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Spectral properties of statistical mechanics models
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Abstract. The full spectrum of transfer matrices of the general eight-vertex model on a square
lattice is obtained by numerical diagonalization. The eigenvalue spacing distribution and the
spectral rigidity are analysed. In non-integrable regimes we have found eigenvalue repulsion
as for the Gaussian orthogonal ensemble in random matrix theory. By contrast, in integrable
regimes we have found eigenvalue independence leading to a Poissonian behaviour, and, for
some points, level clustering. These first examples from classical statistical mechanics suggest
that the conjecture of integrability successfully applied to quantum spin systems also holds for
classical systems.

Since the work of Wigner [1], random matrix theory (RMT) has been applied successfully
in various domains of physics [2]. Recently, several quantum spin Hamiltonians have been
investigated from this point of view. It has been found [3, 4] that one-dimensional systems
for which the Bethe ansatz applies have a level spacing distribution close to a Poissonian
(exponential) distribution,P(s) = exp(−s), whereas if the Bethe ansatz does not apply, the
level spacing distribution is described by the Wigner surmise for the Gaussian orthogonal
ensemble (GOE),P(s) = (π/2)s exp(−πs2/4). Similar results have been found for two-
dimensional systems [5]. This suggests that the GOE describes properlysomeproperties of
the spectrum of complex quantum systems. In this letter we extend the RMT analysis from
quantum spin systems to models of classical statistical mechanics. In particular, we look at
possible consequences of integrability on the spectral properties of the transfer matrices.

At first sight it seems natural to start with the Ising model in two dimensions without
magnetic field as an example of an integrable model, and then to add a magnetic field.
It turns out that the spectrum of transfer matrices of the Ising model for finite size leads
to numerical difficulties as explained below. We then have chosen the case of the general
eight-vertex model on a square lattice (which contains the zero-field Ising model as a special
case) [6]. Moreover, it is known that zero-field eight-vertex transfer matrices commute with
the Hamiltonian of the anisotropic XYZ quantum spin chain for certain relations between
the parameters of the two models [7]. We shall use the notation of [6] to designate the eight
admissible vertices and their respective Boltzmann weightsa, a′, b, b′, c, c′, d, andd ′. We
consider the row-to-row transfer matricesTN to build iteratively a periodic rectangular lattice
by adding rows of lengthN with periodic boundary conditions. Therefore, the partition
function of a periodic rectangle ofn rows ofN sites isZn,N = Tr(T n

N). Note that there can
be different expressions for the matrixTN , but all these expressions have the same value
of the trace of thenth power for anyn, and, therefore, they can be deduced from each
other by a similarity transformation; the spectrum is indeed an intrinsic quantity which does
not depend on any particular choice of the transfer matrix. To perform the usual statistical
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analysis of the spectrum we need to have real eigenvalues. However, in general, this is not
the case and we will restrict ourselves to cases where the transfer matrix is symmetric. It is
well known that the eight-vertex model can be mapped onto an anisotropic Ising model on
a square lattice with diagonal interactions and four spin interactions around each plaquette.
We again use the notations of [6] and introduce the five coupling constantsJh, Jv, J , J ′,
andJ ′′. The transfer matrix of the spin model can be chosen symmetric ifJ = J ′. In terms
of the Boltzmann weights of the transfer matrix it requires only thatc = d = c′ = d ′ (c = c′

andd = d ′ is not a restriction). This condition is verified for models without electrical field
(i.e. whena = a′ and b = b′) and also for models with a field. So we are able to build
symmetric transfer matrices for integrable cases witha = a′, b = b′, andc = c′ = d = d ′,
as well as for non-integrable cases witha 6= a′, b 6= b′, andc = c′ = d = d ′.

Before presenting our results, we briefly recall some features of the RMT analysis, which
is a statistical analysis of the eigenvalues of a given matrix regarded as an ordered set. First,
one has to sort the eigenvalues according to the symmetry of the corresponding eigenstate. In
contrast to quantum spin systems, transfer matrices possesa priori no continuous symmetry
(as e.g. the SU(2) spin symmetry), but only space symmetries. For row-to-row transfer
matrices, these are given by the automorphy group of a single row (and not of the full
lattice). This group is the set of permutationsg of sites such thatg(i) and g(j) are
neighbours if and only ifi and j are neighbours. To eachg acting on the set of vertices
one can easily associate a linear operatorĝ acting in the configuration space. Obviously
ĝ and TN commute. It is then possible to construct a set of projectors onto invariant
subspaces ofTN . This amounts to block-diagonalizingTN . This is not only a useful way of
lowering the size of the matrices which have to be diagonalized, but also a useful manner
to sort the eigenvalues. The automorphy group of the periodic ring of lengthN is the
dihedral groupDN generated by a translation and a reflection. Elementary group theoretical
analysis can be performed to build the ((N/2) + 3 if N is even, or(N − 1)/2 + 2 if N is
odd) projectors onto the invariant subspaces. The transfer matrix of the zero-field model
is also invariant under the reversal of all arrows of the vertices and another projector has
to be applied. Second, to find universal behaviour within each invariant subspace, one
needs to ‘rescale’ the eigenvaluesEi in order to have alocal density of eigenvalues equal
to one. This operation is called the ‘unfolding’ and produces the unfolded eigenvalues
εi . The aim is to remove the non-universal or system-specific large-scale variations of
the integrated density of states, and to study only the presumably universal short-scale
fluctuations. It amounts to computing an average integrated density of statesNav(E) which
is the smooth part of the actual integrated density of states. We then haveεi = Nav(Ei).
In the generic case, several methods can be used to computeNav(E): running average
unfolding (local averaging of eigenvalues followed by interpolation), Gaussian unfolding
(Gaussian broadening of each delta peak in the density of states), and Fourier unfolding
(removal of short-scale wavelengths using Fourier transformation).

The simplest quantity one calculates in RMT analysis is the distributionP(s) of the
differences between two consecutive unfolded eigenvaluessi = εi+1 − εi . For integrable
systems a Poissonian distribution is expected, since theεi are expected to be independent.
In contrast, for the simplest non-integrable systems the Wigner surmise is expected. Another
quantity of interest is the spectral rigidity [2]:

13(L) =
〈

1

L
min
a,b

∫ α+L/2

α−L/2
(N(ε) − aε − b)2 dε

〉
α

where 〈. . .〉α denotes an average overα. This quantity measures the deviation from
equal spacing. For a totally rigid spectrum, as that of the harmonic oscillator, one has
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Figure 1. The integrated density of eigenvaluesN(E) (circles) for the casea = 2.5, a′ = 1.6,
b = b′ = 3, c = c′ = d = d ′ = 1/

√
6 for a single symmetry invariant block. The insert shows

how complexN(E) is, even at a very fine scale. The full curve isNav(E).

1osc
3 (L) = 1

12, for an integrable (Poissonian) system one has1Poi
3 (L) = L/15, while for

the Gaussian orthogonal ensemble one has1GOE
3 (L) = (1/π2)(log(L)−0.0687)+O(L−1).

It has been found that the spectral rigidity of quantum spin systems follows1Poi
3 (L) in

the integrable case and1GOE
3 (L) in the non-integrable case. However, in both cases, even

thoughP(s) is in good agreement with RMT, deviations from RMT occur for13(L) at
some system-dependent pointL∗. This stems from the fact that the rigidity13(L) probes
correlations beyond nearest neighbours in contrast toP(s). This is probably why the rigidity
is much more sensitive to the parameters of the unfolding than the spacing distribution.

We have generated transfer matrices for different values of the Boltzmann weights
and linear sizeN = 16 (respectivelyN = 14). This leads to matrix sizes of 65 5362

(respectively, 16 3842). Because of the eight-vertex condition, the transfer matrix couples
only configurations with the numbers of up (or down) arrows having the same parity, so
the matrix trivially separates into two blocks. After projection the matrix splits up into
18 (respectively, 16) symmetry invariant blocks of which the largest has a size of 20622

(respectively, 5942). We have tried several methods of unfolding. The results presented
here are obtained using either a Gaussian unfolding with a local broadening over five
states, or a running average unfolding over ten states. In figure 1 we present a typical
integrated density of eigenvalues together with the averaged curve. The spectrum is seen
to be rather more complex than a usual spectrum of a quantum spin system, and thus the
unfolding has to be performed very carefully. Figure 2 shows the probability distribution
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Figure 2. The eigenvalue spacing distributionP(s) for two row-to-row transfer matrices of
the eight-vertex model withN = 14. The diamonds correspond toa = a′ = 2, b = b′ = 3,
c = c′ = d = d ′ = 1/

√
6: this corresponds to an integrable point in the ordered region of

the phase diagram without electrical field. The plus signs correspond toa = 2.5, a′ = 1.6,
b = b′ = 3, c = c′ = d = d ′ = 1/

√
6. The full curve is the Poissonian distribution while the

broken curve is the Wigner surmise.

of the eigenvalue spacings averaged over all representations for two representative sets
of Boltzmann weights. The diamonds correspond to a zero-field case witha = a′ = 2,
b = b′ = 3, andc = c′ = d = d ′ = 1/

√
6. This point lies in an ordered region of the

phase diagram, and the transfer matrix has eigenvectors of the Bethe ansatz form. The
spacing distribution is close to the Poissonian distribution. The plus signs on the same
figure correspond to the casea = 2.5, a′ = 1.6, b = b′ = 3, andc = c′ = d = d ′ = 1/

√
6.

This point is in a region of parameter space where the Bethe ansatz does not apply. The
spacing distribution is close to the Wigner surmise. In particular, the level repulsion is
clearly seen.

To test further the idea that integrability leads to a Poisson law and non-integrability
leads to the Wigner surmise we have also calculated the spectrum of transfer matrices for
some particular points satisfying the free-fermion conditionaa′ + bb′ = cc′ + dd ′ [8]. In
this case the results are less clear. In figure 3 we have chosen a free-fermion point within
the generally non-integrable region where an electrical field is present. The Boltzmann
weights area = 0.8, a′ = 1/a, b = b′ = √

2c2 − 1, andc = c′ = d = d ′ = 1/1.1.
The spacing distribution is close neither to the Poissonian distribution nor to the Wigner
surmise. In particular, there is a peak ats = 0 indicating level clustering. We have found
the same phenomenon for the pure two-dimensional Ising model which can be mapped onto
an eight-vertex model satisfying the free-fermion condition. This behaviour is usually found
together with a very involved density of eigenvalues and leads to numerical difficulties in
the unfolding. A possible explanation of the peak ats = 0 could be that the free-fermion
model is a trivial non-generic model as, for example, the Hubbard model at zero Coulomb
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Figure 3. The eigenvalue spacing distributionP(s) for a point satisfying the free-fermion
condition. The Boltzmann weights area = 0.8, a′ = 1/a, b = b′ = √

2c2 − 1, and
c = c′ = d = d ′ = 1/1.1. Note the peak nears = 0 and the Poissonian tail fors > 1.
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Figure 4. The spectral rigidity13(L) for the same cases as in figure 2.

repulsion. However, for some other values of the Boltzmann weights also obeying the free-
fermion condition, the spacing distribution is much closer to the Poissonian distribution.
This suggests as another possible explanation the existence of quasi-degeneracy leading to
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a Shnirelman peak at the origin [9] for this specific set of Boltzmann weights. This will be
studied in detail in a forthcoming publication. From the above results we conjecture that the
spacing distribution of eigenvalues of non-integrable models is close to the Wigner surmise
corresponding to level repulsion, while for integrable models there is no level repulsion. In
integrable systems there is level independence leading to a Poissonian spacing distribution,
but with a tendency to level attraction in some cases.

To go further in the RMT analysis, we present in figure 4 the spectral rigidity13(L) for
the same points in parameter space corresponding to integrability and to non-integrability as
in figure 2. The two limiting cases corresponding to the Poissonian distributed eigenvalues
(full curve) and to GOE distributed eigenvalues (broken curve) are also shown. For the
integrable point the agreement between the numerical data and the expected rigidity is good
up to a valueL ≈ 5. For larger values ofL a saturation occurs showing the limitation
of the model of independent eigenvalues. For the non-integrable case the departure of the
rigidity from the expected behaviour appears atL ≈ 2, indicating that the RMT is only
valid at short scales. Such behaviour has already been seen in quantum spin systems [5].
We stress that these numerical results depend much more on the unfolding than the results
concerning the spacing distribution.

In summary, we have numerically calculated the spectrum of transfer matrices of
the two-dimensional eight-vertex model for various parameters. After having sorted and
unfolded the spectrum we have computed the eigenvalue spacing distribution and the spectral
rigidity averaged over all representations. To our knowledge this is the first RMT analysis
of transfer matrices of models in classical statistical mechanics. We have found that the
non-integrable cases are well described at short scales by the Gaussian orthogonal ensemble,
while in the integrable cases the eigenvalues are mostly independent. We speculate that this
is a general result.

HM and J-CAd’A would like to thank JM Maillard for many discussions concerning
integrability of vertex models. HB is supported by the European Commission under grant
No ERBFMBICT 950414.
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