to the level-width fluctuations. Second, although the quasi-bound levels in the
presence of electron-electron interactions will surely differ from those in its absence,
we do not expect this difference to change their statistical properties (af least in the
chaotic case). This concept underlies the universality of RMT and is supported by
experimental and theoretical work in nuclear scattering. For example complicated
shell-model caleulations including the residual nuclear interaction lead o specira
which exhibit RMT statistics [63]. The fact that RMT statistics arise in disordered
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or chaotic non-interacting quantum Hamiltonlans by no means implies that they
occur only when interactions are nogligible.

As in nuclear physics [54], one may relate the seattering resonance area oy of
{1%) to the cigenstates s of the dot in iselation using Romatrix theary We skip
the details here (see [13, 14, 15, 16]) and just state the result that the tununel
amplitude v at the resonance X is proportional to an overlap integral (known
as the reduced width 5} between the wave functions in the lead and inside the
quantum dot along that part of the perimeter where the tunneling takes place,

W /2

Vv P j 5 d'-']m Y("]m]J’A(EBuT]m) = \/}?/\"5,’\M - (27)

Here Py is the barrier penetration factor, £, denotes the direction parallel to lead
m, and 5 the perpendicular one, Y (1) is the transverse wave function in the leads
(wh;( h have width W}, and £, is the position of the inner edge of tunnel barrier
nt. In the experiments two leads are present, the right lead » and the left lead I

The associated level widths [-11;- are related to the reduced widths 377 as

Y = | o= kg (2%)
m

The level width will fluctuate from tevel to level (and for different tead positions for
a given level) due to the complicated spatial structure of the chaotic eigenfunetions
2y {see Fig. 7). For example, if there happens to be a nodal line near the position of
a given load then the width associated with that lovel and that lead will fluctuate
down. (Note that in the absence of spatial symmetry another lead attached a [ew
wavnlﬁngthh away will give a completely uncorrelated width for the same level).

As mentioned in Section 6.1, the level-widths are related to the experimentally
observed peak amplitudes through {1‘4) for the peak height G''®*. In this discussion
we will only treat the case of equal barriers on each side of the (lot and hence Py(I7)
will be the same on the left and nght This means that the average decay widths
w the left and right are equal, '=r"= P/Z and we can express ey as

{
LU
Fr +17) (!%Iulw};l?)
The statistics of the peak amplitude fluctuations then follow from those of the
reduced partial widths [33]? using (18) and (29).

Apsuming that random matrix theory works well in the chaotic regime, one can

derive [13] from (29} the probability density P, () of peak areas where v = 2 for
the orthogonal case and » = 4 for the unitary case. One finds

Pala) = \f2/mae™™, (30)
Py(a) = 4a[Ko(20) + K1{20)] 72, (31)
where K,, are the modified Bessel functions of the second kind. 7, and 7y are

plotted in Fig. 12 where they are compared to numerical data obtained by evalu-
ating «v in (29) for the 300 lowest wave functions of the conformal model for NBC

vy o= {29)
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in both the GO and the GUE case. The time-reversal (TR} symmelry-breaking
needed to study the GUE case is achieved by adding an AB-flux of one quarter
of a flux quantum. In contrast 1o the results in [13], we find excellent agreement
between random-matrix theory and numerical calculation in both the GOL and
the GULI case. Note the substantial suppression of small peak amplitudes caused
by breaking time-reversal symmetry. This reduces substantially tle variance of re,
from (30) and (31) one finds Aad/AaZ = 32/45 ~ 0.71. For the first experimental
measurements of peak height distributions P(«) see [55, 56].

The effect of a TR-symmetry breaking magnetic field on the distribution and its
morments provides perhaps the simplest experimental test of our theory. However,
if the suppression of the amplitude fluctuations due to time-reversal svimmetry
breaking is to be cleanly observable, then the mmagnetic field necessary to induce
the GOE-GUE transition must be small compared to that needed for Landau level
[ormation. Landau level formation strongly suppresses the Quctuations [37]; the
classical analogue of this effect is the suppression of chaocs by the formation of
stable skipping orbits [58]. We estimate the magnetic field scale for TR-symmetry
breaking by adapting an argument first put forward (to our knowledge} by Berry
and Rebnik [43]. TR-symmetry is broken first not by the dynamie effect of the field
but by its effect on the phase of the wave functions (essentially the Aharonov-Bohi
effect}. Therefore, in estimating the TR-symmetry breaking scale we may neglect
the dynamic effect of the field entirely. Gutzwiller’s trace formula [4] implies that
structure in the spectrum on the scale of the level spacing As arises from periodic
orbits of period T =~ h/Ae. A magnetic field will change the action (in units of
I:) of such orbits by BA7/(h/e), where Ap is the area enclosed by the periodic
orbit of peried T in the chaotic case. The time-reversed orbit will ul course cuclose
area —Ag and their relative phases will be shifted by the order of unity when
BAp = (])/f) breaking TR-symmetry, Thus the critical field B, for TR-syinmetry
breaking is given by B. ~ (h/c}/Ar and one needs only Lo estimate Ap. Berry
and Robnik [43] treated the case of an A-B flux as above and then evaluated the
mean-squared winding number for such orbits in the chaotic limit. Their results
can be extrapolated to a uniform field simply by assuming that a typical (positive
or negative) area of order A (the area of the dot) s enclosed with cach circuit.
With this modest assumption the TR-symmetry breaking flux

. = B.A ~ [AsVA/Ro (e . (32)

Although in the experiments the dot is not isolated as assumed in this argument,
the condition I' < A¢ ensures that electrons remain in the dot long enough for the
argnment to still apply. The ratio of this field to tho field at which the eyelotron
radius becomes of the order of the radius of the dot scales like N ™34 where N
is the number of electrons; so in dots containing a few hundred eleetrons TR-
symmetry breaking occurs at a field one to two orders of magnitude sinaller than
that neoded for edge-state formation. In the experimental systems of interest this
corresponds to a field of order a few times 10 mT. Thus, the statistical effect of
time-reversal symmetry breaking predicted by our theory should be observable
experimentlally,
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6.6. OPTIMAL EXPERIMENTAL SETUP

To obtain the most direct experimental verification of the theoretical results pre-
sentee here and in earlier work, it is desirable to fabricate a quantum dot with a
variable shape. In current experimental systems only a few tens of Coulomb block-
ade peaks are measured in a given dot and these are superimposed on a significant
hackground which complicates the comparison of the height of widely-separated
peaks. Thus ubtaining reasonable statistics (e.g. roughly one hundred peak anpli
tudes) is very difficult. It is possible to use the magnetic field itself as an external
control parameter causing peak amplitude fluctuations [15}, but this anly allows
one ta eollect statistics for the GUR case,

(2 ON.
BEEE EEEE

S

EEBE BEEEH
+

Pig. 13, A top view of a gated heterostructure. The gate i eplit into twelve taeth. The twa paies
at the ends form quantum peint contacts leading to the surreunding two-dimensional electron gas.
The remaining eight teeth define the shape of the quantion dob. In situation (a} all the interior
gates have the saine vollage. In (b) one gate has a slightly higher voltage and another slightly
lower therehby deferming the dot while maintaining its area. The regions close to the quantin
point contacts are essentially nnaffected by this action,

Therefore, we suggest that an optimal heterostructure [or tests of RMT statis-
tics would consist of a dot formed by multiple tecth-like gales (see Fig. 13}, By
changing the voltages slightly on the inner gates of this structure it should be pos-
sible o realize a whole range of shapes without allecting the region near the quau-
Lum point cantacts defining the tunnel barriers to the surrounding two-dinensional
clectron gas. 1t would then he possible to follow a given peak as a lunction of shape
and ecolleel statistics without the complication of background variation, both in the
presence and absence of a magnetic field. Since the magnetic field would not be
the control parameter it would also be possible to map outl the GOFE to GUE tran-
sition. Lor further experimental and theoretical developments along these lines see
[5G, 59].

7. Concluding Remarks

[n these lectures we have seen the first exampies of experiments in sewmiconduc-
tor microstructures demonstrating that the quantum chaos concepis developed
theoretically are important for understanding transport phenomena in condensed
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matter systems. At this stage the primary cancern has heen to demonstrate the
existence of any effects of chaos in the microstructures. The effects mentioned in
the lectures formn such a demonstration, and we have seen that the combination of
the semiclassical approach and chaos theary has proved useful in the interpretation
of complicated quantum phenomena in the ballistic regime, such as conductance
Huctuations and weak localization. Also, we have seen how chaos concepts have
led to the explanation of the fluctuating peak heights in the Coulomb blockade
oscillations.

After taking these initial steps the microstructure rescarch in the near future
can focus on answering more fundamental questions. For example, the phase coher-
ence length is limited in real experiments. How short can it he without suppressing
chaos effect completely? And what is the effect of the unavoidable loss of phase
coherenee [or long classical paths? Furthermore, so far only single particle chaos
effects have been studied, but it seemns reasonable to believe that the microstruc-
tures afler some refining of the present day experimental technique may serve as
an ideal laboratory for investigating chaos in interacting many particle systems. In
that case, microstructure research may become a source of inspiration for further
development of general chaos theory.
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