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We propose the autocorrelator of conductance peak heights as a signature of the underlying chaotic dynam-
ics in quantum dots in the Coulomb blockade regime. This correlation function is directly accessible to
experiments and its decay width contains interesting information about the underlying electron dynamics.
Analytical results are derived in the framework of random matrix theory in the regime of broken time-reversal
symmetry. The final expression, upon rescaling, becomes independent of the details of the system. For the
situation when the external parameter is a variable magnetic field, the system-dependent, nonuniversal field
scaling factor is obtained by a semiclassical approach. The validity of our findings is confirmed by a compari-
son with results of an exact numerical diagonalization of the conformal billiard threaded by a magnetic flux
line.

I. INTRODUCTION

During the last five years the fabrication of ballistic
two-dimensional electron gas microstructures in GaAs/
Ga12xAl xAs heterostructures has opened up a new field: the
study of quantum manifestations of classical chaos in con-
densed matter systems.1 The first theoretical discussion2 of
the so-called quantum chaos in microstructures dealt with
open systems, i.e., cavities on the micrometer scale or
smaller connected to the external world by leads that admit a
continuous flow of electrons. Several successful experiments
followed.3–7 Nowadays the theoretical study of quantum
chaos is also well developed for closed microstructures,
known as quantum dots.8 These are cavities coupled to the
external leads by tunnel barriers that prevent a continuous
flow of electrons and make the electric charge inside the dot
quantized. The striking characteristic of quantum dots is the
appearance of very sharp peaks in the conductance as a func-
tion of the gate voltage. These peaks are roughly equidistant
due to the strong charging effect, but their heights vary ran-
domly by an order of magnitude or more. The general inter-
est in this phenomenon, combined with the existence of in-
teresting experimental data on quantum chaos for closed
systems,9 motivated several theoretical studies.10–14 These
works proposed universal conductance peak distributions for
quantum dots in the Coulomb blockade regime as finger-
prints of the underlying chaotic dynamics. Similar predic-
tions for open systems11,15 have been difficult to observe
experimentally16 because of the strong influence of
dephasing.17

The initial experiments on Coulomb blockade peak
heights in quantum dots8 have paved the way for the first
convincing measurements of statistical distributions of peak
heights.16,18,19However, the full distribution of the conduc-
tance peaks is not a trivial quantity to measure. Since each

peak sequence is not very long, good statistics demands great
experimental effort. One possible solution is a true ensemble
averaging, which requires many different samples. In Ref. 12
it was suggested that one could obtain such an average from
a single device by changing its shapein situ using external
electrostatic potentials. This difficult procedure has now been
tested experimentally in open20 and closed systems.19 An-
other seemingly simpler solution is to generate more statis-
tics by varying an applied magnetic field~taking care to mea-
sure at B-field steps larger than the conductance
autocorrelation widthdBc).

16,18

In order to test more thoroughly quantum manifestations
of classical chaos in quantum dots in the tunneling regime
we propose a different quantity to be investigated: the para-
metric conductance peak autocorrelation function. Because it
is not difficult to cover a parametric range which extends
over several autocorrelation lengths, correlation functions
need a small number of peaks and should be easy to obtain
experimentally. Moreover, correlators of a fixed eigenstate
are also of theoretical interest. Analytical calculations using
random matrix theory beyond a perturbative approach seem
to be very challenging. In addition, the nonuniversal scaling
contains interesting information about the underlying classi-
cal dynamics. To put the parametric dependence in contact
with physical quantities and develop a satisfactory theoreti-
cal treatment of nonuniversal scaling factors, one has to in-
voke semiclassical arguments. In this sense the study of the
autocorrelator of conductance peaks is an example where
semiclassical and random matrix theories complement each
other in the understanding of mesoscopic phenomena.

The first step towards the description of the main features
of chaos in quantum dots is to consider the problem of elec-
trons moving in a cavity. We assume that the Coulomb inter-
action within the cavity can be taken into account in a self-
consistent way, yielding noninteracting quasiparticles. As a
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result of extensive studies of two-dimensional~2D! dynami-
cal systems, one has learned that when the classical motion
in the cavity is hyperbolic, the quantum spectrum and the
wave functions exhibit certain universal features.21 Through-
out this paper we shall consider a statistical approach which
is valid for chaotic systems and also works fairly well for
systems whose phase space is predominantly chaotic.22

The paper is organized as follows. In Sec. II we present
our analytical and numerical treatment based on random ma-
trix theory ~RMT!. We concentrate on the case of broken
time-reversal symmetry~TR!, but also show numerical re-
sults for the TR preserved case~spin-orbit interactions are
always neglected!. In Sec. III we study a dynamical model to
illustrate our findings. There we conjecture that the semiclas-
sical periodic orbit theory can be used to estimate the typical
magnetic field scale of any correlator of a quantum dot in a
realistic situation. We conclude in Sec. IV with a discussion
on how the presented results are robust with respect to
dephasing effects and on possible experimental realizations.
Several more technical details are left to the Appendixes.

II. STOCHASTIC APPROACH

One of the basic tools to investigate the conductance in
mesoscopic devices is the Landauer-Bu¨ttiker formula.23,24

For a two-lead geometry, where leads are denoted byL ~left!
andR ~right!, the conductanceG is given by

G5
2e2

h (
ab

uSab
LR~EF ,f!u2, ~2.1!

where the sum runs over the channels$a% on the leadL and
the channels$b% on the leadR. The scattering matrix
S(E,f) connects right and left channels and is evaluated at
the energyE and magnetic fluxf. The factor of 2 is due to
spin degeneracy.

In the case of quantum dots in the tunneling regime this
formula becomes particularly simple, since theSmatrix can
be written as

Sab~E,f!5Sab
0 ~E,f!2 i(

n

gangbn

E2«n1 iGn/2
1O~^G&/D!,

~2.2!

where the matrix elementsgan give the probability ampli-
tude of a state in channela to couple to the resonancen in
the dot. The total decay width is given byGn5(cugcnu2,
where the sum is taken over all open channelsc. We shall
assume that the contribution of direct processes is very small
and neglect the off-resonance termS0. Equation~2.2! is a
very good approximation to theS matrix when the average
decay width^G& is much smaller than the mean spacing
between resonant statesD. This is indeed the case for the
isolated resonances observed in quantum dot experiments.
~Hereafter we useD to denote the level spacing caused
solely by single-particle states within the cavity, as opposed
to the spacing between conductance peaks observed in the
experiments.! When the condition̂G&/D!1 is not met, uni-
tarity corrections to Eq.~2.2! become important and they
demand a different parametrization of theSmatrix ~see, for
example, Ref. 25!.

The matrix elements in Eq.~2.2! can be obtained by in-
voking the R-matrix formalism.26 Such an approach was
originally proposed in the study of nuclear resonance scatter-
ing and has more recently been successfully applied in the
context of mesoscopic physics.10,27The partial decay ampli-
tudegcn is given by

gcn5A \2

2mE dsxc* ~r!cn~r!, ~2.3!

wherecn is the eigenfunction of the resonancen inside the
dot with the appropriate boundary condition andxc is the
wave function in the channelc at energy«n . The integration
is done over the contact region between lead and cavity. A
useful quantity for the forthcoming discussion is the partial
decay width, defined asGcn5ugcnu2. We remark that Eq.
~2.3!, as it stands, does not contain barrier penetration fac-
tors. Throughout this paper we will assume that penetration
factors are channel independent and therefore will influence
only the average decay widtĥG&, but not its distribution.
This approximation is certainly valid in the case of a single
open channel in each lead, the case for which we specialize
our analytical and numerical results. When the constrictions
connecting leads to the cavity are smaller than one electron
wavelength but the cross section in the leads is not, strong
correlations among partial decay amplitudes at a fixed reso-
nance exist.13,14For this general situation it is still possible to
incorporate different penetration factors and the effect of cor-
relations into our results, although we do not believe that the
final expressions could be cast in a simple analytical form.
Nevertheless, one would need to obtain all parameters either
from the experiment, or from a satisfactory dynamical model
that comprises both cavity and leads.

Finite-temperature averaging caused by the rounding of
the Fermi distribution can be done straightforwardly. In the
limit Gcn!kT,D the conductance peak corresponding to an
on-resonancemeasurement is given by28,29

G̃n5
2e2

h S p

2kTDgn with gn5
GLnGRn

GLn1GRn
, ~2.4!

whereGL(R)n is the decay width for the resonancen into
open channels in theL(R) lead. In other words,
GL(R)n5(cPL(R)Gcn . Equation~2.4! does not take into ac-
count thermal activation effects. However, one should have
in mind that in the tunneling regime very small values of the
partial decay widths may occur relatively close in energy to
large ones. In addition to that, the single-particle spacing
fluctuates and can reach values smaller thanD. As a result,
even at low temperatures~less than 100 mK! a very short
peak may be substantially influenced by neighboring reso-
nances. This effect causes the conductance peak to cross over
to a different regime, where the height becomes proportional
to T rather than 1/T ~even though the inequality
GR,L!kT!D is still approximately satisfied!.30 We will
avoid further consideration of this or any other similar effect
by restricting our analysis to peaks whose heights have ex-
clusively the characteristic 1/T behavior.

In what follows we are going to evaluate the autocorrela-
tor of conductance peak heights in terms of an external pa-
rameterX which acts on the system Hamiltonian.~At this
point we do not need to specifyX, which could be, for in-
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stance, a shape variable or a magnetic flux.! In order to ob-
tain the autocorrelator we use a statistical approach that will
be described in detail in the next subsection. Unfortunately, a
complete analytical solution for this problem is not yet avail-
able and presently seems to be a formidable task. Therefore
our analytical treatment is based on a perturbative expansion
for small values ofX. We resort to numerical diagonaliza-
tions of large random matrices to conjecture the complete
form of the autocorrelator for all other values ofX.

We also derive an exact analytical expression for the joint
probability distribution of conductance peak heights and
their first parametric derivative. This distribution, besides be-
ing of theoretical interest by itself, can also be employed
alternatively in the calculation of the small-X asymptotic
limit of the conductance peak correlator.

Before proceeding, we first present some basic quantities
entering the calculation. Since we are only considering two-
point functions, the knowledge of the partial decay widths at
two parameter space points,X1 andX2 , is required. We will
need to specifyGcn(X2) only up to first-order terms in an
expansion aroundGcn(X1), namely,

Gcn~X2!5Gcn~X1!1XLcn~X1!1O~X2!, ~2.5!

whereX5X22X1 . The coefficientL is given by first-order
perturbation theory in terms of eigenfunctions, eigenvalues,
and matrix elements of the perturbation. Assuming that the
Hamiltonian may be written in the formH(X)5H01XU
and using Eq.~2.3!, we find that

Lcn5 (
mÞn

gcn* gcmUmn1gcngcm* Unm

«n2«m
, ~2.6!

with H0cn(r)5«ncn(r) and all partial decay amplitudes, ei-
genvalues, and matrix elements evaluated atX1 . So far no
statistical assumption has been made.

A. Parametric conductance peak autocorrelation function

The starting point of our discussion of the conductance
peak autocorrelation function is Eq.~2.4!. In this subsection
we shall mainly treat the situation of TR broken by an exter-
nal magnetic field. We identify the magnetic flux with the
previously introduced variableX. In the spirit of RMT,31 the
analysis that follows will lead to a universal curve for the
conductance peak autocorrelation, which is expressed in
terms of a scaledX and the coupling of the dot to the exter-
nal leads, denoted by the parametersaR,L . BothaR,L and the
typical scale ofX are system-specific quantities, depending
on the dot shape, the quality of the dot-lead couplings, and
the Fermi energy. Ideally, the scaling ofX should be ex-
tracted from the experimental resonance~level! velocity
correlator.32 When this information is not available, it is not
straightforward to putX in correspondence with experimen-
tal parameters. To overcome this problem we invoke a dy-
namical system and shall discuss it at length in Sec. III.
Similarly, to obtainaR,L one needs to model specific features
of the tunneling barriers. We avoid this procedure by ex-
pressing our results in terms of the mean decay width^G&,
which then becomes a fitting parameter in comparisons with
experiments.

The autocorrelator of peak heights is defined as

Cg~X![ K gnS X̄2
X

2 DgnS X̄1
X

2 D L
2 K gnS X̄2

X

2 D L K gnS X̄1
X

2 D L , ~2.7!

where ^•••& denotes averages over the resonancesn and
over different values ofX̄, but will later be interpreted as an
average over the Gaussian unitary ensemble~GUE! of ran-
dom Hamiltonians.31 The difficulties involved in the exact
calculation ofCg(X) become clear once we expand the con-
ductance peak height in powers ofX and assume translation
invariance~independence ofX̄),

Cg~X!5 (
n50

`
~21!nX2n

~2n!! K Fdngn~X̄!

dX̄n
G 2L 2^gn~X̄!&2. ~2.8!

~Notice that odd powers disappear since the autocorrelator is
by construction an even function ofX.) As presented in Eq.
~2.8!, the task of finding the complete functional form of
Cg(X) requires not just the knowledge of the second moment
of all derivatives ofgn(X̄), but also the summation of the
Taylor series. Presently we do not know of any other alter-
native method that could lead to thecompleteanalytical form
of Cg(X). An analogous situation is encountered in the cal-
culation of the more commonly studied level velocity
autocorrelator32 ~see the detailed discussion of Ref. 33!. The
smallX asymptotic limit can, however, be evaluated exactly
through standard random matrix methods. Moreover, an ap-
proximate curve for all values ofX can be found through
numerical simulations.

We start with the small-X asymptotics. For this purpose
we keep in Eq.~2.8! only the two lowest-order terms,

Cg~X!5Cg~0!1Cg9~0!
X2

2
1O~X4!, ~2.9!

with

Cg~0!5 K S GRnGLn

GRn1GLn
D 2L 2 K GRnGLn

GRn1GLn
L 2 ~2.10!

and

Cg9~0!52 K S GRnGLn

GRn1GLn
D 2S LRn

GRn
1

LLn

GLn
2

LRn1LLn

GRn1GLn
D 2L .
~2.11!

Now we introduce a statistical model: we assume that due to
shape irregularities and the presence of a magnetic field, the
Hamiltonian can be modeled as a member of the GUE.31

Under this assumption, Cg(0) has already been
obtained.10,12–14 For example, in the simplest case, where
one has two equivalent uncorrelated open channels~one in
each lead!, Cg(0)54^G&2/45. The second-order coefficient
requires a more complex treatment, since Eq.~2.11! involves
not simply eigenfunctions but eigenvalues as well. For
Gaussian ensembles, a great simplification is possible due to
the statistical independence of matrix elements of the Hamil-
tonian. This will allow us to divide the ensemble average
into averages over eigenfunctions and eigenvalues.
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For the sake of simplicity, we will take the matrix ele-
ments ofU as Gaussian distributed,34 with

^Unm&50 and ^UnmUlr&5
s2

N
dnrdml , ~2.12!

wheres is a measure of the perturbation strength andN is
the number of eigenstates~resonances! considered. It imme-
diately follows that

^LL~R!n
2 &U5

2s2

N (
cPL~R!

(
mÞn

ugcmu2ugcnu2

«nm
2 ~2.13!

and

^LRnLLn&U5
s2

N (
cPR,c8PL

(
mÞn

S gcn* gc8ngcmgc8m
*

«nm
2 1c.c.D ,

~2.14!

with «nm5«n2«m . Up to this point the formulation of the
problem is very generic and no restriction has been made
either on the number of open channels or on their transmis-
sion coefficients. A quick inspection of Eqs.~2.13! and~2.14!
indicates that the solution of the most generic case~multi-
channel leads! is possible, but the algebra is very tedious and
intricate. Recent experimental realizations of quantum dots
in the tunneling regime18,19 indicate that one typically has
only one open channelin L andR. Owing to that, we limit
our calculations to the one-channel case.

Carrying out the average overU by using Eqs.~2.13! and
~2.14! to simplify Eq. ~2.11!, we get

Cg9~0!52S 2s2

N D K S GRnGLn

GRn1GLn
D 4(

mÞn

1

«nm
2 FGRm

GRn
3 1

GLm

GLn
3

1S gRn* gLngRmgLm*

GRn
2 GLn

2 1c.c.D G L
$G,«m%

. ~2.15!

As pointed out before, the independence of eigenvalues from
eigenfunctions allows the factorization of the right-hand side
of Eq. ~2.15! into two decoupled averages, namely,

Cg9~0!52S 2s2

N DAGA« . ~2.16!

The first factor is given by

AG5K S GRnGLn

GRn1GLn
D 4FGRm

GRn
3 1

GLm

GLn
3 G L

$GR ,GL%

, ~2.17!

where the average$G% is taken over both leadsL andR and
resonancesn andm with nÞm ~terms with an odd number of
distinct amplitudes drop out!. The second factor is

A«5K (
mÞn

1

«nm
2 L

$«m%

~2.18!

and it involves only an average over the eigenvalues. Since
the lead contacts are typically farther than one wavelength
l apart, the decay widths atR andL are assumed to fluctuate
independently. Hence, the calculation ofAG requires the con-
volution of four x2 distributions with two degrees of

freedom,35 P2(G)5exp(2G/^G&) ~notice that we are consid-
ering a single open channel per contact and identical leads!,
and we obtainAG52^G&2/15.

The eigenvalue average in Eq.~2.18! is more complicated
to carry out and needs some additional assumption. Because
we are going to take the thermodynamic limit (N→`) later
on, effects due to variations in the density of states are neg-
ligible. Consequently, we may place the reference eigenstate
«n at the center of the spectrum and write

A«'
1

r~0! (n51

N K (
mÞn

d~«n!

«nm
2 L

$«m%

, ~2.19!

where r(E)5^(n51
N d(«n2E)& is the average density of

states. Before proceeding to evaluate this quantity in the
RMT framework, let us first discuss an illustrative and ex-
treme situation, the picket fence spectrum with spacingD. In
this limit the averaged sum simplifies to (2/D2)(n51

` n22,
which readily yieldsA«5p2/3D2. Because the Gaussian en-
sembles hypothesis implies fluctuations in the spectrum, the
actual value ofA« for the GUE should be larger but of the
same order of magnitude.

The average over eigenvalues in Eq.~2.19! can be re-
stated as an average over a spectral determinant,

A«5
1

r~0!ZN
E d«1•••d«NexpS 2

N

2l2(
n51

N

«n
2

12(
nÞm

lnu«nmu D (
n51

N

(
mÞn

d~«n!

«nm
2

5
N

r~0!

ZN21

ZN
SN21

N D ~N223!/2

^det~H2! tr~H22!&H ,

~2.20!

whereH is an (N21)3(N21) GUE matrix and the nor-
malization constant is given by31

ZN5E d«1•••d«NexpS 2
N

2l2(
n51

N

«n
212(

nÞm
lnu«nmu D

5~2p!N/2S l2

N D N2/2)
k50

N

k!. ~2.21!

@Notice thatD51/r(0)5l/pN is the mean level spacing at
the center of the spectrum.# In the limit of N@1 Eq. ~2.20!
can be evaluated by the fermionic method36 ~see Appendix A
for details! and one finds that

A«5
2p2

3D2 . ~2.22!

As expected, the actual value ofA« is larger, but still in fair
agreement with the picket fence estimate.

The next step is to rescale the perturbationX to a dimen-
sionless form, in such a way that all system-dependent pa-
rameters are eliminated. One possibility is to use
^(dg/dX)2& as the rescaling parameter. As will become clear
later on, we do not find this procedure very interesting from
the physics viewpoint because this quantity cannot be easily
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calculated given the underlying dynamical system. We rather
follow an idea originally proposed by Szafer, Simons, and
Altshuler: Recall that the perturbation strengths ~the non-
universal scale in the above calculations! also appears in the
level velocity correlatorCv(X),

32,33

Cv~X!5
1

D2 K d«n

dX̄ S X̄2
X

2 D d«n

dX̄ S X̄1
X

2 D L , ~2.23!

when evaluated atX50, namely,

Cv~0!5
^@Unn#2&U

D2 5
s2

ND2 . ~2.24!

The statement implicit in the original works of Refs. 32 and
33 is that the quantityACv(0) sets the scale foranyaveraged
parametric function̂ f (X)&, provided that the system dy-
namics is chaotic in the classical limit. In Sec. III we will
show thatCv(0) can be obtained by semiclassical argu-
ments, once details of the confining geometry of the dot are
known. Therefore, in analogy to their analysis of the level
velocity correlator, we apply the rescalingsx5XACv(0) and
cg(x)5Cg(X)/Cg(0) to arrive at the following universal~di-
mensionless! form:

cg~x!512p2x21O~x4!, ~2.25!

valid for x!1.
To extract the nonperturbative part ofcg(x), as well as its

x@1 asymptotic limit, we relied on a numerical simulation.
We performed a series of exact diagonalizations of random
matrices of the formH(X)5H1cos(X)1H2sin(X), with H1
and H2 denoting two 5003500 matrices drawn from the
GUE. This model for the parametric dependence is rather
convenient for the simulations and later data analysis be-
cause it does not make the level density depend onX, nor
does it cause the eigenvalues ofH(X) to drift with X. It is
helpful to think of @H(X)#kl as the matrix element of the
Hamiltonian in a discrete space representation. As a result,
for the one-channel lead case we may simply equal decay
widths to the renormalized (^G&51) wave function intensi-
ties at a given point,

Gkn5Nucn~k!u2, ~2.26!

wherek is the site number andn the eigenstate label. In this
way, we were able to generate more than 105 different con-
figurations of the two-lead geometry, out of which only
23104 were used~we stress that wave functions taken at
differentn or k are statistically independent when the size of
the matrix is large enough!.

For each realization ofH1 and H2 we variedX in the
interval @0,p/8# and considered only the 100 central eigen-
states in order to avoid having to unfold the spectrum. In
total we have run 50 realizations. The final result is presented
in Fig. 1. For comparison, we have also shown in the inset
the result obtained for the decay width correlator,

CG~X!5 K GknS X̄2
X

2 DGknS X̄1
X

2 D L
2 K GknS X̄2

X

2 D L K GknS X̄1
X

2 D L . ~2.27!

We remark that this correlator is not directly accessible to
experiments in quantum dots~recall that conductance peak
widths are dominated by the thermal rounding of the Fermi
surface!.37 Here we have introduced it with the unique pur-
pose of checking the reliability of the numerical simulations
in the x@1 range. Contrary to the situation forcg(x), both
x!1 and x@1 asymptotic limits of the rescaled
cG(x)5CG(X)/CG(0) can be evaluated analytically. One
finds that~see Appendix B!

cG~x!→H 122p2x2/3 for x!1

1/~px!2 for x@1.
~2.28!

The data obtained from the random matrix simulations indi-
cate that the asymptotic tail ofcg(x) is well described by an
x22 law. In the light of Eq.~2.28!, this is not very surprising:
If one lead were more strongly coupled to the cavity than
the other, say, GR@GL , we would have that
cg(x)5cG(x)1O(GL /GR) and thereforecg(x@1);x22 in
leading order. We cannot rigorously prove, though, that this
asymptotic form is also exact when right and left leads are
identical.

To conclude this subsection, we briefly discuss the univer-
sality class of preserved TR without spin-orbit coupling~the
case when spin-orbit coupling is present, the symplectic en-
semble, will not be discussed since it is not relevant to semi-
conductor heterostructures!. The simplest experimental real-
ization is a measurement of the evolution of conductance
peak heights as a function of shape deformation in the ab-
sence of a magnetic field. The general approach is the same
as above and we assume that the system Hamiltonian can be
modeled as a member of the Gaussian orthogonal ensemble
~GOE!.31 However, thex!1 asymptotics of the conductance
peak correlator is now more difficult to calculate. This is not
a daunting problem because, as seen above, the numerical
results reliably recover the correct behavior of the correlator

FIG. 1. The rescaled correlator of conductance peak heights~s!
obtained from the Hermitian random matrix simulations~unitary
ensemble!. For comparison, the inset also shows the large-x asymp-
totics in the correlator of decay widths (n). The solid lines are the
analytical predictions for the asymptotic behaviors~when known!
and the dashed line corresponds to the fitted curve
cg(x)50.735(px)22. Statistical error bars are too small to be seen.
The arrow indicates the correlation width at half maximum height.
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for small values ofx. Consequently, for the TR-preserved
case we relied entirely on numerical simulations and did not
attempt any analytical calculation. We used the same para-
metric dependence ofH(X), but this time drewH1 andH2
from the GOE. All other steps were identical to the GUE
simulation. The resulting correlation functions~after the
proper rescalings! are shown in Fig. 2. Notice that the large-
x asymptotics of bothcg(x) andcG(x) are well described by
anx22 law, as for the GUE simulations. Here, analogously to
the GUE, we do not know how to prove analytically that this
decay is rigorously true forcg(x); on the other hand, we do
know that this power law decay is indeed exact for
cG(x).

38We emphasize that the most important characteristic
of the TR-preserved, universalcg(x) as compared to the TR-
broken one is the larger decay width. The widths at half
maximum height differ by approximately 20%.

The power spectra of conductance peak height oscilla-
tions @the Fourier transform ofcg(x)# for both GUE and
GOE are shown in Fig. 3. Notice that the behavior is expo-
nential only over a small range ofk values. One then con-
cludes that a Lorentzian can only be used as aroughapproxi-
mation to the exact curves. Besides, a Lorentzian cannot
accommodate simultaneously the small and large asymptotic
limits of cg(x) presented above in either the TR-preserved or
TR-broken case.

B. The joint distribution of conductance peak heights
and their first parametric derivative „unitary ensemble…

In this subsection we evaluate the joint probability distri-
bution

Q~g,h!5 K d„g2gn~ x̄!…dS h2
dgn~ x̄!

dx̄ D L , ~2.29!

where x̄5ACv(0)X̄ and the Hamiltonian belongs to the
GUE. This distribution, although not suitable for direct ex-
perimental investigations, allows one to easily evaluate
higher moments of the conductance peak height and its first

parametric derivative; in particular, one can useQ(g,h) to
obtain the two first coefficients in the expansion of Eq.~2.9!,

Cg~0!5E
0

`

dgE
2`

`

dh g2Q~g,h! ~2.30!

and

Cg9~0!52
1

Cv~0!
E
0

`

dgE
2`

`

dh h2Q~g,h!. ~2.31!

We begin by recalling Eq.~2.6! and introducing the coef-
ficientsLn into Eq. ~2.29!,

Q~g,h!5 K dS g2
GRnGLn

GRn1GLn
D d~h2M n!L , ~2.32!

where

M n5ACv~0! F LR

GRn
1

LL

GLn
2

LR1LL

GRn1GLn
G . ~2.33!

Taking the Fourier transform of Eq.~2.32! with respect to
h, we get

Q̃~g,t !5 K dS g2
GRnGLn

GRn1GLn
Dexp~ i tM n!L . ~2.34!

Following the same assumptions of the previous subsec-
tion, we break up the ensemble average into four partial av-
erages. Recalling Eqs.~2.13! and ~2.14!, we first carry out
the average over the perturbationU:

^exp~ i tM n!&U5 )
mÞn

expS 2
g4t2D2

«nm
2 UgRn* gRm

GRn
2 1

gRn* gLm

GLn
2 U2D .

~2.35!

FIG. 2. The rescaled correlators of conductance peak heights
and decay widths from real random matrix simulations~orthogonal
ensemble!, following the same conventions as Fig. 1. The dashed
line corresponds to the fittingcg(x)51.214(px)22 and the solid
line is the theoretical prediction for thex@1 asymptotics of
cG(x). FIG. 3. The Fourier transform of the correlator of peak heights

for the GUE~s! and GOE (n) ensembles. The dashed line is the
curve f (k)50.125e2k/2.75 representing the Fourier transform of a
Lorentzian fitted to the GUE data.
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Next, we evaluate the average over the decay widths
$gRm ,gLm% for mÞn only,

K expS 2
g4t2D2

«nm
2 UgRn* gRm

GRn
2 1

gLn* gLm

GLn
2 U2D L

$gm%

5F11
g4t2D2^G&

«nm
2 S 1

GRn
3 1

1

GLn
3 D G21

. ~2.36!

At this point, instead of also taking the average over the
remaining decay widths, we consider first the average over
the eigenvalues$«n%, n51, . . . ,N. Here we use the follow-
ing relation, valid in the large-N limit and for«n at the center
of the spectrum:39

K )
mÞn

F11
~kD/2p!2

«nm
2 G21L

$«n%

5B̃~k!, ~2.37!

whereB̃(k) is the Fourier transform of

B~s!5
35114s213s4

12p~11s2!4
. ~2.38!

@The evaluation of the average in Eq.~2.37! requires a
generalization40 of the approach used to derive Eq.~2.22!. A
brief description is given in Appendix C.# After inserting
~2.37! into Eq. ~2.36! and inverse Fourier transforming the
result we get

Q~g,h!5K dS g2
GRnGLn

GRn1GLn
D 1

2pg2A^G&AGRn
231GLn

23

3BS h

2pg2A^G&AGRn
231GLn

23D L
$GRn ,GLn%

, ~2.39!

which is more conveniently expressed in the form

Q~g,h!5
e24g/^G&

2p^G&2Ag/^G&
Hg/^G&S h/^G&

2pAg/^G&
D . ~2.40!

The remaining average over the reduced widths
aR5GRn /^G& andaL5GLn /^G& appears only in the evalu-
ation of the bell-shaped function

Hp~q!5E
0

`

daRE
0

`

daLe
2~aR1aL24p!

3

dS p2
aRaL

aR1aL
D

Ap3~aR
231aL

23!
BS q

Ap3~aR
231aL

23!
D . ~2.41!

In fact, one can easily carry out one of the above integrations
and arrive at

Hp~q!52pE
0

`

du e2pu
u14

Au~u11!
BS qAu14

u11D . ~2.42!

It is possible to representHp(q) in terms of special func-
tions, but we did not find it particularly clarifying and there-

fore do not do it here. The asymptotic limits follow directly
from the integral representation shown above. Forq50, we
obtain

Hp~0!→H ~35/6p! for p→0

~70/3!Ap/p for p→`,
~2.43!

whereas for a fixedpÞ0, we have that

Hp~q!;O~q24! for q@1. ~2.44!

Notice that Eqs.~2.40! and ~2.42! together immediately
lead to the samex!1 asymptotics for the peak height corr-
elator shown in Eq.~2.25!. From Eq.~2.44! it is obvious that
^hn& diverges forn.2. This can be ultimately related to the
level repulsion present in the spectrum: Strong anticrossings
of levels can cause anomalously large variations of the con-
ductance peak height as a function of the external parameter
X. When this happens, one finds thath;1/v, where
v5u«n112«nu/D!1. Since the probability of this event
goes asP(v);v2 for the unitary ensemble,31 one finds that
Q(g,h);1/h4 for h@1, in agreement with our exact calcu-
lation.

III. DYNAMICAL MODEL

The aim of this section is to compare the results of the
previous section with exact numerical diagonalizations of a
dynamical model. The essential characteristic of a dynamical
model for this type of study is a fair resemblance to the
actual experimental conditions, combined with its adequacy
to numerical computations. For this reason we chose the
~two-dimensional! conformal billiard penetrated by an infi-
nitely thin Aharonov-Bohm flux line carrying a flux off.
This model was originally introduced in Ref. 41 and later
adopted in the study of statistical features of conductance in
quantum dots.12 Using complex coordinates, the shape of the
billiard in the w plane is given byuzu51 in the following
area preserving conformal mapping:

w~z!5
z1bz21ceidz3

A112b213c2
, ~3.1!

where b, c, and d are real parameters chosen in such a
manner thatuw8(z)u.0 for uzu<1. The classical dynamics of
a particle bouncing inside this billiard is predominantly sto-
chastic and is unaffected by the presence of the flux line. To
describe the flux line we chose the following gauge for the
vector potentialA:

A~w!5
f

2p S ] f ~w!

] Im~w!
,2

] f ~w!

] Re~w!
,0D ~3.2!

where f (w)5 ln@uz(w)u#. This particular gauge, combined
with Neumann boundary conditions, permits a separation of
the Schro¨dinger equation into polar coordinates (r ,u) of the
complex parameterz5reiu. The eigenstatescn thus ob-
tained correspond to the resonant wave function appearing in
Eq. ~2.3!.12 In our numerical treatment the wave function
xc in the lead is equal to a transverse sine function multiplied
by a longitudinal plane wave.
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In practical calculations,12 one fixes the value of the flux
f and uses as a truncated basis the lowest~in our case 1000!
eigenstates of the circular billiard (b5c50). These have the
form Jn(gnnr )e

il u, whereJn is the Bessel function of frac-
tional order n and gnn is the nth root of its derivative,
Jn8(gnn)50. The dependence on the magnetic flux enters
throughn5u l2f/f0u, with f0 as the flux quantumh/e. To
solve the Schro¨dinger equation one has to calculate several
thousand matrix elements of the JacobianJ5uw8(z)u2 in
this f-dependent basis. This operation is very time consum-
ing. Changes in shape are not a major obstacle, sinceb, c,
andd act as prefactors to the matrix elements and no further
calculation is necessary.~For instance, in Ref. 12 only two
different values off needed to be used.! In the present work,
however, we wanted to change the flux to simulate the sim-
plest experimental setup and this required the use of 76 dif-
ferent values off. The spectrum is seen to be not only 2p
periodic in f, but also symmetric aroundf/f051/2. For
this reason and, furthermore, to avoid the special points 0
and 1/2 we letf/f0 vary in the interval@0.1,0.4#. To cir-
cumvent the overwhelming problem of too large amounts of
computing time we employed the following strategy. We cal-
culated the Jacobian matrixJ for only seven different values
of a5f/f0 , namely, from 0.10 to 0.40 in steps of 0.04.
Then, for any other value ofa, the matrix elementJ i j (a)
was found by polynomial interpolation. This was checked to
give a relative error of at most 1027. To improve the statis-
tics we also calculated the eigenstates for five different
shapes by keepingb5c50.2 and lettingd5kp/6, with
k51,2,3,4,5. The spectra corresponding to these shapes are
statistically uncorrelated.12 Due to the truncation of the basis
only the lowest 300 of the calculated 1000 eigenstates were
accurate enough to be used in the analysis. We also discarded
the lowest 100 eigenstates because of their markedly nonuni-
versal behavior. We should emphasize that it is not a trivial
task to increase the number of usable states. For the asym-
metric conformal billiard no symmetry reduction of the re-
sulting eigenvalue problem is possible. The presence of the
flux line constrains the method of analysis to the diagonal-
ization of large Hermitian matrices, limiting the number of
eigenstates that can be treated efficiently.

A. Correlation functions for the billiard

In the following, we present the numerical results for the
correlators of level velocity, decay widths, and conductance
peak heights.~Recall that at present only the last can be
directly measured in real experiments.!

Figure 4 shows the level velocity correlator defined by
Eq. ~2.23! rescaled according tocv(x)5Cv(x)/Cv(0), with
x5a/ACv(0). Theplotted data were obtained by averaging
over 76 equidistant values ofa in the interval@0.1,0.4#, over
the eigenstates between 201 and 300, and over the five dif-
ferent shapes mentioned above. We observe a good agree-
ment with the analytical results33 for small values ofx and
with random matrix simulations in general. A thorough dis-
cussion of the scaling factorACv(0) dependence on energy
and billiard shape is postponed to the next subsection.

Next we employed the billiard model to obtain the decay
width autocorrelation functioncG(x), Eq. ~2.27!. The decay
widths Gkn for the billiard were calculated as described in

Sec. II. The position of the leads and their widths were speci-
fied in the following way. Based on autocorrelation calcula-
tions of the eigenfunctioncn along the perimeter of the bil-
liard, we found that the spatial decorrelation for the relevant
levels~levels 201 to 300! takes place over a distance around
1/60 of the perimeter. We therefore decided to take the width
of the leads to be 1/24 of the perimeter, i.e., 2.5 times the
decorrelation length, yielding 24 adjacent leads. To improve
the statistics we used all 24 lead position for eachcn . Due to
the relatively large width of the leads, adjacent leads are not
correlated, as was verified by obtaining the same result~with
larger fluctuations! using only every second or every third
lead. The result of the calculation is shown in Fig. 5. A fair
agreement with Eq.~2.28! is noted.

Finally, we calculated the conductance peak correlation
cg(x), Eq. ~2.7!, for the conformal billiard using the above-
mentioned decay widths. We chose all possible pair configu-
rations among the 24 lead positions. The result is shown in
Fig. 6 and, again, a fair agreement with the predictions of
Sec. II A is observed. Notice that the data for the conformal
billiard are not fully consistent with a Lorentzian if we fix
the x!1 asymptotics of the curve to be identical to Eq.

FIG. 4. The level velocity correlation function for the conformal
billiard ~s! averaged over five shapes, 76 values of the flux, and
200 energy levels. The full line is the result of the GUE simulation.

FIG. 5. The decay width correlation function for the conformal
billiard ~s! for a fixed shape (b5c50.2 andd5p/3) and averaged
over 76 values of flux and 200 energy levels. The full line is the
result of the GUE simulation.
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~2.25!. A squared Lorentzian does not seem to provide a
better approximation either, although in a recent
experiment19 cg(x) was measured and such a curve was fit-
ted to the data. It would be interesting to check how well our
result for cg(x) based on random matrix calculations
matches the available experimental datawithout any fitting
parameter~in Sec. III B we will present a way to predict the
typical field correlation scale!.

For all three correlators we have noticed large statistical
fluctuations between data taken at different billiard shapes.
We found that most levels around the 300th one~the upper
limit of reliability in our calculation! still do not show more
than one full oscillation within the range of flux allowed by
symmetry. The averaging over shape deformation was thus
crucial to get rid of the remaining nonuniversal features. Af-
ter averaging over the five values ofd mentioned previously
~see also the following subsection!, we found thatCv(0)
near theNth level obeys the lawCv(0)'1.202AN.

We ascribe the small mismatch between theory and nu-
merics, particularly atx.1, to poor statistics. As mentioned
before, the only way to circumvent this problem is to com-
pute higher eigenstates. Fortunately, this difficulty does not
appear in real experiments where the magnetic flux is ex-
tended over the whole area of the cavity and the dependence
of f is not periodic.

B. Energy dependence ofCv„0… for billiards

One of the important features of a dynamical model is that
its quantum fluctuations display a marked dependence on
energy. Aquantitativeunderstanding of the field scale of the
fluctuations and its dependence on energy is important to put
any random matrix result in contact with measurements in
quantum dots. For this purpose, the semiclassical approach
can be used in a relatively simple form.

The aim of this subsection is to discuss the energy depen-
dence of the level velocity correlatorCv(0), which is a mea-
sure of the quantum fluctuations, and show that one can suc-
cessfully estimate this quantity using exclusively classical
quantities. It was already properly noticed by Berry and
Robnik41 that the typical flux necessary to induce a crossover

from GOE- to GUE-like spectral fluctuations in a chaotic
billiard threaded by an Aharonov-Bohm flux line scales with
the energy asE1/4. The origin of this dependence has a
simple semiclassical explanation which was nicely worked
out by Ozório de Almeida and co-workers.43,44 The nonuni-
versal scalingCv(0) can be obtained in an analogous man-
ner.

Our point of departure is a recent work by Berry and
Keating42 based on the Gutzwiller trace formula. Most of our
semiclassical considerations follow their findings. However,
our interpretation and the method we use to quantifyCv(0)
are different. To make the exposition self-contained, we shall
briefly describe points of their work which are relevant to
our discussion and comment when necessary.

The initial step is to approximateCv(f) by a two-point
correlator.~The nature of the approximation is evident, since
to track down the parametric evolution of a single eigenvalue
for anyf is a task that cannot be exactly achieved by con-
sidering only Green’s functions with a finite number of
points.! As in Ref. 42, we write

Fh~f,E!5
1

df̄
E

df̄
df̄K d

df̄
NhS f̄2

f

2 D
3

d

df̄
NhS f̄1

f

2 D L
dE

, ~3.3!

whereNh(E,f)5(nQh„E2«n(f)… is a smoothed cumula-
tive level density which counts the number of single-particle
states up to an energyE at a magnetic fluxf. For the
smoothing it is convenient to adopt the form
dQh(E)/dE[Im(E2 ih)21/p, where the parameterh is
chosen to be much smaller thanD. ~We would like to point
out a change in notation: Throughout this subsection angular
bracketŝ •••& will denote energy averages in distinction to
the previous ensemble averages.! The energy average in Eq.
~3.3! is taken over a rangedE aroundE. Ordinarily, the
average over the magnetic flux is taken over a windowdf̄ in
flux which corresponds to little change in the classical dy-
namics but is semiclassically large, i.e., it corresponds to
sizable fluctuations in the spectrum. For billiards threaded by
Aharonov-Bohm flux lines this is not an actual constraint,
since flux variations have no effect on classical trajectories.
Nonetheless, when considering the correlator of Eq.~3.3!
one has, in principle, to avoidf̄ pertaining to the TR-
breaking crossover regime.

When levels are much farther apart thanh, it is straight-
forward to show thatdNh(f̄)/df̄ can be approximated by
D21d«n(f̄)/df̄. Forf larger than a certainfc such that the
correlation between level velocities of different statesmÞn
is much weaker than form5n, Fh(f,E) is equivalent to
Cv(f) and independent ofh, provided that the energy levels
are taken to be withindE. This equivalence also holds in the
limit of f50 when the spectrum is nondegenerate. In sum-
mary,Fh(E,f) is a good approximation to the level velocity
correlator Cv(f) only for f50 and f.fc . In fact,
Fh(E,f) is also the quantity evaluated analytically by Szafer
and Altshuler32 in the context of disordered metallic rings,
using a diagrammatic perturbation theory based on impurity
averaging.

FIG. 6. The peak height correlation function for the conformal
billiard ~s! for a fixed shape (b5c50.2 andd5p/3) averaged
over 76 values of flux and 200 energy levels. The full line is the
result of the GUE simulation.
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Following Ref. 42, we now turn to the semiclassical treat-
ment. In particular, we specialize the results to billiards
threaded by a flux line. This simplifies the problem enor-
mously since ifSn is the action of a periodic orbitn, upon
applying a magnetic flux f we find that
Sn→Sn12p\wnf/f0 , wherewn is the number of times the
orbit n winds around the flux line. The cumulative level den-
sity is expressed semiclassically using the Gutzwiller trace
formula and one writes the correlator as

Fh~f,E!5S 2p

f0
D 2K (

nm
uAmAnuwn

2expH i SSn2Sm
\

12pwn

f

f0
D 2

h~Tn1Tm!

\ J dwnwmL
dE

, ~3.4!

where the amplitudesAn(E) contain information on the sta-
bility of the orbitn as well as its Maslov index. The smooth-
ing of the staircase function gives rise to the exponential
damping factorh timesTn(E), the period of the closed orbit
n. In the semiclassical limit,N(E)@1, the flux range of the
TR-breaking crossover is much smaller thanf0 . Therefore,
without affecting considerably the calculation for the pure
TR-broken case, we take the limit ofdf̄→f0 .

Now one arrives at one of the delicate points of the semi-
classical approach. The correlatorFh(f,E) is expressed as a
sum of diagonal and off-diagonal contributions. In contrast
to the fact that it is a settled matter how to compute the
diagonal part, the evaluation of the off-diagonal term is still
an unsatisfactorily solved problem. It seems that forFh it is
reasonable42 to neglect the off-diagonal contribution and we
will do so hereafter.

The diagonal part ofFh(f,E) in Eq. ~3.4! is still difficult
to evaluate since, in principle, it requires the knowledge of
the full set of periodic orbits up to the cutoff\/h. This can
be simplified by the following considerations. For chaotic
systems, the number of periodic orbits grows exponentially
as a function of their lengthL and ergodicity ensures that as
the orbits become longer they tend to explore the phase
space more uniformly. Thus, one can define a critical length
Lc corresponding to a uniform coverage of the phase space
by the periodic trajectories. For a fixed energyE, Lc deter-
minesTc , the time when the Hannay and Ozo´rio de Almeida
sum rule45 is applicable, allowing the sum over periodic or-
bits to be calculated as an integral over orbital times. Apply-
ing this sum rule to the diagonal part of Eq.~3.4! one obtains

Fh
diag~f,E!'

2

f0
2E

Tc

`dT

T
w2~T!cosS 2pw~T!

f

f0
D

3expS 2
2hT

\ D . ~3.5!

Here the overbar stands for an average over the phase space,
or, in practice, over an ensemble of trajectories. The replace-
ment of the summation over periodic orbits by an average
over trajectories makes the problem amenable for a compu-
tational evaluation ofFh

diag(f,E). Such a procedure has al-
ready been successfully used to estimate the GOE to GUE
transition parameter in the stadium billiard.46

By writing the winding number as an integral over the
angular velocity,w(T)5*0

Tdtu̇(t)/2p, it is simple to see that
for an ergodic systemw(T)50. The winding number vari-
ance is given by

w2~T!5
1

~2p!2
E
0

T

dtE
0

T

dt8C~ t82t !'
T

~2p!2
E
0

`

dt8C~ t8!,

~3.6!

whereC(t)5 u̇(t8) u̇(t81t). For chaotic systems in general
the correlatorC(t) decays sufficiently fast inT to assure the
convergence of the integral in Eq.~3.6!.47 The knowledge of
the winding number distributionP(w,T) allowed us to
evaluate the phase space average in Eq.~3.5!. To determine
P(w,T) for the conformal billiard we have randomly chosen
104 initial conditions and computed trajectories up to 250
bounces for the particular deformationb5c50.2 and differ-
ent d ’s. We have generated a histogram recordingw andT
every time a trajectory winds around the flux line located at
the origin.48 The results displayed in Fig. 7 confirm Eq.~3.6!.
The variance ofw(T) is better written as46

w2~T!5kS 2E

mAD 1/2T, ~3.7!

whereA is the billiard area andk is a system-dependent
quantity computed for the scaled billiard with unit area and
trajectories with unit velocity. Moreover, our numerical re-
sults give us confidence that for any given timeP(w,T) is a
Gaussian distribution~see Fig. 8!. This is in agreement with
the conjecture of Ref. 41 for periodic orbits.

Substituting this result into~3.5! and bearing in mind that
in the semiclassical limithTc /\!1, for f50 we obtain

Fh
diag~0,E!'

1

fc
2 . ~3.8!

Using the leading term in the Weyl formula,
N(E)'AmE/2p\2, we can write

fc5
f0

@4pk2N~E!#1/4
. ~3.9!

FIG. 7. Numerical estimate of the winding number variance
w2 as a function of orbit timeT in the classical billiard with unit
area,vF51, andd5p/3.
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Notice thatfc!f0 .
Although F(f,E) fails as an accurate approximation for

Cv(f) over the entire range off, we expect it to work for
f50 andf@fc . Therefore the semiclassical quantityfc
given above should yield a good approximation to the exact
inverse field scaleACv(0). We used the same procedure
described to obtainP(w,T) to computek as a function of
d. The results are shown in Fig. 9. Figure 10 showsCv(0) as
a function ofN from quantum mechanical~Sec. III A! and
semiclassical (fc

22) calculations. From the numerical diago-
nalizations we found that the proportionality factor between
Cv(0) andN1/2 varies between 0.94 (d55p/6) and 1.54
(d5p/6), while the semiclassical estimate gives 0.90 for
d5p/2, for instance. Clearly, both quantum and semiclassi-
cal calculations indicate thatCv(0) depends on the billiard
shape. When comparing the results of these two calculations,
one should also note the size of the large fluctuations in the
data presented in Fig. 10. As already remarked in the previ-
ous subsection, these large statistical fluctuations are due to
the limited data set used in the simulations.

To put the semiclassical result in direct contact with ex-
periments, one needs some system-specific information to

computek. In the above discussion,k gives a measure of
how fast the winding number variance increases with time.
For the more physical situation of extendedB fields,k mea-
sures the rate of increase in the variance of accumulated
areas as a function of time.43 It is interesting to notice that
the semiclassical interpretation of the scales of the conduc-
tance autocorrelation function for quantum dots and open
cavities is very similar. Since quantum dots haveG!D, the
escape time\/G is always semiclassically large. In this re-
gime, the physics is dominated by the classical decorrelation
time t implied in Eq.~3.6!. The situation is very different for
open cavities, where the escape time plays an important role,
since it is comparable witht. For the quarter stadium and
extendedB fields, Ref. 46 givesk'0.3. In this study we
observed thatk is a relatively robust number, since very
different shapes of the conformal billiard give values ofk
that differ at most by 60%. Therefore we believe that with
help of Eq.~3.9! and takingk to be of order unity, one can
estimate the magnitude offc for other chaotic billiards.

IV. CONCLUSIONS AND DISCUSSION

In this paper, we have proposed that the universal form of
the parametric correlator of conductance peak heights indi-
cates the chaotic nature of the electron dynamics in quantum
dots in the Coulomb blockade regime. In experiments, the
simplest parameter to vary is an external magnetic field.
Whereas random matrix theory provides the universal form
of the correlation function, the nonuniversal field scale can
be understood in simple semiclassical terms: it is related to
the average winding number per unit of time of periodic
orbits bouncing between the confining walls of the quantum
dot. This field scale is rather sensitive to the geometry of the
dot and the Fermi energy. To compare our analytical and
numerical predictions against the experimental result, the
magnetic flux through the dot has to be larger than one quan-
tum unit of flux h/e, but such that the cyclotron radius is
much larger than the dot diameter. The former condition as-

FIG. 8. The distribution of winding numbers~solid line! for
T5150 in the classical billiard with unit area,vF51, and
d5p/3. The dotted line is a Gaussian curve with variance given by
Eq. ~3.7!.

FIG. 9. The numerical coefficientk as a function of geometry
for the classical conformal billiard.

FIG. 10. Cv(0) as a function ofAN for the conformal billiard,
with N as the eigenstate number. The symbols indicate the data
obtained from the exact numerical diagonalization~fully quantum!
for different geometries. The solid line is the total average over all
data:Cv(0)51.202AN. The dashed and dotted lines are the semi-
classical estimates@Eq. ~3.8!# for d5p/2 (k50.253) andd5p/3
(k50.314), respectively.
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sures that time-reversal symmetry is broken; the latter im-
plies that the bending of classical trajectories is mainly due
to scattering by the boundaries. We point out that electron-
electron correlations can be taken into account by assuming
that the single-particle spectrum results from a self-
consistent~Hartree-Fock! treatment.49

Our theoretical prediction for the correlator of peak
heights is based on the hypothesis that the statistical proper-
ties of the system Hamiltonian can be described by random
matrix theory. Although we could only derive analytically
expressions for the limit of small field variations, the com-
plete form of the correlation function was obtained by nu-
merical simulations of large Gaussian matrices. We have
compared the random matrix results with the exact correlator
obtained from the conformal billiard after averaging over
energy and shape deformation. The agreement found was
good, given the limitations imposed by the size of the data
set. In addition to that, we found that the result of the clas-
sical calculation for the magnitude of the field scale and its
dependence on energy matches the quantum result moder-
ately well.

For experimental tests of our theory, it is important to note
that dephasing in the small quantum dot has to be kept low
enough, namely, the dephasing length has to be larger than
the system size. Also, the parametric results presented for the
GUE case were illustrated in a dynamical model in which
only the magnetic field was varied. This was very conve-
nient, since it allowed us to relate the field scaling parameter
to the underlying classical dynamics using a well-developed
formalism. Alternatively, the external parameter could be
taken as the shape variation. ForB50, the conductance au-
tocorrelation function should then follow our numerical re-
sults for the GOE case. Or, by varying the shape with
B.Bcrossover, the conductance peak correlator should be
given by our GUE results.~While finishing this work we
learned that such an experiment has already been
performed.19! Unfortunately, the semiclassical analysis for
these situations is more difficult than the one presented here
and still remains an open problem.

Some billiard geometries have well-pronounced short pe-
riodic orbits which, for insufficient averaging over energy
and magnetic field, can lead to strong nonuniversal features
to the curves presented in this work. We believe that over-
coming this problem will be one of the most serious chal-
lenges for the experiments. In particular, to verify experi-
mentally the asymptotic behavior ofcg(x) should be very
difficult. Sincecg(x) involves the subtraction of two num-
bers and forx@1 these numbers become very close, statis-
tical ~nonuniversal! fluctuations can easily drive the experi-
mentalcg(x) below zero. Another cause of deviations from
the predicted universal behavior, presumably weaker, is the
existence of wave function correlations which extend over
the dot. In other words, our findings assume that the channels
at different leads are decorrelated, which may not be com-
pletely true if the dot size is not much larger than the electron
wavelength. The agreement of our random matrix results
with the numerical calculations using the conformal billiard
supports the assumption of independent channels for
N.200. Smaller systems should be more influenced by short
or direct orbit effects. We should also mention that if there
were strong correlations between heights of neighboring

peaks of a given sequence, they would influence mostly the
x@1 region of the correlator. This is because averaging over
a finite range of magnetic field usually yields less statistics
for large field differences and, consequently, more pro-
nounced data correlation effects.

Lastly, we point out the fact that, independently of previ-
ous considerations, another very interesting experiment is a
direct measurement ofcv(x). Despite the very large Cou-
lomb energy, which makes the conductance peak spacing
very regular at first sight, a careful experiment should be able
to observe the small fluctuations of the peak position as a
function of an applied magnetic field. This will give direct
information about the single-particle level dispersion or,
equivalently,cv(x). It will also provide a direct test of our
estimate of the flux correlation scalefc .

Note added.After the submission of this manuscript we
learned of similar work by Alhassidet al.54
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APPENDIX A: EVALUATION OF Šdet„H 2
…tr „H22

…‹H

This appendix is devoted to a rather detailed evaluation of
the average over the determinant shown in Eq.~2.20!. Let us
call

cN5^det~H2! tr~H22!&H , ~A1!

whereH is now anN3N GUE matrix. First, we notice that
there is a more convenient way to express this average,
namely,

cN5
d f~a!

da
U
a50

, ~A2!

where the generating functionf (a)5^det(H21a1N)&H can
be evaluated by the fermionic method:36

f ~a!5^det~H1a1N!det~H2a1N!&H

5 K E d@x#exp@2x†~H^ 121a1N^L !x# L
H

, ~A3!

where a52a2, L5 diag(1,21), and xT5(x1
T ,x2

T), with
x1 andx2 representingN-component fermionic vectors. Av-
eraging over the GUE matrixH we find that

^exp~2x†H^ 12x!&H5expF2
l2

2N
tr~u2!G , ~A4!

whereu is the following 232 matrix:
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u5S x1
†x1 x2

†x1

x1
†x2 x2

†x2
D . ~A5!

The quartic term can be decoupled by a Hubbard-
Stratonovich transformation, namely,

E d@Q#expF2
N

2
tr~Q2!2 il tr~Qu!G

5S 2p

N D 2expF2
l2

2N
tr~u2!G , ~A6!

where Q is a 232 Hermitian matrix and
d@Q#5dQ11dQ22dQ12dQ21. As a result, we have

f ~a!5S N

2p D 2E d@Q#expF2
N

2
tr~Q2!G

3E d@x#exp@2x†~a1N^L1 il1N^Q!x#.

~A7!

The Gaussian integral over the fermionic variables can be
easily carried out, yielding

f ~a!5S N

2p D 2E d@Q#expH 2
N

2
tr~Q2!1N tr@ ln~aL

1 ilQ!#J . ~A8!

WhenN@1 the above integral overQ can be evaluated
by the saddle-point approximation~which becomes exact in
the limit N→`). For this purpose we first separate angular
and radial components ofQ, namely, Q5T†qT, where
q5 diag(q1 ,q2) andT is an SU~2! matrix. The differential
breaks up into d@Q#5dm(T)J(q)d@q#, where
J(q)5p(q12q2)

2 is the Jacobian of the transformation,
d@q#5dq1dq2 , anddm(T) is the group measure normalized
to unity. This yields

f ~a!5S N

2p D 2E d@q#J~q!exp~2NF@q# !

3E dm~T!expF2
iaN

l
tr~q21TLT†!G , ~A9!

where F@q#5(1/2) tr(q2)2 tr@ ln(ilq)# and we have only
kept terms to lowest order ina. The saddle-point expansion
now involves only the radial part of the action:

F@q#5122ln~l!2
ip

2
~s11s2!1dq1

21dq2
21O~dq3!,

~A10!

where q1,25s1,21dq1,2 and s1,2
2 51. The relevant saddle

points correspond tos152s2 , resulting in

f ~a!5NS l2

e D NE dm~T!expF2
ias1N

l
tr~LTLT†!G .

~A11!

The integral over the SU~2! manifold can be evaluated
through the well-known Itzykson-Zuber formula,50 which in
a simplified form reads

E dm~T!exp@b tr~LTLT†!#5
det@exp~b l i l j !#

b~ l 12 l 2!
2 , ~A12!

with l 1,2 denoting the eigenvalues ofL. Hence,

f ~a!52NS l2

e D N sin~2aN/l!

~2aN/l!
~A13!

~the factor of 2 takes into account the double saddle point!.
Finally, we obtain

cN5
4N3

3l2 S l2

e D N. ~A14!

APPENDIX B: THE ASYMPTOTIC LIMITS OF CG„X…

The small-X asymptotics of the correlator of decay widths
can be determined by the same method used in Sec. II A for
the conductance peak height correlator. Beginning with the
definition presented in Eq.~2.27!, we expandGkn(X̄6X/2)
up to first order inX @see Eq.~2.5!#. The zeroth-order term of
CG(X) is then given by

CG~0!5^Gn
2&2^Gn&

25^G&2 ~B1!

for the unitary ensemble. An expression analogous to Eq.
~2.8! is used to write the second-order coefficient ofCG(X)
in terms of the amplitudesLn , namely,

CG9 ~0!52
1

2
^Ln

2&. ~B2!

Carrying out the average over the matrix elements of the
external perturbationU @see Eq.~2.13!#, we find that

CG9 ~0!52
s2

N K (
mÞn

GnGm

«nm
2 L . ~B3!

We now average separately over the eigenvalues and partial
widths and obtain

CG9 ~0!52
2p2^G&2s2X2

3ND2 . ~B4!

Upon rescaling bothCG(X)→cG(x)5CG(X)/^G&2 and
X→x5X(s2/ND2), we arrive at

cG~x!512
2p2x2

3
1O~x4!. ~B5!

The large-X asymptotics ofCG(X) can be inferred from
the asymptotics of another correlator, namely,
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P~X,E!5V2K (
m,n

ucm~r ;X1!u2ucn~r ;X2!u2d„E1

2«m~X1!…d„E22«n~X2!…L 2
1

D2 ~B6!

where V is the system volume,X1,25X̄7X/2, and
E1,25Ē7E/2. Recall that the wave function intensities are
proportional to the decay widthsGm(X1) and Gn(X2) for
pointlike contacts. AtE15E2 and largeX, the interlevel cor-
relations are secondary to intralevel ones; as a result, thed
function in Eq. ~B6! acts as a Kroneckerd, causing
P(X,0) andCG(X) to coincide~up to a prefactor equal to
D2) to leading order inO(1/X).

Let us for convenience assume a finite size space basis to
represent the system Hamiltonian. We can then reduce Eq.
~B6! to

P~X,E!5SNp D 2^ Im@G~E11 i e;X1!#kk Im@G~E2

2 i e;X2!#kk&2
1

D2 ~B7!

with G(E;X)5@E2H(X)#21 and e→01. The above ex-
pression can be rewritten in the more convenient form

P~X,E!52S N2

2p2D Rê @G~E11 i e;X1!#kk

3@G~E22 i e;X2!#kk&2
1

D2 . ~B8!

In general, an expression like Eq.~B8! requires the evalua-
tion of the following quantity:

Dklmn~E,X!5^@G~E11 i e;X1!#kl@G~E22 i e;X2!#mn&.
~B9!

The correlatorDklmn(E,X) can be calculated exactly in the
zero-mode approximation of the supersymmetric nonlinear
s model51 ~or, equivalently, in the RMT framework!. This
calculation is standard nowadays~for a recent review, see
Ref. 52! and has already been presented in the literature.53

Here we will only mention the resulting expression for the
unitary ensemble, which is

Dklmn~E,X!5S p

ND D 2@dkldmn2dkldmnk~v,x!

2dknd lmn~v,x!#, ~B10!

where

k~v,x!5E
1

`

dl1E
21

1

dl2exp@2p i ~v/21 ih!~l12l2!

2~p2x2/2!~l1
22l2

2!# ~B11!

and

n~v,x!5E
1

`

dl1E
21

1

dl2S l11l2

l12l2
Dexp@2p i ~v/21 ih!

3~l12l2!2~p2x2/2!~l1
22l2

2!#. ~B12!

When writing these equations we have rescaled the variables
to E/D5v, e/D5h, andNDA tr(U2)X/p25x. Going back
to Eq. ~B8!, we arrive at

p~x,v!5D2P~E,X!5
1

2
Re@k~v,x!1n~v,x!#. ~B13!

Sincek(0,x)→2/(px)4 andn(0,x)→2/(px)2 asx→`, we
have thatp(x,0)→1/(px)2 in the same limit. Therefore, we
expect that

cG~x! ——→
x→` 1

~px!2
. ~B14!

Finally, we remark that thex@1 universal asymptotics of
bothk(0,x) andn(0,x) can also be obtained by the diagram-
matic perturbation theory of disordered metals expressed in
terms of diffusion modes.

APPENDIX C: EVALUATION OF B„s…

In this appendix we give a schematic description of the
calculation ofB(s). The starting point is Eq.~2.37!. Here we
go through the same steps of Sec. II A to evaluateA« @see
Eq. ~2.18!#. First we fix the reference eigenvalue«n to the
center of the spectrum, obtaining

B̃~k!5
1

r~0! K (
n51

N

)
mÞn

d~«n!F11
~kD/2p!2

«nm
2 G21L

$«n%

.

~C1!

Next, we rephrase this expression in terms of an average
over a spectral determinant, namely,

B̃~k!5aNK det~H4!

det@H21~kD/2p!2# L
H

, ~C2!

whereaN is a constant@such thatB̃(0)51# and the average
is performed over an (N21)3(N21) GUE matrixH. The
appearance of determinants in both numerator and denomi-
nator in Eq.~C2! makes its evaluation technically more dif-
ficult than Eq.~A1!. It is necessary to introduce not only four
anticommuting auxiliary variables, but also two commuting
~complex! ones. The resulting symmetry group is U(1,1u4)
~the pseudo-unitarity is due to the structure of the denomina-
tor!. Fortunately, a general solution for such graded symme-
try problems has been recently worked out.40 The derivation
is a nontrivial generalization of the method of Appendix A.
For an expression with the structure of Eq.~C2!, one arrives
at the following formula:40

K P j51
4 det~H2mjD!

det~H2 iaD!det~H1 iaD! L
H

5
Ae22pa

a (
$mj %

F ~ ia2m3!~ ia2m4!

~m32m1!~m32m2!

~ ia1m1!~ ia1m2!

~m42m1!~m42m2!
eip~m11m22m32m4!G , ~C3!
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where the sum runs over all six nonequivalent combinations
of pairs ofmj , a.0, andA is an unspecified constant. To
get B̃(k) we need to take the limitmj→0 for all j51,2,3,4
at a given order. After some algebra, one finds that

B̃~k!5
e2k

24
~24124k18k21k3!. ~C4!

Finally, inverse Fourier transforming the above expression,
we arrive at

B~s!5E
2`

` dk

2p
e2 iksB̃~k!5

35114s213s4

12p~11s2!4
. ~C5!
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