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Abstract. We study the effect of edge diffraction on the semiclassical analysis of two-
dimensional quantum systems by deriving a trace formula which incorporates paths hitting
any number of vertices embedded in an arbitrary potential. This formula is used to study the
cardioid billiard, which has a single vertex. The formula works well for most of the short
orbits we analysed but fails for a few diffractive orbits due to a breakdown in the formalism
for certain geometries. We extend the symbolic dynamics to account for diffractive orbits and
use it to show that in the presence of parity symmetry the trace formula decomposes in an
elegant manner such that for the cardioid billiard the diffractive orbits have no effect on the
odd spectrum. Including diffractive orbits helps resolve peaks in the density of even states but
does not appear to affect their positions. An analysis of the level statistics shows no significant
difference between spectra with and without diffraction.

PACS numbers: 0320, 0365S, 0545

1. Introduction

Periodic orbit theory [1] provides a method of relating local, canonically invariant
information about classical periodic orbits to global quantum information such as the density
of states. However, this theory must be extended if the classical mechanics is not defined
due to discontinuities. There is one class of discontinuity which is relatively mild in that
all trajectories are well defined but just their behaviour changes abruptly at some points
in phase space. Examples of this include grazing angles in billiards [2, 3] and the circle–
straight joint in the Bunimovich stadium [4, 5]. A more severe discontinuity is one in which
some trajectories are undefined. Examples of this include the vertex of a wedge [6, 7, 8, 9]
and three body collisions [10] since in neither case can we continue a trajectory through the
discontinuity. Other examples of discontinuities include scattering singularities [11], flux
tubes [12, 13] and small scattering disks [13, 14]. In each case, periodic orbit theory can
be extended by incorporation of so-called diffractive effects—in the case of vertices this is
called edge diffraction. To incorporate the effect of a discontinuity, one compares to the
solution of the local scattering problem. For the wedge this was solved by Sommerfeld [15]
and the solution discussed in [16, 17].

The structure of the paper is as follows. In section 2 we derive a trace formula
for diffractive orbits analogous to the Gutzwiller trace formula for ordinary orbits. The
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amplitude of each diffractive orbit is affected by the curvatures it experiences on the
geometric part of its path as well as by the diffraction at the vertex. As an example,
we employ the theory in a numerical study of the cardioid billiard [18] which is ergodic
[19], and in section 3 we discuss various properties of this billiard. The comparison of the
theory and numerics takes place in section 4. A brief analysis of the spectral statistics of
the cardiod billiard is presented in section 5, while section 6 contains the conclusion.

2. Trace formula for diffractive orbits

The semiclassical formula for the traceg(E) of the Green functionG(E) of a chaotic
Hamiltonian is [1]

g(E) ≡ TrG(E) = 1

ih̄

∑
γ

Tγ√
3γ ∓ 1/

√
3γ

exp{i(Sγ /h̄ − σγ π/2)} (1)

where the sum is over all periodic orbits,γ . The factorsTγ , Sγ , 3γ and σγ are
the canonically invariant periods, actions, stabilities and Maslov indices of the orbit,γ

respectively. (The canonical invariance ofσγ is proved in [20].) The−/+ factor refers
to whether the orbit is direct hyperbolic or inverse hyperbolic. We extract the density of
statesρ(E) from the trace through the identityρ(E) = −Im[g(E)]/π . Periodic orbits are
singled out because they have a stationary phase with respect to small deviations. The
requirement of stationary phase can also select other phase space structures [21] and we
will henceforth refer to the orbits which enter (1) as ‘geometric orbits’ to distinguish from
other possibilities.

Another process which can lead to a stationary phase is a trajectory which hits a vertex.
While not a classical trajectory, it is still a path in the sense of path integrals [22] with an
amplitude that can be found by comparison with the scattering solution of a wedge; we call
such a path ‘diffractive’. The asymptotic (in ¯h) contribution to the Green function of the
Schr̈odinger equation arising from the path fromx ′ to x via the vertex atξ is [6, 16, 17]

Gd(x, x ′, E) ≈ h̄2

2m
d(θ, θ ′)Gf (x, ξ, E)Gf (ξ, x ′, E) (2)

whereGf is the Green function in the absence of the wedge andd(θ, θ ′) is a diffraction
constant. It equals

d(θ, θ ′) = −2
sin(π/ν)

ν

{
1

cos(π/ν) − cos((θ − θ ′)/ν)
± 1

cos(π/ν) + cos((θ + θ ′)/ν)

}
(3)

where θ and θ ′ are measured with respect to the wedge normal (unlike in [8, 9]) and
ν = α/π , α being the opening angle of the wedge as shown in figure 1(a). The+/− sign
refers to Neumann/Dirichlet boundary conditions. We will mainly be interested inα = 2π

for which

d(θ, θ ′) = sec

(
θ − θ ′

2

)
∓ sec

(
θ + θ ′

2

)
. (4)

Note thatd(−θ, θ ′) = ∓d(θ, θ ′) and thatd(0, 0) = 2 for Dirichlet boundary conditions and
0 for Neumann. The factor ¯h2/2m appears in (2) because we are using energy dependent
Green functions; it is absent if we use the Green functions of the Helmholtz equation in
two dimensions. The Green functions of (2) all have units 1/[Energy][Length]2.

For free motion in two dimensions,Gf (x2, x1, E) = −ih̄2H
(+)

0 (k|x2 − x1|)/8m, where
H

(+)

0 is the outgoing Hankel function andk = √
2mE/h̄. This form of Gf is assumed in

the derivation of the diffraction constant. However (2) is more general. In the presence of
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Figure 1. (a) A path connecting the pointx′ to the pointx via the vertexξ . The anglesα, θ ′,
and θ appear in (3) defining the diffraction constant. (b) A schematic diagram of a periodic
diffractive orbit with its local coordinates.

a potential with a vertex, we tackle the local scattering problem by assuming the potential
does not change much in a typical wavelength. We would then call the directions of the
trajectory when it enters and leaves the vertexθ ′ and θ and use these in determining the
diffraction constantd(θ, θ ′). Away from the vertex, we connect the outgoing free space
Green functions to the relevant semiclassical ones for that potential. For example, (2) is
valid for the problem of motion bounded within a wedge in the presence of gravity [23] for
which Gf is more complicated. For that reason, we do not assume billiard conditions in the
subsequent discussion, although we do restrict the discussion to two spatial dimensions. The
content of (2) and (3) is that an orbit entering the vertex can be continued out at any angle
with a quantum amplitude given byd(θ, θ ′). The contribution of such a diffractive orbit is
of order

√
h̄ relative to that of a geometric orbit. We now analyse this semiclassically to

derive a trace formula in analogy to (1).
If there aren diffractions as sketched in figure 1(b), (2) generalizes to

Gd(x, x ′, E) ≈
{

n∏
i

h̄2

2m
di

}
Gf (x, ξn)Gf (ξn, ξn−1) · · ·Gf (ξ2, ξ1)Gf (ξ1, x

′) (5)
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where we have suppressed the energy dependence inGf and theθ dependence in the
diffraction constants. To obtain the trace, we first identify the pointsx and x ′ and then
invoke stationary phase to require that the momenta also match smoothly—as for geometric
orbits. Orbits which satisfy these constraints we call diffractive periodic orbits. They can
be found, in principle, by firing out trajectories at all angles from all the vertices and
determining which ones return to a vertex. We impose no constraint on the momenta at the
vertices and so allow any incoming or outgoing angles.

To proceed, we define local coordinates along the various classical paths. At each
point x, we takez and y to be the local coordinates parallel and transverse to the path,
respectively. At each vertex we define local coordinates,ζi and ηi , on the the incoming
path andζ ′

i andη′
i on the outgoing path. The local transverse momentum atx is p and the

local transverse momenta at the vertexξi areπi andπ ′
i . The constant energy approximation

to the classical Green function from anyx1 to anyx2 is [1]

Gf (x2, x1, E) ≈ 1

ih̄

1√
2π ih̄

D(x2, x1) exp{i(S/h̄ − µπ/2)}. (6)

The actionS is evaluated along the path andµ counts the caustics along the orbit. The
factor D equals [1]

D(x2, x1) = 1

|ż2ż1|1/2

∣∣∣∣− ∂2S

∂y2∂y1

∣∣∣∣1/2

= 1

|ż2ż1|1/2

∣∣∣∣∣
(

∂y2

∂p1

)
y1

∣∣∣∣∣
−1/2

(7)

where the subscript on the bracket of the second equation indicates that we take the derivative
of the final position with respect to the initial momentum while holding the initial position
fixed. This then defines a fan of initial conditions radiating from the source pointx1. This
is the contribution of a single classical trajectory—if there is more than one, we must sum
over them.

Evaluation of the trace involves integrating along the periodic orbit and transverse to it.
The integral along the orbit can be done one arc at a time and below we consider just the
arc betweenξ1 andξ2. Equations (6) and (7) imply

Gf (ξ2, x)Gf (x, ξ1) ≈
(

1

ih̄

1√
2π ih̄

)2

D(ξ2, x)D(x, ξ1) exp
{
i
[
S21/h̄ − (µ2 + µ2)π/2

]}
(8)

whereS21 = S2 + S1 is the action of the path betweenξ1 and ξ2 via x. At each point,x,
along the orbit, we calculate the transversey integral. The onlyy dependence, to leading
order inh̄, is in the action which we approximate as

S21 ≈ S0
21 + 1

2

∂2S21

∂y2
y2. (9)

The partial derivative is taken while holding the initial and final coordinatesη′
1 andη2 fixed

at zero.S0
21 is the action evaluated aty = 0 and is independent of the positionz along the

orbit. The stationary phase integral yields∫ ∞

−∞
dy exp(iS21/h̄) = √

2π ih̄

∣∣∣∣∂2S21

∂y2

∣∣∣∣−1/2

exp
(
i(S0

21/h̄ − σπ/2)
)

(10)

whereσ is zero if the second derivative in (9) is positive and is unity if the second derivative
is negative.

We now seek to manipulate the various partial derivatives which come from the two
amplitude factorsD and from the stationary phase integral (10). These all come with a
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power of −1
2 and with absolute value signs. For purposes of manipulation, we neglect those

for the moment so the combination we need to analyse is(
∂y

∂π ′
1

)
η′

1

(
∂y

∂π2

)
η2

∂2(S1 + S2)

∂y2
=

(
∂y

∂π ′
1

)
η′

1

(
∂y

∂π2

)
η2

((
∂p

∂y

)
η′

1

−
(

∂p

∂y

)
η2

)
. (11)

We have used the fact that the derivative of the action with respect to the final position
equals the final moment while the derivative with respect to the initial position equals the
negative of the initial momentum. Also, we have inserted all of the relevant subscripts
to indicate what is being kept fixed in each derivative. We now show that this factor is
independent of position along the orbit. We can combine partial derivatives in (11) to
obtain (

∂y

∂π2

)
η2

(
∂p

∂π ′
1

)
η′

1

−
(

∂y

∂π ′
1

)
η′

1

(
∂p

∂π2

)
η2

=
(

∂(y, p)

∂(π2, π
′
1)

)
η′

1,η2

. (12)

In the right half of (12) we have borrowed the Jacobian notation of [24]. (We have made
use of the trivial freedom to specify that in the first derivative of the left hand side we
are also holdingη′

1 fixed, with similar specifications in all four terms.) To determine the
value of this Jacobian corresponding to some different pointz′ along the trajectory, we
should multiply (12) by the Jacobian relating the transverse variables variables(y, p) at
positionz to the transverse variables(y ′, p′) positionz′. However, because these variables
are transverse to a trajectory, their Jacobian is identically unity; the two sets of variables
are canonically related owing to symplectic nature of the Hamiltonian flow. It follows that
the combination of factors appearing in (11) is independent of positionz′. In particular, it
is particularly convenient to calculate it very close to one of the vertices. Ifz is such that
the point is close toξ2, we have(

∂y

∂π2

)
η2

= 0

(
∂p

∂π2

)
η2

= 1. (13)

It follows that (
∂(y, p)

∂(π2, π
′
1)

)
η′

1,η2

= −
(

∂y

∂π ′
1

)
η′

1

(14)

where the right hand side is evaluated at the pointξ2. Henceforth, we change notation
slightly and call this term∂η2/∂π ′

1 to stress that it is evaluated at the second vertex. This
factor is simply the spread in position atξ2 of a fan of trajectories radiating fromξ1.

We also want that the phase index,µ1 + µ2 + σ be independent of position along the
orbit. It is not true that the indices are separately invariant; it is simple to imagine that
as we change positionz along the orbit, we will gain or lose caustics in going from the
two vertices to the intermediate position. However, these changes will be exactly mirrored
by changes in the indexσ such that the sum is invariant. For a demonstration of this, we
refer to [25] where the authors evaluate an integral similar to (5). They interpret (6) as
a propagator along the orbit withz playing the role of time. Using the semigroup property
of time-dependent propagators, they conclude that the phase index is a constant. Since this
is constant, we are free to useµ21 which is the number of caustics of a fan of trajectories
going from vertex 1 to vertex 2.

That completes they integral. For thez integral, we remark that the onlyz dependence
is in the velocity|ż|−1/2 which appears in the amplitudesD of (8). Since there are two of
them, the integral to be performed is simply∫

dz

|ż| = T21 (15)
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which is just the time it takes to get fromξ1 to ξ2. Putting together all the remaining factors,
we conclude that∫

dzdyGf (ξ2, x)Gf (x, ξ1) ≈ T21

(ih̄)2
√

2π ih̄

1

|ζ̇2ζ̇1|1/2

∣∣∣∣ ∂η2

∂π ′
1

∣∣∣∣−1/2

exp{i(S21 − µ21π/2)}

= T21

ih̄
Gf (ξ2, ξ1), (16)

where we have used (6) and (7) in the second line and dropped the superscript 0 on the
action.

The appealing fact that the trace integral on the arc betweenξ1 andξ2 is proportional to
the Green function between these points simplifies the analysis tremendously. Recall that
we must still multiply all of the other free Green functions from (5) so there is a factor
which is simply the product of all the Green functions from vertex to vertex. In doing the
integrals along the arc betweenξi andξi+1, we get exactly the same product but multiplied
by Ti+1,i so that the integral of (5) is

gγ (E) = Tγ

ih̄

{
nγ∏
i=1

(
h̄2

2m

)
diG(ξi+1, ξi)

}

= Tγ

ih̄

(
h̄

8πm2

)nγ /2
{

nγ∏
i=1

di

|ζ̇i |

∣∣∣∣∂ηi+1

∂π ′
i

∣∣∣∣−1/2
}

exp
{
i(Sγ /h̄ − σγ π/2 − 3nγ π/4)

}
, (17)

whereSγ , Tγ andσγ are the sums ofSi+1,i , Ti+1,i andµi+1,i along the orbit. The velocitẏζi

is given by energy conservation and is a constant at each vertex and the indexi is cyclic so
vertexn + 1 is identified with vertex 1. This diffractive trace formula is the main result of
this section. The formula was given in [6] by comparison with creeping diffraction, where
Watson contour integration [2] can be used to show that the trace has the same structure.
The diffractive trace formula is similar to the Gutzwiller trace formula (1) but is suppressed
by a relative factor of ¯hn/2 [21]. (17) only shows the contribution of a single diffractive
orbit; in practice we must sum over all such orbits and so introduce the subscriptγ to
distinguish them. If the orbit is a repeat of a shorter primitive orbit, the factor ofT in (17)
is the period of the primitive orbit.

We now specialize to the potential-free case so that ¯h = m = 1, S/h̄ = kL, T = L/k,
E = k2/2, and|ζ̇i | = k. We further invoke the infinitesimal relationδπ ′

i = kδφ′
i whereδφ′

i

is the angular deviation from the periodic orbit on leaving vertexξi so that∣∣∣∣∂ηi+1

∂π ′
i

∣∣∣∣ = 1

k

∣∣∣∣∂ηi+1

∂φ′
i

∣∣∣∣ ≡ 1

k
Fi. (18)

The contribution to the density of states ink is given byργ (k) = −kIm[gγ (E)]/π so

ργ (k) = Lγ

π

{
n∏
i

di√
8πkFi

}
cos

(
kLγ − σγ π/2 − 3nγ π/4

)
(19)

to be contrasted with

ρg(k) = Lg

π

1√
3g ∓ 1/

√
3g

cos
(
kLg − σgπ/2

)
(20)

for geometric orbits. In (19), the factorFi has a simple interpretation; if we launch a
narrow cone of trajectories from vertexξi centered on the periodic orbit,Fi gives the width
of the cone when it arrives atξi+1 [7]. This interpretation in terms of cones is in contrast
with that of cylinders for geometric orbits. (19) was also obtained in [8] for the special
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case of straight walls everywhere so thatFi = Li , the distance between the vertices. We
also mention that this analysis applies equally well if two of the diffraction points,ξi , are
at the same vertex. In particular, if there is only one vertex, then the diffractive periodic
orbits are those which leave the vertex and return to it following a classical path. (17) and
(19) are true regardless of whether the classical motion is chaotic or not, although they are
restricted to isolated diffractive orbits.

There is a zeta function [26] corresponding to (17) in analogy to that which exists for
geometric orbits [27]. We start by defining the diffractive weight for each diffractive orbit

tγ =
(

h̄

8πm2

)nγ /2
{

nγ∏
i

di

|ζ̇i |

∣∣∣∣∂ηi+1

∂π ′
i

∣∣∣∣−1/2
}

γ

exp
{
i(Sγ /h̄ − σγ π/2 − 3nγ π/4)

}
(21)

where we have now introduced the subscriptγ to distinguish diffractive orbits. The sum
over diffractive orbits is then

gd(E) =
∑

γ

Tγ

ih̄

∞∑
r=1

t rγ =
∑

γ

Tγ

ih̄

tγ

1 − tγ
(22)

where we have organized the sum into the primitive orbits and their repeats. To leading
order inh̄,

dtγ

dE
≈ −Tγ

ih̄
tγ (23)

so that

gd(E) = d

dE
log

(∏
γ

(1 − tγ )

)
. (24)

The quantityζ−1
d (E) = ∏

γ (1 − tγ ) is the diffractive zeta function to the power−1.
When multiplied by the corresponding geometric zeta function [2] to the power−1 and
appropriately regulated [28, 29], the product equals the spectral determinant

∏
n(E − En)

so that its zeros give the quantum energy levels. Due to the regularization, the zeros of the
separate terms inζ−1

d (E) are not true zeros of the product. A formula analogous to (24)
also holds in the case of billiards [6, 9].

The functionζ−1
d (E) involves only a single product over periodic orbits. In contrast,

the zeta function for geometric orbits has an additional product over an integer index which
can be thought of as labeling local eigenstates transverse to each orbit [30]. Near the orbit,
these local eigenstates typically have the formψn(y) ∼ yn with n > 0. We conclude that
diffractive orbits have only then = 0 local eigenstate. Higher states do not exist because
they would have a node on the periodic orbit and would not be affected by the diffraction.
This was also noted in the scattering geometries discussed in [7, 9] where it caused there
to be no lower families of quantum resonances. This difference is intimately related to the
fact that the Green functions in (5) are multiplicative [2] in contrast to the behaviour of
Green functions for geometric orbits [1].

3. The cardioid billiard

In this section, we discuss various aspects of the cardioid billiard which are relevant to
us. We briefly review its classical properties and construct the symbolic dynamics for the
geometric orbits and diffractive orbits. The Maslov indices are given by a simple rule in
terms of the symbolical dynamics. We then discuss the role of symmetry in the quantum
problem and how the geometric and diffractive trace formulas conspire to give the even and
odd spectra. We conclude with a discussion of the Weyl formula.
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Figure 2. The cardioid billiard. A generic pointz(θ) at the perimeter is shown as well as the
two special pointsθ = 0 andθ = π (the cusp). We restrictθ to the interval [−π, π). The
dashed line indicates the symmetry axis.

3.1. Classical mechanics

We study the cardioid billiard whose boundary is defined by the following mapping of the
unit circle in the complex plane

z(θ) = eiθ + 1

2
ei2θ θ ∈ [−π, π) (25)

and is plotted in figure 2. The angleθ is defined such that it changes discontinuously fromπ

to −π at the cusp. If the factor of 1/2 is replaced by a parameter,b this represents a family
of billiards introduced in [18] and subsequently studied exhaustively [19, 31, 32, 33, 34, 35].
For b < 1/2, (25) is a conformal mapping but is not strictly conformal forb = 1/2 since
the derivative ofz with respect toθ vanishes atθ = π . In practice, this does not matter
and the algorithm introduced in [33] to find the quantum eigenvalues still applies and was
used by us. Forb > 1/2 the curve crosses itself nearθ = π and the billiard is not well
defined. We note that the quantum behaviour of the cardioid was recently studied in [36].
The dynamics in the billiard consists of free motion within the domain followed by equal
angle (specular) reflections at the boundary. Trajectories which strike the vertex are not
defined but these are of measure zero. Motion in the cardioid has been proven by Markarian
to be ergodic [19]. It is similar to the Bunimovich stadium [37] in that it is defocusing.
Defocusing means that each point on the billiard has positive curvature so that parallel rays
striking the boundary are initially focused. However, the billiard geometry is such that the
trajectories typically diverge even more after the focal point resulting in a net defocusing.
It is this mechanism which leads to the average divergence of trajectories and to chaos. In
contrast, a dispersing system such as the Sinai billiard [38] has negative curvature so that
initially parallel rays striking the boundary are immediately dispersed.

The curvature of the cardioid is

κ(θ) = 3

4
sec

(
θ

2

)
(26)

which is positive for allθ , as in a circle. Forb somewhat less than 1/2, the region nearθ = π

is dispersing rather than defocusing. Billiards with mixed focusing properties like this are
difficult to analyse mathematically [19, 39] and it is for this reason that Markarian’s proof
works only for the cardioid. In cartesian coordinates near the cusp the billiard boundary
satisfies the equation

y ≈ ±1

2
(−(2x + 1))3/2 . (27)

Consequently there is a cusp atx = −1/2 which locally looks like a half plane extending
to the left. This is an example of a vertex singularity so that the analysis of the previous
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Figure 3. Various geometric orbits of the cardioid billiard labeled with their names and their
lengths.

Figure 4. Various diffractive orbits of the cardioid billiard labeled with their names and their
lengths. We indicate the incoming and outgoing directions where it is ambiguous.

section applies.
We found periodic orbits numerically by using the principle of least action. For an

arbitrary periodic orbit the number of intersections with the boundary was specified and
the intersection positions were varied until a local minima of the total orbit length was
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found. Diffractive orbits were found the same way but with the constraint that one of the
intersections was at the cusp. Various geometric orbits are shown in figure 3. The label of
each orbit includes the number of intersections and also a letter index to further distinguish
them. We describe a better naming system below. The asterix designates self-dual orbits
as defined below. In figure 4 we show various diffractive orbits. The naming scheme is
similar to before, the number gives the number of bounces—not counting the cusp. The
primes indicate diffractions, ie. the number of encounters at the cusp. Orbits 2a’, 3a” and
*4a” have arrows drawn to indicate the scattering directions at the cusp. The last two have
two diffractions and 3a” is seen to be a composition of 1a’ and 2a’

Figure 5. A family of related pruned geometric orbits and pruned diffractive orbits labeled with
their names and their lengths.

The three orbits *6b, *8b, and *10b are geometric and reflect specularly near the cusp,
contrary to appearances. Also, 4a misses the cusp and is geometric in contrast to 4a’ which
hits the cusp and is diffractive. In figure 5 we show examples of pruned orbits [40] of both
the geometric and the diffractive kind. These have an index p in their label to indicate that
they are pruned. It can be seen that the orbits are related pairwise; orbit 10p’ appears to be
composed from 5p and 5a’ and similarly for 12p’ and 14p’. This is a feature we discuss
below.

3.2. Symbolic dynamics

Symbolic dynamics [28] is the partitioning and labeling of topologically distinct regions
of phase space. Because of the reflection symmetry of the problem, we can discuss the
dynamics either in the full domain or in just half of it. The half domain, also called the
fundamental domain, has dynamics which are the same as in the full domain but with a
reflection at the symmetry axis. We will show that the full and fundamental domains have
distinct but closely related symbolic dynamics. We begin with a discussion of the symbolic
dynamics of the geometric orbits.

For an arbitrary, time-reversal invariant system with a reflection symmetry, all orbits
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belong to one of five classes. In principle there can be boundary orbits which lie directly on
the symmetry axis; in this example there happen to be no such geometrical orbits. The other
four possibilities are (i) symmetric and self retracing, (ii) symmetric but not self-retracing,
(iii) self-retracing but not symmetric, and (iv) neither self-retracing nor symmetric. These
occur with multiplicities 1, 2, 2 and 4 respectively and examples are *4b, 3a, 6c, and 7b.
Although (iv) is the most generic possibility, we did not find many examples of it among
the shortest orbits. It is typical that the shortest periodic orbits are special [41, 42] and
that generic ones begin to appear only for longer lengths. Orbits of classes (ii)–(iv) behave
identically in the half domain as in the full domain. Orbits of class (i), the so-called self-dual
orbits, must be treated more carefully because in the fundamental domain they are periodic
in Tγ /2 as well as inTγ .

We start by discussing the symbolic dynamics of the full domain. Recalling that each
point on the boundary of the billiard is labeled by an angleθ in (25), we assign a trajectory
the symbol ‘+’ every time it has a reflection which increasesθ (counterclockwise) and
the symbol ‘−’ every time it has a reflection which decreasesθ (clockwise). At the cusp,
the angleθ changes discontinuously by 2π , so it defines what we mean by an increase or
decrease of angle. Since we allow no geometric orbit to hit the cusp, it is not a problem
that the sign ofθ is not defined there. This is a general property of dynamical systems—the
symbolic dynamics is often conveniently described with reference to a discontinuity [28].

As an example, consider orbit 3a. When going in the counterclockwise sense, it has the
symbol sequence+−+. Its time reversed partner, which is distinct in the full domain, has
the sequence− + −. We are free to start counting symbols anywhere on the orbit so that
any cyclic permutation of a symbol sequence describes the same orbit and is not distinct. If
W is the symbol sequence of an orbit which is symmetric under reflections (such as 3a) then
W = W ∗, whereW ∗ is obtained by reversing the order of the symbols. For example,+−+
reads the same left to right as right to left. Self-retracing orbits of length 2n (they must be
even) have symbol sequences with the structureW = AÃ whereA is some sequence of
lengthn andÃ is obtained fromA by reversing the order and every sign. For example, the
symbol sequence for the self-retracing orbit 6c is− − + − ++ for which A = − − + and
Ã = −++. A self-dual orbit is both symmetric and self-retracing and therefore its symbol
has both properties. An example is *4b whose symbol sequence is+ + −− (this satisfies
the property of being symmetric if one makes use of the freedom to cyclically permute the
symbols.)

The symbolic dynamics in the fundamental domain are defined by looking at the symbol
sequence of an orbit in the full domain and assigning a 0 if two adjacent symbols are the
same and a 1 if they are not. For example, orbit 3a, which is labeled+ − + in the full
domain is 011 in the fundamental domain. The time reversed orbit in the full domain,
− + −, is also 011 in the fundamental domain. This is consistent since in the full domain
they are distinct and should have separate symbols while in the fundamental domain they
are not distinct and should have the same symbol.

Note that a self-dual orbit in the full domain has a symbol sequence in the fundamental
domain which repeats itself, for example *4b has the sequence 0101= (01)2. Therefore a
self-dual orbit, when mapped onto the fundamental domain, is the double repeat of a shorter
orbit. Every odd multiple of this shorter orbit will be present in the fundamental domain
but not in the full domain and this is apparent in the symbolic sequences. Any sequence
in which 1 appears an odd number of times can not be periodic in the full domain and
so corresponds to a self dual orbit. Any orbit which is symmetric in the full domain is
self-retracing in the half domain.

We show in table 1, the symbols of all orbits up to length 4 as measured in the
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Table 1. Some geometric orbits and their symbols.

Orbit Full domain Fundamental domain

2a +− 1
4b + − +− 0101= (01)2

3a + − + 011
6b + + + − −− 001001= (001)2

4a + + +− 0011
8b + + + + − − −− 00010001= (0001)2

8c + − − + − + +− 10111011= (1011)2

fundamental domain. There is no fundamental orbit 0, this is reminiscent of the co-linear
helium problem [10], among others. The pruned family 5p, 6p, 7p... means that there
are no orbits with the symbol sequence 0n11 with n > 2. On the other hand, there is an
accumulation of whispering-gallery-like orbits labeled 5a, 6a, 7a... whose symbol sequences
have the form 0n101 and whose lengths accumulate toL = 12 asn → ∞. There are also
orbits of the form 01n; for n even they are 3a, 5b, 7c... while forn odd they are self-dual
and are 4b, 8b,... We believe that both series exist for anyn.

The symbolic dynamics of diffractive orbits is clearest if one think of the cusp as not
being part of the boundary but rather being a means of getting from one point on the
boundary to another. We introduce a symbold which represents a path between two points
on the boundary which goes via the cusp and keep+ and− as defined above. Therefore,
orbit 2a’ has two boundary intersections and has a symbol sequenced+ or d− depending
on the sense of the rotation. Symmetric diffractive orbits labeleddW satisfy W = W ∗

while self retracing orbits have the structureW = AÃ, as for geometric orbits.
The rule for the symbolic dynamics in the fundamental domain is again found by looking

at the word in the full domain. A symbold 7→ d, while a+ or − 7→ 0 or 1 depending on
whether the next non-d symbol is the same or different. For example, in the half domain,
2a’ has the symbold0. In the fundamental domain, the two rotation senses of 2a’ are
not distinct and it is consistent that there is only one symbol sequence. The geometric
orbits discussed above can be subsumed into a larger ternary alphabet in which they are the
subclass with nod in their symbol sequence.

As before, any symbol sequence with an odd number of 1’s must correspond to half of
a self-dual orbit. However, self-dual orbits with one diffraction have the special property of
being geometrically identical to a non-self-dual diffractive orbit and we refer to the pair as
complements. An example of this is the self-dual orbit *4a” which is a perfect overlap of
orbit 2a’, the only difference being that the first backscatters at the cusp while the second
forward scatters. Consequently, *4a” has twice the length of 2a’ and suffers two diffractions
rather than one. This is general, the self-dual orbit always leaves the cusp at an angle which
is the negative of its complement and then follows a trajectory which is simply the reflection
of its complement. If an orbit in the full domain has the symbol sequencedW then its self
dual complement has the symbol sequencedWdW ′ whereW ′ is defined such thatWW ′

satisfies the self-dual property. For example, *4a” has the symbol sequenced + d− and
+− is clearly self-dual. In the fundamental domain the symbol sequence of a self-dual
orbit is found from its complement by switching the symbol immediately before thed.
For example, the symbol sequence of 3b’ isd11 while that of its self dual complement
(not shown) isd10d10 (recall that due to the cyclic symmetry, the last character in these
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sequences is ‘before’ thed). In table 2 we show the labels of all singly diffractive orbits
up to length 4. Note that the symbolsd101 andd011 are simply time-reversed copies of
each other and contribute equally to the trace.

Table 2. Some diffractive orbits and their symbols.

Orbit Full domain Fundamental domain

1a’ d d

2a’ d+ d0
4a” d + d− d1d1 = (d1)2

3a’ d + + d00
3b’ d − + d11
4a’ d + ++ d000
4c’ d + −+ d110
4b’ d + −− d101

To find the symbol sequence of any multiply diffractive orbit, we use the same rule.
For example, the doubly diffractive orbit 3a” starts at the cusp, travels along 1a’ back to
the cusp, diffracts onto the 2a’ orbit, travels along 2a’ back to the cusp and finally diffracts
onto the 1a’ orbit in the original direction. Its symbol sequence isd0d. Because there is
only one vertex, the only multiply diffractive orbits are compositions of singly diffractive
ones. More possibilities would exist if there were more than one vertex.

If all possible symbol sequences were realized as orbits, the number of singly diffractive
orbits in the fundamental domain up to lengthn would grow as 2n. For geometric orbits with
a complete binary alphabet, the number grows as 2n/n. The factor ofn in the denominator
is because cyclically permuted symbols correspond to the same orbit and should be counted
only once. It appears that there are more singly diffractive orbits of long length and it is not
clear if they ultimately dominate the spectrum. A related issue is whether the pruning of
geometric and diffractive orbits is such that the exponential proliferation of the two classes
of orbits is given by the same exponent. This is quite likely since very long orbits cover
the phase space uniformly and are therefore susceptible to the same pruning mechanisms
as shown in figure 5. These questions will be studied in greater detail in a later publication
[43] and here we have just a brief discussion.

The pruning of geometric and diffractive orbits appear to be strongly correlated. For
example, the pruned diffractive orbit 10p’ looks as if it is composed of the pruned orbit 5p
and the diffractive orbit 5a’. This is confirmed by looking at the symbol sequences of these
three orbits. Orbit 10p’ has the wordd++++−++++ which is equal to the composition
of those for 5a’ and 5p which ared + + + + and − + + + +, respectively. A similar
result holds for orbits 12p’ and 14p’. Usually, the existence of pruning implies problems
in the cycle expansion of the zeta function due to the breakdown of shadowing [28] so the
fact that orbits and their shadows have disappeared together might prove very useful. An
example of non pruned shadowing are 5b ⇔ 2a + 3a (since+ − + + − = + − || + +−)
and 4c′ ⇔ 2a′ + 2a (sinced + −+ = d + || − +).

The symbolic dynamics was useful to us in guessing the topology of a few missing orbits.
However, we did not make extensive use of it as we were content to know the shortest
orbits and these can be found by trial and error. It is useful, however, in the following
discussion of Maslov indices and symmetry reduction. In addition, a project which required
knowing many orbits, such as attempting to find semiclassical approximations to many
quantum eigenvalues, would need to make extensive use of the symbolic dynamics.
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3.3. Maslov indices

In this subsection we discuss the Maslov indices which appear in the trace formulae (1)
and (17), beginning with the geometric indices. Starting at an arbitrary point,x, on the
orbit, the indexσγ equals the number of causticsµ plus an indexν which arises on doing
the stationary phase integral in the determination of the trace. Althoughµ and ν depend
separately on the pointx along the orbit, their sum does not. In fact,σγ is a canonical
invariant [20] which equals twice the number of times that the stable and unstable manifolds
wind in completing one circuit of the periodic orbit. It follows that we can use any point
x on the orbit to calculateσγ .

We numerically propagated the 2× 2 monodromy matrix,M, for each geometric orbit
and counted the number of causticsµ by the number of times that one of the off diagonal
elementsM12 changed sign. At the end, we also found the value of(TrM − 2)/M12;
if it is positive ν = 0 and if it is negativeν = 1. Doing so, we found the following
simple topological rule;σγ equals the number of reflections or, equivalently, the length
of the symbol sequence of that orbit. This rule probably arises from the fact that the
cardioid is a purely defocusing billiard so there is, on average, one focus per reflection. In
the Bunimovich stadium, one finds a similar rule thatσγ is incremented by one for each
reflection off the defocusing end caps [44]. It is common that such a simple rule exists and
it is usually related in some simple way to the symbolic dynamics.

For the diffractive orbits,σγ is the number of caustics between successive diffractions.
We found thatσγ always equals the number of geometric reflections and hence the length
of the symbol sequence, as before. This appealing result implies a unity between the two
classes of orbits.

Every geometric reflection also induces a sign change due to Dirichlet boundary
conditions. We account for this by incrementingσγ by 2 at every reflection, so that in total
σγ = 3mγ wheremγ is the number of reflections experienced by orbitγ . For Neumann
boundary conditions this is not necessary, andσγ = mγ . Consistent results, specialized to
the half cardioid, were obtained in [36].

3.4. Symmetry decomposition

The billiard has a reflection symmetryC2 and consequently all quantum states can be
classified as even or odd. The trace decomposes as

g(E) = g+(E) + g−(E). (28)

We can separately findg±(E) by studying the dynamics in the fundamental domain and
from them the densitiesρ±(E). The behaviour of the geometric trace formula (1) under
symmetry decomposition is a well studied problem [41, 42, 45, 46] and here we review the
results which are relevant to us. Thereafter, we discuss the decomposition of the diffractive
trace formula, which is slightly different.

The non-self-dual orbits have multiplicities of either 2 or 4 in the full domain and their
amplitudes are divided equally between the two parity classes. Self-dual orbits require more
care. Half of such an orbit, being periodic in the fundamental domain, contributes to the
the separate traces as follows. Its period, stability and Maslov index are all half of the full
orbit and its stability is the square root. In addition the∓ factor in the denominator of (1)
is replaced by±. Finally, there is a group theoretical weight of± corresponding to the
even/odd parity. This last factor ensures that the contribution of this half orbit identically
cancels when we evaluate the sumg(E) = g+(E) + g−(E). This is consistent since the
half orbit is not a periodic orbit of the full domain and should not affect the total density of
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states. The double repeat of a half orbit is the full orbit and its amplitude is divided equally
between the two parities.

We next discuss what happens to the diffractive orbits in the presence of the symmetry.
There is a diffractive boundary orbit; it contributes only to the even spectrum [7, 9, 41],
unlike a geometrical boundary orbit which contributes to both. The distinction can be
traced to the fact that the diffractive Green function (2) is multiplicative in the direct Green
functions. For the other diffractive orbits, we recall the previous discussion that each of
them has a self dual complement of twice the length. The only difference between the orbits
in the fundamental domain is that they have different diffraction constants. If one has the
diffraction constantd(θ, θ ′) the other has the diffraction constantd(−θ, θ ′). Since they are
in all other respects identical, we can include both of them by defining separate diffraction
constants for the even and odd parities, namely

d±(θ, θ ′) = d(θ, θ ′) ± d(−θ, θ ′). (29)

The different sign for the two cases is the same group theoretical weight mentioned for
self-dual geometric orbits.

As mentioned above, for the half plane and for Dirichlet boundary conditions,
d(−θ, θ ′) = d(θ, θ ′) so we have

d+(θ, θ ′) = 2d(θ, θ ′) d−(θ, θ ′) = 0. (30)

This implies that the odd spectrum is completely insensitive to the existence of diffraction.
For wedges which are not half-planes, (30) is not true but it will still be true that (29)
will cause the two parities to be affected differently. If we study the billiard with Neumann
boundary conditions we reach the opposite conclusion. First, the boundary orbit has zero
amplitude since (4) implies thatd(0, 0) = 0 in that case. Also,d(−θ, θ ′) = −d(θ, θ ′) for
Neumann boundary conditions so that

d+(θ, θ ′) = 0 d−(θ, θ ′) = 2d(θ, θ ′). (31)

Therefore, the odd spectrum would have diffractive peaks and the even spectrum would not.

3.5. Weyl formula

The Schr̈odinger equation for a billiard reduces to the Helmholtz equation(∇2 + k2
)

ψ(r) = 0 (32)

with Dirichlet, Neumann or mixed boundary conditions on the boundary of the domain.
Finding the eigenvaluesk2

n leads to the density of statesρ(k) = ∑
n δ(k − kn). One

commonly decomposes this into a smooth part and a fluctuating part

ρ(k) = ρ̄(k) + ρfl(k). (33)

These terms have distinct classical interpretations. The first term, commonly called the
Weyl term, is related to the geometry of phase space, such as the area, perimeter, curvature
and other properties of the billiard boundary. The second term is given by the dynamics as
encoded in the trace formulae (1) and (17). Actually, each term of (33) is an asymptotic
expansion in powers of 1/k [47]. To date, the first 16 terms of the expansion ofρ̄(k) have
been calculated but here we make ourselves content with the first three. Additionally, the
first corrections toρfl(k) have also been determined [48, 49] but we do not consider them
here.
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Instead ofρ̄(k), one often refers to the spectral staircase functionN̄(k) of which ρ̄(k)

is the derivative. Its expansion for Dirichlet boundary conditions is (see for example [47])

N̄(k) ≈ A

4π
k2 − L

4π
k + C − · · · (34)

whereA is the area of the billiard,L is the length of the perimeter, andC is related to the
curvature and to corners by

C = 1

24π

∑
i

π2 − θ2
i

θi

+ 1

12π

∫
κ(s)ds. (35)

The sum is over angles in the billiard boundary; we have one angle of 2π . The integral
gives the total curvature over the boundary of the billiard. Note that (34) also applies to
billiards with Neumann boundary conditions if we multiply every other term by−1. For
the full spectrum, we findA = 3π/2, L = 8 andC = 3/16. We can also use (34) for the
odd spectrum by taking the billiard domain to be the fundamental domain. We then have
A = 3π/4, L = 6 andC = 3/16. The difference between the total spectrum and the odd
spectrum must correspond to the even spectrum, so for it we haveA = 3π/4, L = 2 and
C = 0. The symmetry decomposition of the Weyl formula for billiards was discussed in
much greater generality in [50]. These results for the cardioid billiard were also obtained
in [36].

Comparing the exact staircase functions with the approximation (34) is a useful check
that there are no missing levels. In addition, the point where there the curves start to deviate
is a useful criterion for establishing when the numerical eigenvalues are no longer reliable.
The Weyl formula is also needed to compare the Fourier transforms of the data and the
trace formulae in section 4 and also to renormalize the spectrum for the statistical analysis
of section 5.

4. Numerical results

In this section we present comparison between the exact spectra and the results of periodic
orbit theory. We first do this by directly comparing the Fourier transforms of the exact
spectra and the trace formulae in the reciprocal space of orbit lengths,L. Overall, there is
good agreement and we successfully reproduce geometric, diffractive and doubly diffractive
peaks as well as the interferences among them. However, there is a region ofL which is
not well reproduced for reasons we explain. We also find that for other regions ofL, the
exact diffractive peaks have magnitudes larger by a few percent than what we expect. We
explain this by recalling that the cusp is not a perfect vertex. Finally, we use the sum
over periodic orbits to find the first few quantum eigenvalues and find the odd result that
including diffractive orbits seems to shift them only slightly.

4.1. Fourier transforms

Using the algorithm of [33] we truncate the Hilbert space to contain only the lowest 6600
states and calculate the lowest 1000 eigenstates of each parity with an accuracy better than
0.001 times the average level spacing. It is these 2000 states we use in the analysis. For
a precise comparison, it is best to work withρfl(k) which is obtained from subtracting the
Weyl term N̄(k) of (34) from the exact density of states. We obtain its Fourier transform
as

F(L) =
∫ ∞

−∞
dk w(k)[ρ(k) − ρ̄(k)]eikL (36)
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wherew(k) is a window function. We chose to use the 3-term Blackman–Harris window
[51] which gives a good compromise between narrowness of peaks and smallness of side
lobes. This is defined as

w(k) =
2∑

j=0

aj cos

(
2πj

k − k0

k1 − k0

)
. (37)

where(a0, a1, a2) = (0.42323, −0.49755, 0.07922). This function goes smoothly to zero at
k0 andk1 which we choose as the of the first and last eigenvalues in our spectrum.

Figure 6. The solid curves are the Fourier transforms of the exact spectra and the dashed curves
are the approximations from the trace formulas (19) and (20).

We apply the same Fourier transform to the trace formulae (19) and (20) to obtain the
semiclassical approximationFsc(L). We included all relevant period orbits withL < 11;
the most was for the even spectrum which had 38 orbits, including halves of self-dual orbits
and multiple repeats of 2a. The results up toL = 10.7 are shown in figure 6 for the
even, odd and combined spectra. Other than the region aroundL = 7.5 which we discuss
later, the agreement is very good. This was also observed in [8] but here we are also
verifying the geometrical factorsF in (19). Note that there are no diffractive peaks in the
odd spectrum as we argued above. The geometric peaks in the even and odd spectra near
L = 2.5, L = 4.7, · · · are halves of self-dual orbits and are absent in the full spectrum.

We stress that the relative heights of the diffractive peaks are artifacts of the range
of the quantum spectrum we choose to consider and should not be used to estimate the
relative weight of these orbits in determining quantum eigenvalues. The reason is that
they are suppressed as 1/

√
k and contribute more and more weakly to the energetic states.

However, their effect in the ground state region can be quite large – a possibility we explore
later.
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We now turn our attention to the large discrepancy nearL = 7.5. There are two distinct
reasons why the trace formulas fail there. The first is that orbits 4a, 4a’ and *10b are
close in configuration space and interfere differently than we have assumed up to now. The
second reason is that the cusp is only approximately a half-plane vertex. To understand the
first point, we appeal to the calculation which gives the diffraction constant. Sommerfeld
[15] showed that an incoming plane wave is broken up by a half plane vertex into three
components; a plane wave which continues in the original direction, another plane wave
coming from reflection off one face, and a third component which he identified as the
diffracted field. The diffracted field is asymptotically an outgoing circular wave of the form
f (θ) exp(ikr)/

√
kr and the diffraction constantd is proportional tof (θ). However, in the

directions close to the two out going plane waves, the diffracted wave takes longer and
longer to obtain its asymptotic form and exactly in the plane wave directions it never does.
It is this attempt to connect to the incorrect asymptotic form in these two directions which
leads to the divergence of (3) whenθ ± θ ′ = π . Ideally, one would like to have a uniform
approximation to cover all ranges ofθ andθ ′. In the case discussed here, we will find that
the approximation improves ask increases.

The second reason for the failure of the trace formula nearL = 7.5 is that the billiard
domain departs relatively rapidly from its local half plane geometry at the cusp so that
the diffraction constants derived assuming a half plane may not be appropriate. In fact,
this approximation is fine for orbits which come in from the right, such as 1a’, since they
are never close to the faces of the cusp. However, orbits entering the cusp from the left,
such as 5a’, are very sensitive to this approximation. The curvature of the boundary means
that such orbits are not as far from the boundary as is assumed in the calculation of the
diffraction constant so that the Dirichlet boundary conditions cause more suppression than
is accounted for.

To understand this another way, note that for any finite wavenumber,k there is not
infinite spatial resolution so the cusp appears as a finite angled wedge. However, a finite
angled wedge has different diffraction constants. Therefore, it is reasonable to suppose that
at small wavenumbers the lack of resolution, inherent in the finiteness ofk, manifests itself
as inaccuracies of peak amplitudes in the Fourier spectra. We explored this effect for orbit
1a’ by looking at two windows ofk. For this study, it is best to use the combined spectrum
because then there is no interference from the self-dual orbits 2b and 4b. We are extremely
sensitive to errors because we are interested in the difference between two small peaks.
Accordingly, we use just the lowest 285 states which are extremely accurate (approximately
140 of each parity) which we divided into two windows of approximately equal extent
in k (2.01–26.32 and 13.09–39.39 respectively with means〈k〉 = 14.17 and 26.24.) The
comparison between the numerics and the trace formula (19) is shown in figure 7. In both
cases, we find that the exact spectrum has a peak which is slightly larger than predicted but
that the discrepancy is larger by about 50% for the first window.

This strengthens our argument that the large discrepancies aroundL = 7.5 in figure 6
arise because the orbits responsible for those peaks are sensitive to the fact that the cusp is
not a true half plane. We argue that because they approach the cusp from the left they are
far more sensitive to this than orbits approaching from the right. Furthermore, such orbits
are probably sensitive to the entire curved geometry in the neighbourhood of the cusp.

The fact that there is structure in the odd spectrum with lengths the same as for diffractive
orbits (particularly visible nearL ≈ 7.5, an effect also observed in [36]) is not unexpected.
In one of their seminal papers, Balian and Bloch [21] argued that for a billiard domain,
with a discontinuity in thenth derivative of the boundary, there exists contributions to the
density of states of order ¯hn/2. For sharp corners, we haven = 1 and this conforms to
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Figure 7. Comparison between the exact result (solid curve) and the diffractive trace formula
(dashed curve) for orbit 1a’. The top box is the window 2.01 6 k 6 26.32 and the bottom box
is the window 13.09 6 k 6 39.39.

Figure 8. As in figure 6 but for a range corresponding to the double diffractive orbit 3a”.

the previous discussion. For discontinuous changes in the curvature we haven = 2. The
second case applies here for the odd spectrum since the half cardioid has continuous slope
but its curvature changes discontinuously from zero to infinity at the vertex. Normally, this
structure is too small to be visible but we suppose that the geometrical considerations which
amplify the diffractive peaks in the even spectrum have a similar effect on the higher order
peaks in the odd spectrum.

Another possibility for contributions due to a change in curvature is discussed in
[4, 5] in the context of the Bunimovich stadium [37]. It was found that although one
can unambiguously continue a classical trajectory which encounters the discontinuity, the
stationary phase integral to evaluate its contribution toρ(E) requires more care. This is
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because the character of the motion is different on each side of the orbit. This applies to
orbits which reflect specularly at the vertex and so are geometrical, not diffractive.

Finally, we discuss the small peak nearL = 9.8 corresponding to orbit 3a”. We use
(19) with the appropriate diffraction constants. To eliminate interference from the nearby
self-dual peak 8c we analyse the combined spectrum. Because this is such a small peak, it
is particularly sensitive to small backgrounds. One source of background is slight errors in
the determination of the exact quantum energy levels; such errors manifest themselves as
weak oscillations in the Fourier transforms. For this reason, we used only the lowest 1000
levels. In figure 8, we show both the absolute value of the Fourier transform and its real
part. The discrepancy, which grows towards the right of the figure, comes from a slight
error in the peak amplitude of 4b’.

Figure 9. Left: The solid curve is the result of using both geometric and diffractive orbits in
the trace formula for the even spectrum while the dashed curve is from using just the geometric
orbits. The arrows denote the exact positions of the even states. Right: A comparison of the
magnitudes of the geometric (top) and diffractive (bottom) contributions to the density of states.

4.2. Recovering quantum eigenvalues

The trace formulae (19) and (20) can be used to find quantum eigenvalues. Here we do this
with and without the diffractive orbits to see what effect they have on the determination of
the eigenvalues. We simply summed over the orbits used to obtain figure 6. Because of the
problems with the diffractive orbits 5a’, 6a’ ... we ignored that series of orbits. Additionally,
we made an approximate fix for smallk of the orbits 4a, 4a’ and *10b by ignoring 4a’
and *10b and halving the amplitude of 4a. This simulates the effect of the cusp which
has the approximate effect of halving the domain of the stationary phase transverse integral
used to derive the geometrical trace formula. The result for the even spectrum is shown in
figure 4.1 with and without diffractive orbits. The peaks are identified as corresponding to
quantum eigenvalues. We observe that including diffraction helps to resolve the peaks but
barely changes their positions. The positions are compared in table 3. The discrepancy is
typically 0.06 compared to a spacing of about 0.80. Including the diffractive orbits changes
the peak positions only by about 0.02 and not necessarily by the correct sign.

This is a strange result because the amplitude of the geometric and diffractive
contributions to the density of states are comparable, as shown in the right half of figure 9.
We saw in the previous section that the eigenvalues do contain information about diffraction
since there were diffractive peaks in the Fourier transform so it must be true that the
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Table 3. Top: even states calculated with and without diffractive orbits. Bottom: odd states.

State Exact Geometric Geometric and
number eigenstate orbits diffractive orbits

1 2.010 1.956 1.943
2 3.331 3.434 3.406
3 4.169 4.053 4.070
4 4.686 4.629 4.618
5 5.292 5.238 5.248

1 3.020 2.979 —
2 4.160 4.134 —
3 5.162 4.999 —
4 5.558 5.356 —
5 6.174 6.133 —

diffractive orbits have some effect on the eigenvalues. To unravel this paradox it is probably
best to calculate with zeta functions rather than traces, which we will do in a later publication
[43]. For now we note that the wedge billiard was also successfully quantized using only
geometric orbits although it too has a diffractive vertex [23].

Figure 10. The odd density of states as constructed from just the geometric orbits and the
arrows denote the exact positions of the odd states.

For completeness, we show in figure 10 the results for the odd spectrum and the results
are also enumerated in table 3. Now only geometric orbits contribute. The agreement is
somewhat better; with the exception of the third state, which is not well resolved in any
case, the differences between the peak positions and the quantum eigenvalues are typically
about 0.04. The only qualitative difference between the two parities is the diffraction so the
difference in accuracy is presumably diffraction related.

5. Spectral statistics

It is by now well known, if not well understood, that the statistics of eigenvalues of chaotic
systems [52] follow closely the predictions of random matrix theory (RMT) (for a review
see [53]). This has been confirmed in many examples including the conformal mapping
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of the circle [33] of which the cardioid is a limiting case. Nevertheless, we repeat this
here to see if the diffraction has any effect on the statistics. The fact that the diffraction is
almost completely limited to the even spectrum means that we can study its relative effect
by comparing the results for the even and odd spectra. A similar study was already reported
in [36] for the half cardioid but without an explicit comparison of the odd and even spectra
to explore possible diffraction effects.

Figure 11. Histograms showing the spacing distributions of the even and odd spectra. The solid
curve is the GOE result.

We first display the spacing distributions in figure 11. This is the distribution of the
spacingss between adjacent energy levels measured in units of the local mean level density
as found from the Weyl formula (34). The Gaussian orthogonal ensemble (GOE) is a
random matrix ensemble which predicts a spacing distribution very close to

P(s) = π

2
s exp(−πs2/4). (38)

Both spectra are observed to be consistent with that limit and with each other so diffraction
appears to have no significant effect on the spacing distribution.

The spacing distribution is a measure of short range correlations. A statistic commonly
used to probe the long range correlations is the spectral rigidity13(l). Here l refers to
distances in the spectrum measured in units of the mean level spacing. (We use a small
letter l to avoid confusion with the periodic orbit lengths which we referred to with a large
L.) This statistic measures the averageχ2 deviation of the staircase function from a local
straight line fit over a window of lengthl; the average being taken as the window is moved
through the spectrum. The GOE formula is given as a complicated integral representation
but for large l is nearly (log l)/π2. Chaotic systems follow the GOE result [54] but at
some point begin to deviate from it and finally saturate for arguments larger than about
lmax = 2π〈ρ(k)〉/Lmin where〈ρ(k)〉 is the average level density andLmin is the length
of the shortest periodic orbit. The shortest periodic orbit in the cardioid is 2a which has
length 2.60 in the fundamental domain. The average density of states in the range considered
is 20.0 so thatlmax = 48.3.

In figure 12, we show the13(l) results for the even and odd spectra. We also show
the saturation value of 0.265 which we found numerically. As can be seen,lmax is a good
approximation to where the saturation begins. The results are significantly different from
the GOE prediction for values ofl larger than about 7. In comparing the two data sets,
we observe that the odd spectrum has values which are consistently larger than the even
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Figure 12. The 13(l) functions for the even (◦) and the odd (×) spectra. The solid curve is
the GOE result and the dashed line denotes the saturation value.

spectrum for 0< l < 17. The difference is typically about 0.01. To determine if this
is significant we need to compare the difference to the typical variance in13(l). If we
assume that each range of lengthl used in determine13(l) is statistically independent, we
find that the typical variance is 0.006. This assumption is problematic since we know that
there are strong correlations in the spectra. If instead we determine the variance by finding
the effect of removing selected levels, then the typical variance is 0.02 [55]. In either case,
we conclude that if there are significant deviations between the two spectra, we are not
sufficiently sensitive to resolve them with confidence. This conclusion is in agreement with
the results of the wedge billiard [23] and of pseudo-integrable billiards [56]. We can increase
the statistical significance of this statement by finding more eigenvalues. It would also be
interesting to study this question analytically by extending the Berry’s original semiclassical
calculation of spectral rigidity [54] to include the effect of diffractive orbits.

6. Conclusion

In this paper, we have derived a trace formula for periodic orbits diffracted by vertices.
The presence of the diffractive orbits causes additional structure in the quantum spectra
of Hamiltonian systems. This structure is suppressed relative to the contributions from
geometric orbits. The diffractive trace formula has a very similar structure to the trace
formula for geometric orbits and from it we can find a zeta function in close analogy to
the zeta function for geometric orbits. An important difference in the structure of these
functions is that the diffractive zeta function involves only one product. Multiplying these
zeta functions gives the total zeta function which will probably provide the cleanest method
of finding the semiclassical eigenvalues.

We specialized the discussion to the example of the cardioid billiard possessing a cusp
at the boundary which is locally a half-plane vertex. There is overall good agreement
between the Fourier transform of the exact spectrum and that of the trace formulae and we
successfully reproduced geometric, diffractive and doubly diffractive peaks as well as the
interferences among them. However, there is a region ofL which is not well reproduced.
Two reasons for this disagreement are that for certain choices of angles the diffraction
picture breaks down and because the cusp is not a perfect half-plane vertex.

There exists a symbolic dynamics which includes the periodic diffractive orbits in a
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natural way by inclusion of one more symbol in the alphabet. This leads to a simple result
when discussing the symmetry reduction. For every non self-dual diffractive orbit, there
exists a complementary self-dual one. These interfere so that the diffraction affects only the
even spectrum and leaves the odd spectrum alone. We used the sum over periodic orbits
to find the first few quantum eigenvalues with an accuracy of a few percent. We found the
puzzling result that including diffractive orbits seems to have very little effect. This issue
will be addressed in a later publication.

In the last section we studied the level statistics of the even and odd spectra separately.
Comparing the results from the two spectra is a probe of the effect of the diffractive orbits.
This is because the odd spectrum has essentially no contribution from diffraction. We found
no significant differences in either the spacing distributions or13(l) although we can not
rule out the possibility that such differences might become apparent if we included more
states.
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Note added in proof. After submission of this paper, a preprint appeared [57] in which the symbolic dynamics of
the cardioid are extensively explored. The results of that paper are consistent with those discussed here.
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