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Parametric conductance correlation for irregularly shaped quantum dots
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We propose the autocorrelator of conductance peak heights as a signature of the underlying chaotic dynam-
ics in quantum dots in the Coulomb blockade regime. This correlation function is directly accessible to
experiments and its decay width contains interesting information about the underlying electron dynamics.
Analytical results are derived in the framework of random matrix theory in the regime of broken time-reversal
symmetry. The final expression, upon rescaling, becomes independent of the details of the system. For the
situation when the external parameter is a variable magnetic field, the system-dependent, nonuniversal field
scaling factor is obtained by a semiclassical approach. The validity of our findings is confirmed by a compari-
son with results of an exact numerical diagonalization of the conformal billiard threaded by a magnetic flux
line.

[. INTRODUCTION peak sequence is not very long, good statistics demands great
experimental effort. One possible solution is a true ensemble

During the last five years the fabrication of ballistic averaging, which requires many different samples. In Ref. 12
two-dimensional electron gas microstructures in GaAsit was suggested that one could obtain such an average from
Ga; _,Al ,As heterostructures has opened up a new field: tha single device by changing its shaipesitu using external
study of quantum manifestations of classical chaos in conelectrostatic potentials. This difficult procedure has now been
densed matter systerhshe first theoretical discussidf  tested experimentally in opg&hand closed systent$.An-
the so-called quantum chaos in microstructures dealt witlother seemingly simpler solution is to generate more statis-
open systems, i.e., cavities on the micrometer scale dics by varying an applied magnetic figlhking care to mea-
smaller connected to the external world by leads that admit aure at B-field steps larger than the conductance
continuous flow of electrons. Several successful experimentutocorrelation widthsB,).**#
followed®~’ Nowadays the theoretical study of quantum In order to test more thoroughly quantum manifestations
chaos is also well developed for closed microstructuresof classical chaos in quantum dots in the tunneling regime
known as quantum dofsThese are cavities coupled to the we propose a different quantity to be investigated: the para-
external leads by tunnel barriers that prevent a continuousetric conductance peak autocorrelation function. Because it
flow of electrons and make the electric charge inside the dds not difficult to cover a parametric range which extends
guantized. The striking characteristic of quantum dots is the@ver several autocorrelation lengths, correlation functions
appearance of very sharp peaks in the conductance as a funeed a small number of peaks and should be easy to obtain
tion of the gate voltage. These peaks are roughly equidistarxperimentally. Moreover, correlators of a fixed eigenstate
due to the strong charging effect, but their heights vary ranare also of theoretical interest. Analytical calculations using
domly by an order of magnitude or more. The general interrandom matrix theory beyond a perturbative approach seem
est in this phenomenon, combined with the existence of into be very challenging. In addition, the nonuniversal scaling
teresting experimental data on guantum chaos for closedontains interesting information about the underlying classi-
systems, motivated several theoretical studi@s!* These cal dynamics. To put the parametric dependence in contact
works proposed universal conductance peak distributions fowith physical quantities and develop a satisfactory theoreti-
guantum dots in the Coulomb blockade regime as fingereal treatment of nonuniversal scaling factors, one has to in-
prints of the underlying chaotic dynamics. Similar predic-voke semiclassical arguments. In this sense the study of the
tions for open systems!® have been difficult to observe autocorrelator of conductance peaks is an example where
experimentally® because of the strong influence of semiclassical and random matrix theories complement each
dephasing’ other in the understanding of mesoscopic phenomena.

The initial experiments on Coulomb blockade peak The first step towards the description of the main features
heights in quantum ddtshave paved the way for the first of chaos in quantum dots is to consider the problem of elec-
convincing measurements of statistical distributions of peakrons moving in a cavity. We assume that the Coulomb inter-
heightst®1819However, the full distribution of the conduc- action within the cavity can be taken into account in a self-
tance peaks is not a trivial quantity to measure. Since eacbonsistent way, yielding noninteracting quasiparticles. As a
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result of extensive studies of two-dimensio2D) dynami- The matrix elements in Eq2.2) can be obtained by in-
cal systems, one has learned that when the classical motiaoking the R-matrix formalism?® Such an approach was
in the cavity is hyperbolic, the quantum spectrum and theoriginally proposed in the study of nuclear resonance scatter-
wave functions exhibit certain universal featufé3hrough-  ing and has more recently been successfully applied in the
out this paper we shall consider a statistical approach whicbontext of mesoscopic physits?’ The partial decay ampli-
is valid for chaotic systems and also works fairly well for tude v, is given by
systems whose phase space is predominantly chotic. 72

The paper is organized as follows. In Sec. Il we present
our anaﬁ)ytilial and gumerical treatment based on randpom ma- Y= N ﬁf dsxs (r)i,(r), 2.3
trix theory (RMT). We concentrate on the case of broken . ) . o
time-reversal symmetryTR), but also show numerical re- Wherey, is the eigenfunction of the resonaneensidethe
sults for the TR preserved cagepin-orbit interactions are dot with the appropriate boundary condition agg is the
always neglectedIn Sec. Il we study a dynamical model to Wave function in the channelat energye,, . The integration
illustrate our findings. There we conjecture that the semiclasiS done over the contact region between lead and cavity. A
sical periodic orbit theory can be used to estimate the typicaiiSeful quantity for the forthcomlng discussion is the partial
magnetic field scale of any correlator of a quantum dot in &i€cay width, defined abc,=|vel - We remark that Eq.
realistic situation. We conclude in Sec. IV with a discussion(2-3), as it stands, does not contain barrier penetration fac-
on how the presented results are robust with respect tirs- Throughout this paper we will assume that penetration
dephasing effects and on possible experimental realizationfactors are channel independent and therefore will influence

Several more technical details are left to the Appendixes. Only the average decay wid¢l"), but not its distribution.
This approximation is certainly valid in the case of a single

open channel in each lead, the case for which we specialize
our analytical and numerical results. When the constrictions

One of the basic tools to investigate the conductance i§onnecting leads to the cavity are smaller than one electron
mesoscopic devices is the Landauétiker formula?®?*  wavelength but the cross section in the leads is not, strong

For a two-lead geometry' where leads are denoted b?ft) CorrelationS among partia| decay amp|itudes ata fixed reso-
andR (right), the conductancé is given by nance exist>'*For this general situation it is still possible to
incorporate different penetration factors and the effect of cor-
2e2 relations into our results, although we do not believe that the
G= TZ |S:R(ER, @)%, (2.1)  final expressions could be cast in a simple analytical form.
ab Nevertheless, one would need to obtain all parameters either
from the experiment, or from a satisfactory dynamical model
that comprises both cavity and leads.

Finite-temperature averaging caused by the rounding of
e Fermi distribution can be done straightforwardly. In the
limit ', <kT<A the conductance peak corresponding to an
n-resonanceneasurement is given #?°

II. STOCHASTIC APPROACH

where the sum runs over the channi$ on the lead_ and
the channels{b} on the leadR. The scattering matrix
S(E, ¢) connects right and left channels and is evaluated atth
the energyE and magnetic fluxp. The factor of 2 is due to
spin degeneracy.

In the case of quantum dots in the tunneling regime this

ft)ormu]tet\ becomes particularly simple, since Benatrix can & _2e2 - T I »

e written as =0 | 2T g, Wit gv—m, (2.9

B . YarYow whereT' (g, is the decay width for the resonaneeinto
Sab(E’¢)_Sgb(E'¢)_'§V: E_8V+irv/2+0((F>/A), open channels in theL(R) lead. In other words,

(2.2 TL(R)FECEL(R)FC_V- Equation(2.4) does not take into ac-
count thermal activation effects. However, one should have

where the matrix elementsg,, give the probability ampli- in mind that in the tunneling regime very small values of the
tude of a state in channal to couple to the resonanaein partial decay widths may occur relatively close in energy to
the dot. The total decay width is given Hy,=3|y.,/?, large ones. In addition to that, the single-particle spacing

where the sum is taken over all open chanrmel$Ve shall fluctuates and can reach values smaller thamAs a result,
assume that the contribution of direct processes is very smadiven at low temperaturedess than 100 mKa very short
and neglect the off-resonance te®. Equation(2.2) is a peak may be substantially influenced by neighboring reso-
very good approximation to th8 matrix when the average nances. This effect causes the conductance peak to cross over
decay width(I') is much smaller than the mean spacingto a different regime, where the height becomes proportional
between resonant statds This is indeed the case for the to T rather than I (even though the inequality
isolated resonances observed in quantum dot experimentSg | <kT<<A is still approximately satisfied® We will
(Hereafter we use\ to denote the level spacing caused avoid further consideration of this or any other similar effect
solely by single-particle states within the cavity, as opposedby restricting our analysis to peaks whose heights have ex-
to the spacing between conductance peaks observed in tletusively the characteristic T/behavior.

experiments.When the conditiofI")/A<1 is not met, uni- In what follows we are going to evaluate the autocorrela-
tarity corrections to Eq(2.2) become important and they tor of conductance peak heights in terms of an external pa-
demand a different parametrization of tBematrix (see, for rameterX which acts on the system HamiltoniafAt this
example, Ref. 2b point we do not need to specit¢, which could be, for in-
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stance, a shape variable or a magnetic fllix.order to ob- - X - X

tain the autocorrelator we use a statistical approach that will (X) < ( )gv + 2 >

be described in detail in the next subsection. Unfortunately, a

complete analytical solution for this problem is not yet avail- X X

able and presently seems to be a formidable task. Therefore <9u X— —) ><9V 2 > 2.7

our analytical treatment is based on a perturbative expansion
for small values ofX. We resort to numerical diagonaliza- where(---) denotes averages over the resonancesnd
tions of large random matrices to conjecture the completgver different values oX, but will later be interpreted as an
form of the autocorrelator for all other values Xf average over the Gaussian unitary enseni@EE) of ran-
We also derive an exact analytical expression for the joinlom Hamiltonians® The difficulties involved in the exact
probability distribution of conductance peak heights andcalculation ofC4(X) become clear once we expand the con-

their first parametric derivative. This distribution, besides beductance peak helght in powers ¥fand assume translation

ing of theoretical interest by itself, can also be employednyariance(independence oX),

alternatively in the calculation of the smadl-asymptotic

limit of the conductance peak correlator. % 1)nX2n< d"g (i)
Before proceeding, we first present some basic quantitie§ (X => =

entering the calculation. Since we are only considering two- =0 (2n)! dx"

point functions, the knowledge of the partlal Qecay W'dt.hs at(Notice that odd powers disappear since the autocorrelator is
two parameter space point§; andX,, is required. We will

) ; : by construction an even function &) As presented in Eq.
need to Specifyl’c,(Xz) only up to first-order terms in an (2.8), the task of finding the complete functional form of
expansion aroundl.,(X;), namely,

C4(X) requires not just the knowledge of the second moment
T (Xo)=To (X1 + XA, (X)) +O(X?), (2.5  of all derivatives ofg,(X), but also the summation of the
Taylor series. Presently we do not know of any other alter-
whereX=X,—X;. The coefficientA is given by first-order native method that could lead to thempleteanalytical form
perturbation theory in terms of eigenfunctions, eigenvaluesof Cy(X). An analogous situation is encountered in the cal-
and matrix elements of the perturbation. Assuming that theulation of the more commonly studied level velocity
Hamiltonian may be written in the fornd(X)=Hg+ XU autocorrelato¥ (see the detailed discussion of Ref).3Bhe
and using Eq(2.3), we find that small X asymptotic limit can, however, be evaluated exactly
through standard random matrix methods. Moreover, an ap-
2 YEV?’CMUMWL YCVYZMUVM 26 proximate curve for all values ok can be found through
e £,— €, ' (2.6 numerical simulations.
We start with the smalk asymptotics. For this purpose
with Hoi,(r)=¢,4,(r) and all partial decay amplitudes, ei- we keep in Eq(2.8) only the two lowest-order terms,
genvalues, and matrix elements evaluate at So far no

2
> —(g,(X))% (28

A=

2

statistical assumption has been made. b X 4
Cg(X):Cg(0)+Cg(O)7+O(X ), (2.9
A. Parametric conductance peak autocorrelation function ith
wi
The starting point of our discussion of the conductance
peak autocorrelation function is E.4). In this subsection e, |2 eI, \2
we shall mainly treat the situation of TR broken by an exter- (0) <(F— > —<—> (2.10
RV+FLV 1-‘Rv—i_l-‘LV

nal magnetic field. We identify the magnetic flux with the
previously introduced variablé. In the spirit of RMT the  gng
analysis that follows will lead to a universal curve for the
conductance peak autocorrelation, which is expressed in Trli, \3(Ar, AL, Ar,+AL\2
terms of a scale&X and the coupling of the dot to the exter- Cg(0)=— < (ﬁ) (F—+ T ﬁ) >
nal leads, denoted by the parametags . Bothag, and the Ryt oLy Rv “Lv ZRyTSLy (2.10
typical scale ofX are system-specific quantities, depending '
on the dot shape, the quality of the dot-lead couplings, andNow we introduce a statistical model: we assume that due to
the Fermi energy. Ideally, the scaling &f should be ex- shape irregularities and the presence of a magnetic field, the
tracted from the experimental resonandevel) velocity — Hamiltonian can be modeled as a member of the GUE.
correlator’? When this information is not available, it is not Under this assumption, C ¢(0) has already been
straightforward to puX in correspondence with experimen- obtained:®*?~*4 For example, in the simplest case, where
tal parameters. To overcome this problem we invoke a dyene has two equivalent uncorrelated open chanfeis in
namical system and shall discuss it at length in Sec. llleach leay Cg(0)=4<F)2/45. The second-order coefficient
Similarly, to obtainag | one needs to model specific featuresrequires a more complex treatment, since @dl1) involves
of the tunneling barriers. We avoid this procedure by ex-not simply eigenfunctions but eigenvalues as well. For
pressing our results in terms of the mean decay w{dith Gaussian ensembles, a great simplification is possible due to
which then becomes a fitting parameter in comparisons witlthe statistical independence of matrix elements of the Hamil-
experiments. tonian. This will allow us to divide the ensemble average
The autocorrelator of peak heights is defined as into averages over eigenfunctions and eigenvalues.
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For the sake of simplicity, we will take the matrix ele- freedom3® P,(I')=exp(—T'KT')) (notice that we are consid-
ments ofU as Gaussian distributéd with ering a single open channel per contact and identical Jeads
) and we obtaimA;=2(I")?/15.
(U,)=0 and(U,,U,,)= UW Spdun, (212 The eigenvalue average in E(Q.._1_8) is more complicated
to carry out and needs some additional assumption. Because
we are going to take the thermodynamic limN-G ) later
on, effects due to variations in the density of states are neg-
ligible. Consequently, we may place the reference eigenstate
g, at the center of the spectrum and write

where o is a measure of the perturbation strength &hés
the number of eigenstatéeesonancesconsidered. It imme-
diately follows that

20° lve |2|'yc |2
v N
(M= s (213 1 5(s.)
cel(R) u#v &Yy A~ — 2 ; (219
P(O)u=1 uEv €y, (e}
and Eu

) . . where p(E)=(="_,8(¢,—E)) is the average density of
(AmALL) _o D 7cv7c'v7c;ﬂc'u+cc states. Before proceeding to evaluate this quantity in the
Ry LYUT N 2 = RMT framework, let us first discuss an illustrative and ex-
(2.14  treme situation, the picket fence spectrum with spadingn
. o . . this limit the averaged sum simplifies to (#)=7_,n"2,
with &,,=&,~¢, . Up 10 this point the formulation of the which readily yieldsA, = 7%/3A2. Because the Gaussian en-

problem is very generic and no restriction has been madsembles hypothesis implies fluctuations in the spectrum, the
either on the number of open channels or on their transmis- yp P P '

sion coefficients. A quick inspection of Eq&.13 and(2.14 actual value ofA, for_ the GUE should be larger but of the

indicates that the solution of the most generic casalti- same order of magnltuo_le. .

channel leadsis possible, but the algebra is very tedious and The average over eigenvalues in Hg.19 can be: re-

intricate. Recent experimental realizations of quantum dotgtated as an average over a spectral determinant,

in the tunneling regimé&® indicate that one typically has 1 N

only one open channéh L andR. Owing to that, we limit Ag:—f dey- - .dgNeXp( -

our calculations to the one-channel case. p(0)Zy 2\
Carrying out the average over by using Eqs(2.13 and N 5e.)

(2.19 to simplify Eq.(2.11), we get +2§M In|sw|> Sy Z

v=1u#v €,

ceRcc' el pFv SV/.L

N
e

v=1

20'2 FR FL 4 1 FR,u. FLM
” — v- Ly + N2-3)/2
Cg(o) ( N )< FRV+FLV IU“:FVS?/IU, 1"§RV I‘gLV . N ZN—l N—l ( ) ) _2
=50 2 N (det(H?) tr(H™ %))y,

YRo Yo YRu VL g §

e . (2.15 (2.20
FRVFLV T}

o

whereH is an N—1)X(N—1) GUE matrix and the nor-
As pointed out before, the independence of eigenvalues frormalization constant is given
eigenfunctions allows the factorization of the right-hand side

N
of Eq. (2.15 into two decoupled averages, namely, N
q ( 3 P g 4 ZN:f dgl"'dSNeX%_ﬁzE 8]2}“‘22 |n|8pﬂ|
v=1 vFE R

0_2
CQ(O)=—<W)AFAE. (2.19 \2 N2/2 N
=27)N? — k!. 2.2
The first factor is given by (2m) (N) k[[0 229
e, |2 T'r, To, [Notice thatA=1/p(0)=\/#=N is the mean level spacing at
Ar={\ o1 2t , (217 the center of the spectruinn the limit of N>1 Eq.(2.20
Ry ™= Ly A R (S can be evaluated by the fermionic metfdee Appendix A

where the averagfl'} is taken over both leads andR and for detaily and one finds that

resonances andu with v# u (terms with an odd number of 2 72
distinct amplitudes drop outThe second factor is Afw. (2.22
A=l i (2.18 As expected, the actual value Af is larger, but still in fair
© \iFy ef“ (o) ' agreement with the picket fence estimate.
M

The next step is to rescale the perturbatioto a dimen-
and it involves only an average over the eigenvalues. Sincsionless form, in such a way that all system-dependent pa-
the lead contacts are typically farther than one wavelengthameters are eliminated. One possibility is to use
\ apart, the decay widths RtandL are assumed to fluctuate ((dg/dX)?) as the rescaling parameter. As will become clear
independently. Hence, the calculationfyf requires the con- later on, we do not find this procedure very interesting from
volution of four y? distributions with two degrees of the physics viewpoint because this quantity cannot be easily
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calculated given the underlying dynamical system. We rather
follow an idea originally proposed by Szafer, Simons, and
Altshuler: Recall that the perturbation strength(the non-
universal scale in the above calculatipatso appears in the
level velocity correlatoC, (X),323

C.00 = (9o X denf g, X 2.2
0= 32l | X5 g | X+ 3] ) @23
when evaluated aX=0, namely,
UvV2 2
CU(O)=<[ ]>u: g (2.24

A? NAZ

The statement implicit in the original works of Refs. 32 and
33 is that the quantity/C,(0) sets the scale fanyaveraged
parametric functiorf(X)), provided that the system dy-
namics is chaotic in the classical limit. In Sec. Il we will  FIG. 1. The rescaled correlator of conductance peak heights
show thatC,(0) can be obtained by semiclassical al,gu_obtained from the Hermitian random matrix simulatiofsitary
v . .
ments, once details of the confining geometry of the dot ar€NSeMPI& For comparison, the inset also shows the largesymp-
known. Therefore, in analogy to their analysis of the Ieveltc’“CS in the correlator of decay widthg\(). The solid lines are the
. ’ . analytical predictions for the asymptotic behavignghen known
velocity correlator, we apply the rescalings X+/C,(0) and

- . ) . . and the dashed line corresponds to the fitted curve
Cg(X)=C4(X)/Cq(0) to arrive at the following universadii- c4(x) =0.735(x) 2. Statistical error bars are too small to be seen.
mensionlessform:

The arrow indicates the correlation width at half maximum height.

Cy(X)=1— w2+ 0(x%),

(2.25

We remark that this correlator is not directly accessible to
valid for x<<1. experiments in quantum dofsecall that conductance peak
To extract the nonperturbative part@f(x), as well as its  widths are dominated by the thermal rounding of the Fermi
x>1 asymptotic limit, we relied on a numerical simulation. surface.®” Here we have introduced it with the unique pur-
We performed a series of exact diagonalizations of randonpose of checking the reliability of the numerical simulations
matrices of the formH(X)=H;cosX)+H,sin(X), with H;  in thex>1 range. Contrary to the situation fog(x), both
and H, denoting two 50& 500 matrices drawn from the x<1 and »x>1 asymptotic limits of the rescaled
GUE. This model for the parametric dependence is rathec(x)=C(X)/Cr(0) can be evaluated analytically. One
convenient for the simulations and later data analysis befinds that(see Appendix B
cause it does not make the level density depenpmor
does it cause the eigenvalueskbX) to drift with X. It is 1-2m2x%13 for x<1
helpf.ul to thipk of[H(X)]k| as the matrix elgment of the /()2 for x>1.
Hamiltonian in a discrete space representation. As a result,

for the one-channel lead case we may simply equal decayne qata obtained from the random matrix simulations indi-

widths to the renormalized[') =1) wave function intensi-  .ate that the asymptotic tail af,(x) is well described by an
ties at a given point, x~2 law. In the light of Eq(2.28), this is not very surprising:

Cr(X)—

(2.28

FkV:N|l//V(k)|27 (226)

wherek is the site number and the eigenstate label. In this
way, we were able to generate more than dferent con-
figurations of the two-lead geometry, out of which only
2x 10" were used(we stress that wave functions taken at

differentv or k are statistically independent when the size of

the matrix is large enough
For each realization oH; and H, we variedX in the

If one lead were more strongly coupled to the cavity than
the other, say, I'e>I'\, we would have that
cg(x)=cr(x)+O(FL/FR) a_nd thereforecg(x>1)~x‘2 in _
leading order. We cannot rigorously prove, though, that this
asymptotic form is also exact when right and left leads are
identical.

To conclude this subsection, we briefly discuss the univer-
sality class of preserved TR without spin-orbit couplitige
case when spin-orbit coupling is present, the symplectic en-

interval [0,77/8] and considered only the 100 central eigen-semble, will not be discussed since it is not relevant to semi-
states in order to avoid having to unfold the spectrum. Inconductor heterostructupesThe simplest experimental real-

total we have run 50 realizations. The final result is presenteiation is a measurement of the evolution of conductance
in Fig. 1. For comparison, we have also shown in the insepeak heights as a function of shape deformation in the ab-

the result obtained for the decay width correlator,

|

)ZX
2

X

X+2

- X
CF(X):<FKV<X_ E)Fkv

NI

>. (2.27

sence of a magnetic field. The general approach is the same
as above and we assume that the system Hamiltonian can be
modeled as a member of the Gaussian orthogonal ensemble
(GOB).3! However, thex<<1 asymptotics of the conductance
peak correlator is now more difficult to calculate. This is not

a daunting problem because, as seen above, the numerical
results reliably recover the correct behavior of the correlator
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FIG. 2. The rescaled correlators of conductance peak heights 10° L “eo |
and decay widths from real random matrix simulati¢oghogonal . ! {
ensemblg following the same conventions as Fig. 1. The dashed 0 10 20 30 40
line corresponds to the fittingg(x)=1.214(7rx)‘2 and the solid k
line is the theoretical prediction for th&>1 asymptotics of
cr(x). FIG. 3. The Fourier transform of the correlator of peak heights

for the GUE(O) and GOE (\) ensembles. The dashed line is the
for small values ofx. Consequently, for the TR-preserved curve f(k)=0.12%275 representing the Fourier transform of a

case we relied entirely on numerical simulations and did not orentzian fitted to the GUE data.

attempt any analytical calculation. We used the same para-

metric dependence df (X), but this time drewH; andH, parametric derivative; in particular, one can 3¢€g,h) to
from the GOE. All other steps were identical to the GUE obtain the two first coefficients in the expansion of E9),
simulation. The resulting correlation functiongfter the

proper rescalingsare shown in Fig. 2. Notice that the large- _ >

x asymptotics of bottey(x) andcr(x) are well described by Col0)= fo dgf_mdh g°Q(g.h) (2.30
anx~ 2 law, as for the GUE simulations. Here, analogously to

the GUE, we do not know how to prove analytically that this and

decay is rigorously true focy(x); on the other hand, we do 1 . .

know that this power law decay is indeed exact for "0)= — _f j ) )
cr(x).%® We emphasize that the most important characteristic Co(0) C,(0)Jo dgj dh FQ(g.h). (23D
of the TR-preserved, universgj(x) as compared to the TR- ) ) i ,

broken one is the larger decay width. The widths at half e begin by recalling Eq2.6) and introducing the coef-

maximum height differ by approximately 20%. ficients A, into Eq.(2.29,

The power spectra of conductance peak height oscilla- roT
tions [the Fourier transform oty(x)] for both GUE and Q(g,h)=< (g R Sth—M )>, (2.32
GOE are shown in Fig. 3. Notice that the behavior is expo- g, +T, !
nential only over a small range &f values. One then con- ..o
cludes that a Lorentzian can only be used asughapproxi-
mation to the exact curves. Besides, a Lorentzian cannot AL Ap+AL
accommodate simultaneously the small and large asymptotic M,=+C F F W} (2.33
limits of c4(x) presented above in either the TR-preserved or Ry Sl 2Ry DLy
TR-broken case. Taking the Fourier transform of Eq2.32 with respect to

h, we get

B. The joint distribution of conductance peak heights
and their first parametric derivative (unitary ensemble)

I'g,I’ )
Q(g t)= < (g WGXQHMV)>. (2.39

Following the same assumptions of the previous subsec-
tion, we break up the ensemble average into four partial av-

>, (2.29 erages. Recalling Eq$2.13 and (2.14), we first carry out
the average over the perturbation

In this subsection we evaluate the joint probability distri-
bution

dg,(x)
h=—ax

Q(g,h)=< 8(g—g,(x)é

where x=/C,(0) )X and the Hamiltonian belongs to the g42A2 2
GUE. This distribution, although not suitable for direct ex- (exp(itM ,))y = H exp( ‘7Rv7RM VRVV'—M‘ )
perimental investigations, allows one to easily evaluate vy sﬁﬂ \ F Ry

higher moments of the conductance peak height and its first 35)
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Next, we evaluate the average over the decay width$ore do not do it here. The asymptotic limits follow directly

{YRu YL} fOr w# v only, from_ the integral representation shown above. ge10, we
4272 . 5 obtain
A% VR YR | ML
ex 212 + rZ, | (35/67) for p—0
v v v {v,} H,(0 2.4
T p(0)= (70/3)\Jp/= for p—oo, (243
442 A 2 -1
=1+ Mzﬂ(ﬁl_+ %) . (2.39  Whereas for a fixegp#0, we have that
81/,11, Rv Lv
Hp(@)~0(q™*) for gq>1. (2.44

At this point, instead of also taking the average over the
remaining decay widths, we consider first the average over Notice that Eqs(2.40 and (2.42) together immediately

the eigenvaluegs,}, v=1,... N. Here we use the follow- |54 15 the sama<1 asymptotics for the peak height corr-
ing relation, valug in the largé¢ limit and for e, at the center 5 at0r shown in Eq(2.25. From Eq.(2.44) it is obvious that
of the spectruni: (h") diverges fom>2. This can be ultimately related to the

(kA/2m)2] 1 N level repulsion present in the spectrum: St_rong anticrossings
< II 1+ —— > =B(k), (2.37  of levels can cause anomalously large variations of the con-
u#v €pu (e} ductance peak height as a function of the external parameter
. X. When this happens, one finds thht-1/w, where
whereB(k) is the Fourier transform of w=|eg,,1—¢&,|//A<1. Since the probability of this event
5 . goes aP(w)~ w? for the unitary ensembl#,one finds that
B(s)= 35+14s°+3s (2.38 Q(g,h)~1/h* for h>1, in agreement with our exact calcu-
127(1+s%)* ' lation.

[The evaluation of the average in E(R.37) requires a

generalizatioff of the approach used to derive Hg.22. A lil. DYNAMICAL MODEL

brief description is given in Appendix CAfter inserting The aim of this section is to compare the results of the
(2.37) into Eq. (2.36 and inverse Fourier transforming the previous section with exact numerical diagonalizations of a
result we get dynamical model. The essential characteristic of a dynamical
model for this type of study is a fair resemblance to the

Q(g.={ & g- Ir,lL, 1 actual experimental conditions, combined with its adequacy
9 9 TrotTLy) 272 (DY VT R2+T, 2 to numerical computations. For this reason we chose the

(two-dimensional conformal billiard penetrated by an infi-
( h > (239 nitely thin Aharonov-Bohm flux line carrying a flux ap.
X B — = , (2.3 This model was originally introduced in Ref. 41 and later
2mg (T)\Try + L) {Tr, T} adopted in the study of statistical features of conductance in
o ] _ quantum dotd? Using complex coordinates, the shape of the
which is more conveniently expressed in the form billiard in the w plane is given byz|=1 in the following
area preserving conformal mapping:

e 49/ h/(T")
h)= H . 2.4 .
QO e 2 V) (249 2+bZ+ce’P
W(2)= (3.9
The remaining average over the reduced widths V1+2b°+3c

ar=Tg, /Ty anda =T, /(T") appears only in the evalu-

; / where b, ¢, and & are real parameters chosen in such a
ation of the bell-shaped function b

manner thatw’(z)|>0 for |z|<1. The classical dynamics of
a particle bouncing inside this billiard is predominantly sto-

Hp(a)= fwdaRfmdaLef(“Rmf“p) chastic and is unaffected by the presence of the flux line. To
0 0 describe the flux line we chose the following gauge for the
agal vector potentialA:
ool
aptap q b [ af(w) ot (W)
— —B — —|. (2.4) -7 _
\/DS(O‘R3+ a 3) ( \/ps(aR3+ o 3)> A(w) 27\ 7Imw)’ g Re(w) ,0 (3.2

In fact, one can easily carry out one of the above integrationg/here f(w)=In[|z(w)|]. This particular gauge, combined
and arrive at with Neumann boundary conditions, permits a separation of
the Schrdinger equation into polar coordinates §) of the
© u+4 fu+4 complex parametez=re'’. The eigenstates, thus ob-
_ —pu 8 id . .
Hp(Q)—ZpJ due B( a u+1/" (2.42 tained correspond to the resonant wave function appearing in
0 yu(u+1) 12 . .
Eqg. (2.3).° In our numerical treatment the wave function
It is possible to represeri(q) in terms of special func- . inthe lead is equal to a transverse sine function multiplied
tions, but we did not find it particularly clarifying and there- by a longitudinal plane wave.
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In practical calculation$? one fixes the value of the flux
¢ and uses as a truncated basis the loiesbur case 1000
eigenstates of the circular billiardh & c=0). These have the
form J,(y,.r)e"’, whereJ, is the Bessel function of frac-
tional order v and v,, is the nth root of its derivative,
J(vn,)=0. The dependence on the magnetic flux enters
throughv=|1— ¢/ |, with ¢ as the flux quanturh/e. To
solve the Schrdinger equation one has to calculate several
thousand matrix elements of the Jacobigh|w’(z)|? in
this ¢-dependent basis. This operation is very time consum-
ing. Changes in shape are not a major obstacle, sinee
and § act as prefactors to the matrix elements and no further
calculation is necessaryfor instance, in Ref. 12 only two
different values ofp needed to be usedn the present work,
however, we wanted to change the flux to simulate the sim-
plest experimental setup and this required the use of 76 dif- FIG. 4. The level velocity correlation function for the conformal
ferent values ofp. The spectrum is seen to be not only2 billiard (O) averaged over five shapes, 76 values of the flux, and
periodic in ¢, but also symmetric aroune/¢,=1/2. For 200 energy levels. The full line is the result of the GUE simulation.
this reason and, furthermore, to avoid the special points 0
and 1/2 we letp/ ¢y vary in the interval[0.1,0.4. To cir-  Sec. Il. The position of the leads and their widths were speci-
cumvent the overwhelming problem of too large amounts offied in the following way. Based on autocorrelation calcula-
computing time we employed the following strategy. We cal-tions of the eigenfunctiory, along the perimeter of the bil-
culated the Jacobian matrix for only seven different values liard, we found that the spatial decorrelation for the relevant
of a= ¢/ ¢y, namely, from 0.10 to 0.40 in steps of 0.04. levels(levels 201 to 30Dtakes place over a distance around
Then, for any other value of, the matrix element7;;(«)  1/60 of the perimeter. We therefore decided to take the width
was found by polynomial interpolation. This was checked toof the leads to be 1/24 of the perimeter, i.e., 2.5 times the
give a relative error of at most 10. To improve the statis- decorrelation length, yielding 24 adjacent leads. To improve
tics we also calculated the eigenstates for five differenthe statistics we used all 24 lead position for edgh Due to
shapes by keepindp=c=0.2 and lettings=k=/6, with  the relatively large width of the leads, adjacent leads are not
k=1,2,3,4,5. The spectra corresponding to these shapes agerrelated, as was verified by obtaining the same rewuith
statistically uncorrelatetf Due to the truncation of the basis larger fluctuations using only every second or every third
only the lowest 300 of the calculated 1000 eigenstates wer¢ad. The result of the calculation is shown in Fig. 5. A fair
accurate enough to be used in the analysis. We also discardggreement with Eq2.28) is noted.
the lowest 100 eigenstates because of their markedly nonuni- Finally, we calculated the conductance peak correlation
versal behavior. We should emphasize that it is not a triviakg(x), Eq.(2.7), for the conformal billiard using the above-
task to increase the number of usable states. For the asymentioned decay widths. We chose all possible pair configu-
metric conformal billiard no symmetry reduction of the re- rations among the 24 lead positions. The result is shown in
sulting eigenvalue problem is possible. The presence of theig. 6 and, again, a fair agreement with the predictions of
flux line constrains the method of analysis to the diagonalSec. Il A is observed. Notice that the data for the conformal
ization of large Hermitian matrices, limiting the number of billiard are not fully consistent with a Lorentzian if we fix
eigenstates that can be treated efficiently. the x<1 asymptotics of the curve to be identical to Eq.

c,(x)

A. Correlation functions for the billiard T T

In the following, we present the numerical results for the
correlators of level velocity, decay widths, and conductance
peak heights(Recall that at present only the last can be
directly measured in real experiments.

Figure 4 shows the level velocity correlator defined by
Eq. (2.23 rescaled according to,(x)=C,(x)/C,(0), with
x=al/C,(0). Theplotted data were obtained by averaging
over 76 equidistant values of in the interval[0.1,0.4, over
the eigenstates between 201 and 300, and over the five dif-
ferent shapes mentioned above. We observe a good agree-
ment with the analytical resuftfor small values ofx and
with random matrix simulations in general. A thorough dis-
cussion of the scaling factofC,(0) dependence on energy
and billiard shape is postponed to the next subsection. FIG. 5. The decay width correlation function for the conformal

Next we employed the billiard model to obtain the decaypilliard (O) for a fixed shapel{=c=0.2 ands= 7/3) and averaged
width autocorrelation functioe(x), Eq. (2.27). The decay over 76 values of flux and 200 energy levels. The full line is the
widths I'y, for the billiard were calculated as described in result of the GUE simulation.
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from GOE- to GUE-like spectral fluctuations in a chaotic
billiard threaded by an Aharonov-Bohm flux line scales with
the energy aEY% The origin of this dependence has a
simple semiclassical explanation which was nicely worked
out by Ozaio de Aimeida and co-workefS:* The nonuni-
versal scalingC,(0) can be obtained in an analogous man-
ner.

Our point of departure is a recent work by Berry and
Keating'? based on the Gutzwiller trace formula. Most of our
semiclassical considerations follow their findings. However,
our interpretation and the method we use to quardify0)
are different. To make the exposition self-contained, we shall
briefly describe points of their work which are relevant to
our discussion and comment when necessary.

The initial step is to approximat€,(¢) by a two-point

FIG. 6. The peak height correlation function for the conformal correlator.(The nature of the approximation is evident, since
billiard (O) for a fixed shape l{=c=0.2 andé==/3) averaged to track down the parametric evolution of a single eigenvalue
over 76 values of flux and 200 energy levels. The full line is thefor any ¢ is a task that cannot be exactly achieved by con-
result of the GUE simulation. sidering only Green’s functions with a finite number of

points) As in Ref. 42, we write
(2.25. A squared Lorentzian does not seem to provide a

better approximation either, although in a recent 1 -/ d - ¢
experiment’ c,(x) was measured and such a curve was fit- F.(¢.E)= 5515 d¢<—¢N”( d— 5)

ted to the data. It would be interesting to check how well our

result for cy(x) based on random matrix calculations ¢

matches the available experimental dafithout any fitting X@N o+ 5 > : 3.3
parametekin Sec. Il B we will present a way to predict the oE

typical field correlation scaje

For all three correlators we have noticed large statistica
fluctuations between data taken at different billiard shape
We found that most levels around the 300th dtie upper
limit of reliability in our calculation still do not show more
than one full oscillation within the range of flux allowed by
symmetry. The averaging over shape deformation was th
crucial to get rid of the remaining nonuniversal features. Af-
ter averaging over the five values 8fmentioned previously
(see also the following subsectiprwe found thatC,(0)
near theNth level obeys the lavC,(0)~ 1.202/N.

We ascribe the small mismatch between theory and n
merics, particularly ak>1, to poor statistics. As mentioned
before, the only way to circumvent this problem is to com-
pute higher eigenstates. Fortunately, this difficulty does no
appear in real experiments where the magnetic flux is e
tended over the whole area of the cavity and the dependen
of ¢ is not periodic.

YvhereN (E,¢)=2,0,(E—¢,(¢)) is a smoothed cumula-
gve Ievel density WhICh counts the number of single-particle
states up to an energ§ at a magnetic flux¢. For the
smoothing it is convenient to adopt the form
d®,7(E)/dEEIm(E—i7;)*1/77, where the parameter is
chosen to be much smaller than (We would like to point
out a change in notation: Throughout this subsection angular
brackets(- - - ) will denote energy averages in distinction to
the previous ensemble averagekhe energy average in Eq.
(3.3 is taken over a rang®E aroundE. Ordinarily, the
(average over the magnetic flux is taken over a windatin
flux which corresponds to little change in the classical dy-
namics but is semiclassically large, i.e., it corresponds to
izable fluctuations in the spectrum. For biIIiards threaded by
haronov Bohm flux lines this is not an actual constraint,
ce flux variations have no effect on classical trajectories.
onetheless, when considering the correlator of 833
one has, in principle, to avoidb pertaining to the TR-
breaking crossover regime.
B. Energy dependence o€, (0) for billiards When levels are much farther apart thanit is straight-

One of the important features of a dynamical model is tha{orward to show thatiN,(¢)/d¢ can be approximated by
its quantum fluctuations display a marked dependence oA 'de,(¢)/d¢. For ¢ larger than a certairh, such that the
energy. Aquantitativeunderstanding of the field scale of the correlation between level velocities of different states »
fluctuations and its dependence on energy is important to pi¢ much weaker than fop=v», F,(¢,E) is equivalent to
any random matrix result in contact with measurements irC,(¢) and independent aof, provided that the energy levels
quantum dots. For this purpose, the semiclassical approacire taken to be withidE. This equivalence also holds in the
can be used in a relatively simple form. limit of ¢=0 when the spectrum is nondegenerate. In sum-

The aim of this subsection is to discuss the energy depermary,F,(E, ¢) is a good approximation to the level velocity
dence of the level velocity correlat@r,(0), which is a mea- correlator C,(¢) only for ¢=0 and ¢>¢.. In fact,
sure of the quantum fluctuations, and show that one can sué-,(E, ¢) is also the quantity evaluated analytically by Szafer
cessfully estimate this quantity using exclusively classmaland Altshulef? in the context of disordered metallic rings,
guantities. It was already properly noticed by Berry andusing a diagrammatic perturbation theory based on impurity
Robnik! that the typical flux necessary to induce a crossoveaveraging.
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Following Ref. 42, we now turn to the semiclassical treat-

ment. In particular, we specialize the results to billiards 70 . ' &td
threaded by a flux line. This simplifies the problem enor- 60 - W‘
mously since ifS, is the action of a periodic orbit, upon !
applying a magnetic flux ¢ we find that 50 W)‘W i
S,— St 27hw, ol dg, Wherew,, is the number of times the ~._ 40 | W" i
orbit n winds around the flux line. The cumulative level den- =
sity is expressed semiclassically using the Gutzwiller trace 230 - 1
formula and one writes the correlator as 50 L _

2\ 2 - 10 .
F,,((f),E): %) <%:n |AmAn|W§eX%|(thsm 0 I . ‘ ’

0 50 100 150 200
+277Wn£> - @’ 5anm> , (3.9 T
0 SE FIG. 7. Numerical estimate of the winding number variance

. L . w? as a function of orbit timel in the classical billiard with unit
where the amplitude&,(E) contain information on the sta- greq =1, ands= /3.

bility of the orbitn as well as its Maslov index. The smooth-

ing of the staircase function gives rise to the exponential By writing the winding number as an integral over the
damping factory timesT,(E), the period of the closed orbit angular velocityw(T) =fgdti9(t)/27r, it is simple to see that

n. In the semiclassical limitN(E)>1, the flux range of the ¢, 5 ergodic systerw(T)=0. The winding number vari-
TR-breaking crossover is much smaller thag. Therefore,

without affecting considerably the calculation for the pure
TR-broken case, we take the limit 8ip— ¢,. —— 1 T T T o
Now one arrives at one of the delicate points of the semi-W(T)= 2f dtf dt'C(t' —t)~ —2f dt'C(t’),
. . (2m)<Jo Jo (2m)%J)o
classical approach. The correlatoy(#,E) is expressed as a 3.6
sum of diagonal and off-diagonal contributions. In contrast '

to the fact that it is a settled matter how to compute thewhereC(t)zm. For chaotic systems in general
diagonal part, the evaluation of the off-diagonal term is still,[he correlatoC(t) decays sufficiently fast iff to assure the
an unsatisfactorily solved problem. It seems thatFgyrit is convergence of the integral in E.6).4” The knowledge of
reasonabl® to neglect the off-diagonal contribution and we the winding number distributiorP(w,T) allowed us to
will do SO hereafter. . o evaluate the phase space average in(Bd). To determine
The diagonal part oF ,(¢,E) in Eq.(3.4) is still difficult (w,T) for the conformal billiard we have randomly chosen
to evaluate since, in principle, it requires the knowledge ofy ¢ jnjitia| conditions and computed trajectories up to 250
the full set of periodic orbits up to the cutdfif . This can 1, ,nces for the particular deformatibrsc=0.2 and differ-

be tsimplif:ﬁd by tge fO:JOW"?g d_conski)c_iterations. For Chat(.)tiﬁ ent §'s. We have generated a histogram recordngnd T
systems, theé number O periodic orbilS grows exponentia yevery time a trajectory winds around the flux line located at

as a function of their length and ergodicity ensures that as the origin® The results displayed in Fig. 7 confirm E8.6).

the orbits become longer they tend to explore the phas%he variance ofv(T) is better written &%
space more uniformly. Thus, one can define a critical length

L. corresponding to a uniform coverage of the phase space
by the periodic trajectories. For a fixed enefgyL . deter- w(T)=«
minesT,, the time when the Hannay and Qimode Almeida

sum rulé® is applicable, allowing the sum over periodic or- yhere. 7 is the billiard area and is a system-dependent
bits to be calculated as an integral over orbital times. Apply-quantity computed for the scaled billiard with unit area and
ing this sum rule to the diagonal part of Eg.4) one obtains  {rgjectories with unit velocity. Moreover, our numerical re-
sults give us confidence that for any given tiféw,T) is a

dia 2 (=dT , ¢ Gaussian distributiofsee Fig. 8 This is in agreement with
Foé.E)~—> S wi(T)co ZWW(T)X the conjecture of Ref. 41 for periodic orbits.

0/ T¢ 0 L. . . . . .
Substituting this result int@3.5) and bearing in mind that
;{ 29T
xexp ———|.

ance is given by

2E 1/2
- ¢) T, 3.7

in the semiclassical limiyT. /%<1, for =0 we obtain
f

(3.9

. 1
FIY0E)~ 2 (3.9

Here the overbar stands for an average over the phase space, :

or, in practice, over an ensemble of trajectories. The replace-

ment of the summation over periodic orbits by an averagd)sing the leading term in the Weyl formula,
over trajectories makes the problem amenable for a compWN(E)~.Z/mE/274?, we can write

tational evaluation OF?;ag((ﬁ,E). Such a procedure has al-

ready been successfully used to estimate the GOE to GUE $o

e . . - :ﬁ. .
transition parameter in the stadium billigfd. e [47K*N(E)]* (39
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FIG. 8. The distribution of winding numbersolid line) for FIG. 10. C,(0) as a function of/N for the conformal billiard,

T=150 in the classical billiard with unit areayp=1, and With N as the eigenstate number. The symbols indicate the data

6=m/3. The dotted line is a Gaussian curve with variance given byobtained from the exact numerical diagonalizatiénly quantum
Eqg. (3.7). for different geometries. The solid line is the total average over all

data:C,(0)= 1.202/N. The dashed and dotted lines are the semi-
classical estimateEq. (3.8)] for §=7/2 (k=0.253) andé=w/3

Notice thatde=< gy . (k=0.314), respectively.

Although F(¢,E) fails as an accurate approximation for
C,(¢) over the entire range ap, we expect it to work for ) _ )
$=0 and > ¢.. Therefore the semiclassical quantify, computex. In t.he_above dlscusspng gives a measure Qf
given above should yield a good approximation to the exact10W fast the W|nd|_ng m_me(_er variance increases with time.
inverse field scaleyC,(0). We used the same procedure For the more phy5|_ca| situation of exterjcladlelds,x mea-
described to obtainP(\?v T) to computex as a function of sures the rate of increase in the variance of accumulated

5. The results are shown in Fig. 9. Figure 10 Shaw0) as areas as a funcuo_n of tmf‘é.!t is interesting to notice that
. . the semiclassical interpretation of the scales of the conduc-
a function ofN from quantum mechanicdBec. Il A) and

. . A : . . tance autocorrelation function for quantum dots and open
semiclassical ¢, ©) calculations. From the numerical diago-

nalizations we found that the proportionality factor betweencavities IS very similar. Since quantum dots hdve4, the
. i I'is al iclassically | . In this re-
C,(0) and N'2 varies between 0.945=57/6) and 1.54 escape timéi/T" is always semiclassically large. In this re

N . . . \ . gime, the physics is dominated by the classical decorrelation
(6=/6), while the semiclassical estimate gives 0.90 fo.rtimer implied in Eqg.(3.6). The situation is very different for

5:| 77/?’ flort_msta_nzlc_a. ?le?r:gt, b(c))thdquant(ljjm an?hsem:pla53|bpen cavities, where the escape time plays an important role,
cal calculations indicate »(0) depends on the billiar since it is comparable with. For the quarter stadium and

shape. When comparing the results of these two CaICUIationaxtendedB fields, Ref. 46 givesc~0.3. In this study we

one should also note the size of the large fluctuations in th%bserved thati is a relatively robust number, since very
data presented in Fig. 10. As already remarked in the PreVijittarent shapes of the conformal billiard give’ values xof

ous subsection, these large statistical fluctuations are due Rat differ at most by 60%. Therefore we believe that with

the limited data set used in the simulations. help of Eq.(3.9 and takingx to be of order unity, one can

To put the semiclassical result in direct contact with ex-_ . ; L
. e . estimate the magnitude @f,. for other chaotic billiards.
periments, one needs some system-specific information to

IV. CONCLUSIONS AND DISCUSSION

0.32 T ;
§ § In this paper, we have proposed that the universal form of

% the parametric correlator of conductance peak heights indi-
0.30 | . cates the chaotic nature of the electron dynamics in quantum
{ dots in the Coulomb blockade regime. In experiments, the
% simplest parameter to vary is an external magnetic field.
% . Whereas random matrix theory provides the universal form

$ of the correlation function, the nonuniversal field scale can
L7 be understood in simple semiclassical terms: it is related to

0.26 I ? <] the average winding number per unit of time of periodic
? orbits bouncing between the confining walls of the quantum
dot. This field scale is rather sensitive to the geometry of the

0.24 ‘ . . .

1.0 1.2 1.4 1.6 dot and the Fermi energy. To compare our analytical and
) numerical predictions against the experimental result, the
magnetic flux through the dot has to be larger than one quan-

FIG. 9. The numerical coefficient as a function of geometry tum unit of flux h/e, but such that the cyclotron radius is
for the classical conformal billiard. much larger than the dot diameter. The former condition as-

¥ 028




53 PARAMETRIC CONDUCTANCE CORRELATION FOR . .. 9979

sures that time-reversal symmetry is broken; the latter impeaks of a given sequence, they would influence mostly the
plies that the bending of classical trajectories is mainly due<1 region of the correlator. This is because averaging over
to scattering by the boundaries. We point out that electrona finite range of magnetic field usually yields less statistics
electron correlations can be taken into account by assumiri@r large field differences and, consequently, more pro-
that the single-particle spectrum results from a self-nounced data correlation effects.
consisten{Hartree-Fock treatment'® Lastly, we point out the fact that, independently of previ-
Our theoretical prediction for the correlator of peak OUS considerations, another very interesting experiment is a
heights is based on the hypothesis that the statistical propefirect measurement af,(x). Despite the very large Cou-
ties of the system Hamiltonian can be described by randortPmb energy, which makes the conductance peak spacing
matrix theory. Although we could only derive analytically Very regular at first sight, aca(eful experiment shoul_q be able
expressions for the limit of small field variations, the com-t0 observe the small fluctuations of the peak position as a
plete form of the correlation function was obtained by nu-function of an applied magnetic field. This will give direct
merical simulations of large Gaussian matrices. We havélformation about the single-particle level dispersion or,
compared the random matrix results with the exact correlatopguivalently,c,(x). It will also provide a direct test of our
obtained from the conformal billiard after averaging overestimate of the flux correlation scalg,. _
energy and shape deformation. The agreement found was Note addedAfter the submission of this manuscript we
good, given the limitations imposed by the size of the datdearned of similar work by Alhassidt al.
set. In addition to that, we found that the result of the clas-

sical calculation for the magnitude of the field scale and its ACKNOWLEDGMENTS
dependence on energy matches the quantum result moder- o
ately well. H.B. was supported by the European Commission under

For experimental tests of our theory, it is important to noteGrant No. ERBCHBGCT 930511. C.H.L. acknowledges the

that dephasing in the small quantum dot has to be kept loWinancial support of the National Sci(_ence Fo_undation. Both
enough, namely, the dephasing length has to be larger thdmB- and C.H.L. thank NORDI'TA for its hospltaht)_/. We are
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formalism. Alternatively, the external parameter could be

taken as the shape variation. A+ 0, the conductance au- APPENDIX A: EVALUATION OF (det(H?)tr (H?)),

tocorrelation function should then follow our numerical re- . . . .
sults for the GOE case. Or, by varying the shape with This appendix is devoted to a rather detailed evaluation of

B>B, ooy the conductance peak correlator should pethe average over the determinant shown in @c20. Let us

given by our GUE results(While finishing this work we 2!l
learned that such an experiment has already been ) s
performed:®) Unfortunately, the semiclassical analysis for Cn=(detH") tr(H™")y, (A1)

these situations is more difficult than the one presented here . A .
and still remains an open problem. whereH is now anNXxX N GUE matrix. First, we notice that

- . there i mor nvenient way to expr his aver
Some billiard geometries have well-pronounced short pe- ere IS a more convenie ay to express this average,

riodic orbits which, for insufficient averaging over energy namely,
and magnetic field, can lead to strong nonuniversal features ¢
to the curves presented in this work. We believe that over- Cde (a)
coming this problem will be one of the most serious chal- da
lenges for the experiments. In particular, to verify experi- _ ) 5
mentally the asymptotic behavior @f,(x) should be very ~Where the generating functiof(a) = (det(H*+aly))y can
difficult. Sincecy(x) involves the subtraction of two num- be evaluated by the fermionic methdd:

bers and fox>1 these numbers become very close, statis-

tical (nonuniversal fluctuations can easily drive the experi- f(a)=(de{(H+ aly)det(H—aly))y

mentalcy(x) below zero. Another cause of deviations from

the predicted universal behavior, presumably weaker, is the :< f dlxlexd — xT(H® L+ aly® L)X]> , (A3)
existence of wave function correlations which extend over H

the dot. In other words, our findings assume that the channels ) ) T Tt )

at different leads are decorrelated, which may not be comvherea=—a%, L= diag(1-1), and x'=(x1,x), with
pletely true if the dot size is not much larger than the electror1 and x, representind\-component fermionic vectors. Av-
wavelength. The agreement of our random matrix result§raging over the GUE matrild we find that

with the numerical calculations using the conformal billiard
supports the assumption of independent channels for A
N>200. Smaller systems should be more influenced by short <eXp(_XTH®12X)>H:eXF{ - mtr(uz)
or direct orbit effects. We should also mention that if there

were strong correlations between heights of neighboringvhereu is the following 2<2 matrix:

: (A2)

a=0

2
. (Ad)
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XIXl XZXl
XIXZ X;Xz

B (}\Z)N iaoN +
u= : (A5) f(a)=N . fdM(T)ex - tr(LTLTT) |.

(A11)

The quartic term can be decoupled by a Hubbard-rpe jntegral over the S@) manifold can be evaluated
Stratonovich transformation, namely, through the well-known Itzykson-Zuber formul&which in
a simplified form reads

N
f d[Q]ex;{ - Etr(Qz)—iA tr(Qu)

defexpBl;il;
f du(Tyexi B w(LTLTH = SR PO g
B(l1—=13)
2\ ? A2 ) . . .
=N ex _mtr(u )|, (A6) with |, , denoting the eigenvalues &f Hence,
h . o2 Hermit _ q )= 2N A2\ Nsin(2aN/N) AL3
where Q is a X ermitian  matrix an (a)= ’y W (A13)

d[Q]=dQ;;dQ,,0Q,,dQ,;. As a result, we have
(the factor of 2 takes into account the double saddle point

2 . .
f(a)= %) J' d[Q]ex;{ _ gtr(Qz)} Finally, we obtain

4N3 [ \Z\N
. c =7(—) (A14)
XJd[X]eX[{—XT(a]lN®L+I)\JlN(X)Q)X]. NTantle
(A7) APPENDIX B: THE ASYMPTOTIC LIMITS OF Cy(X)

The Gaussian integral over the fermionic variables can be The smallX asymptotics of the correlator of decay widths
easily carried out, yielding can be determined by the same method used in Sec. Il A for
the conductance peak height correlator. Beginning with the
2 N 5 definition presented in Eq2.27), we expandl’,,(X= X/2)
E) f d[Q]exp{ — 5 QY+ N tfIn(al up to first order inX [see Eq(2.5)]. The zeroth-order term of
Cr(X) is then given by

f(a)=

mQ”}- (A8) Cr(0)=(I"%)~(T',)?=(I")? (B1)

for the unitary ensemble. An expression analogous to Eq.

WhenN>1 the above integral oveQ can be evaluated ; g js ysed to write the second-order coefficient@f(X)
by the saddle-point approximatidwhich becomes exact in i, tarms of the amplituded ,, namely

the limit N—o0). For this purpose we first separate angular
and radial components of, namely, Q=T'qT, where 1
g= diag(@;,d,) andT is an SW2) matrix. The differential Cr(0)=— §<A3>' (B2)
breaks up into d[Q]=dwu(T)J(q)d[q], where

_ 2 : ;
J(a)=m(d,—-0z)" is the Jacobian of the transformation, carrying out the average over the matrix elements of the

d[q]=dq,dq, anddu(T) is the group measure normalized gyternal perturbatiot [see Eq(2.13], we find that
to unity. This yields

2 c"(0)= — 0-_2 2 FV]‘—‘,M
N r(0) N 2 . (B3)
fla)=|5_— fd[q]J(q)exp(—NF[q]) wEY Sop

i N We now average separately over the eigenvalues and partial
I a . .
XJ d,u,(T)exr{— d tr(q 'TLTh|, (ag)  Widths and obtain

, 274 )202X?

where F[q]=(1/2) tr(@?) — tIn(i\g)] and we have only Cr(O==—737 (B4)
kept terms to lowest order ia. The saddle-point expansion
now involves only the radial part of the action: Upon rescaling both c:r(x)ﬂcr(x)=c:r(x)/<1“>2 and
X—x=X(a?/NA?), we arrive at
i

Flal=1-2In(\) = —-(01+07) + 605+ 85+ O(59°), 272

(AL0) cr(x)=1— 3 +0O(x%). (B5)

where g, ;=01 >+ 60, , and Uiz: 1. The relevant saddle The largeX asymptotics ofC(X) can be inferred from
points correspond to; = — o, resulting in the asymptotics of another correlator, namely,
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and
P(X,E)=02 2 |, (X2 ,(r5 X0) |28(E,

2 1 N
N(w,x)= L d)\lfld)\z()\i_)\z>exq2wi(w/2+i )

1
—eu(XD))8(Ezeu(X2) ) — 12 (B6)
X (N1—N2) — (m2X212)(N2—\2)]. (B12)

where ) is the system volume,X;,=X+X/2, and \yhen writing these equations we have rescaled the variables

Ei1,=E+E/2. Recall that the wave function intensities are (g g/A =, /A= 7, andNA Y tr(U2) X/ m2=x. Going back
proportional to the decay widthE ,(X;) and I',(X;) for o Eq.(B8), we arrive at

pointlike contacts. AE;=E, and largeX, the interlevel cor-

relations are secondary to intralevel ones; as a resultdthe ) 1

function in Eq. (B6) acts as a Kronecke®, causing P @)=AP(E,X)= 5 Rek(w,x) +n(w,x)]. (B13)
P(X,0) andCy(X) to coincide(up to a prefactor equal to

A?) to leading order irO(1/X). Sincek(0x)—2/(mx)* and n(0x)— 2/(7x)? asx—», we

Let us for convenience assume a finite size space basis Ve thap(x,0)— 1/(7x)* in the same limit. Therefore, we
represent the system Hamiltonian. We can then reduce E§XPect that
(B6) to

X—=® 1
N\ 2 cr(X) — —. (B14)
P(X,E)z(—) (IM[G(E1+i€:X1) T IM[G(E; (mx)
T Finally, we remark that thex>1 universal asymptotics of
bothk(0x) andn(0x) can also be obtained by the diagram-
—i€;X2) i — A2 (B7)  matic perturbation theory of disordered metals expressed in
terms of diffusion modes.
with G(E;X)=[E—H(X)] ! and e~0". The above ex-
pression can be rewritten in the more convenient form APPENDIX C: EVALUATION OF B(s)

2 In this appendix we give a schematic description of the

P(X.B)=~- (ﬁ) RE[G(Es+ieXy) calculation ofB(s). The starting point is E¢2.37). Here we
go through the same steps of Sec. Il A to evaluatesee

. 1 Eqg. (2.18)]. First we fix the reference eigenvaluie to the
X[G(E2—i€Xo) ) = AZ B8 center of the spectrum, obtaining
In general, an expression like E@8) requires the evalua- . 1 N (KA/277)? -1
tion of the following quantity: B(k)=—= E H Sle )| 1+ ——— .
p(O) v=1 pu#v v (.}

(CD

9
h | b lculated v in th Next, we rephrase this expression in terms of an average
The correlatoD,;,,(E,X) can be calculated exactly in the over a spectral determinant, namely,

zero-mode approximation of the supersymmetric nonlinear
de(H%) >
H L

Dimn(E,X) =([G(E1+i€;X1) Ja[G(Ep i G:Xz)]mn>(-B

o modeP! (or, equivalently, in the RMT framewoyk This o

calculation is standard nowadayfr a recent review, see B(k)=ay d 2 2
’ efH +(kA/2

Ref. 52 and has already been presented in the literature. { ( ™

Here we will only mention the resulting expression for thewherea, is a constanfsuch that3(0)= 1] and the average

(C2

unitary ensemble, which is is performed over anN—1)x (N—1) GUE matrixH. The
2 appearance of determinants in both numerator and denomi-
D (E,X):(—) [ 810mn— Sk OmrK(®,X) nator in Eq.(C2) makes its evaluation technically more dif-
Kimn NA KI%mn i Tmn ficult than Eq.(Al). It is necessary to introduce not only four
_ anticommuting auxiliary variables, but also two commuting
FkndimN(@,X)], (B10 (comple® ones. The resulting symmetry group is U(#)]
where (the pseudo-unitarity is due to the structure of the denomina-
L tor). Fortunately, a general solution for sél,(lij:h graded symme-
_ |- ; ; _ try problems has been recently worked ouT.he derivation
k(w,x)= [ dA d\ 2 12+ Ni—A . - L ;
(@) fl 1[—1 X 2mi(w/2+In) (A= )2) is a nontrivial generalization of the method of Appendix A.
- - For an expression with the structure of EG2), one arrives
—(mX12)(N1=N3) ] (B11)  at the following formulg™®

(fa—mg)(ia—my) (ia+my)(ia+ms,)
(M3—my)(Mzg—my) (My—my)(My—m,)

ei (M +mMy—mMmg—my) , (C3)

IT}_,de(H—m;A) _Ae 2T
detH—iaA)detHtiad) |, ~

a  {m}
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where the sum runs over all six nonequivalent combinationginally, inverse Fourier transforming the above expression,
of pairs ofm;, >0, andA is an unspecified constant. To we arrive at

getB(k) we need to take the limitn;— 0 for all j=1,2,3,4

at a given order. After some algebra, one finds that

-k

N e
B(k)= ﬁ(Z‘H 24k + 8k>+k3). (C4)

S—e *B(k)=

5 _foo dk 35+ 14s®+3s* o5
=] 22 a1t (©9
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