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We use a Boltzmann equation to determine the magnetoconductivity of quantum wires. The
presence of a confining potential in addition to the magnetic field removes the degeneracy of the

Landau levels and allows one to associate a group velocity with each single-particle state.

The

distribution function describing the occupation of these single-particle states satisfies a Boltzmann
equation, which may be solved exactly in the case of impurity scattering. In the case where the
electrons scatter against both phonons and impurities we solve numerically-—and in certain limits
analytically—the integral equation for the distribution function and determine the conductivity as
a function of temperature and magnetic field. The magnetoconductivity exhibits a maximum at a
temperature, which depends on the relative strength of the impurity and electron-phonon scattering
and shows oscillations when the Fermi energy or the magnetic field is varied.

I. INTRODUCTION

The possibility of making quasi-one-dimensional quan-
tum wires, due to advances in microfabrication technol-
ogy, has greatly stimulated the interest in the transport
properties of such low-dimensional systems. A number
of recent papers have treated the magnetoconductivity
of quantum wires! using a variety of different theoreti-
cal approaches. The suppression of scattering between
edge states, due to the presence of the magnetic field,
was discussed by several authors.2”# The effects of im-
purity and boundary scattering on the Hall effect in
quantum wires were treated by Akera and Ando,® start-
ing from a Boltzmann equation. The Kubo method®
has been used for considering the effect of the cou-
pling to optical phonons™® and the influence of impurity
scattering® on the magnetotransport through quantum
wires. Momentum- and energy-balance equations have
been derived!®!! for a quasi-one-dimensional gas of elec-
trons in a magnetic field. Other authors!? have used
the Keldysh method to discuss magnetotransport in the
presence of impurity scattering, while the formalism due
to Landauer!® and Biittiker!* was employed in Ref. 15
to treat the influence of disorder on the Hall effect in
quantum wires.

Transport in strong magnetic fields has traditionally
been treated within the Kubo formalism, since this al-
lows one to take fully into account the quantization of
the motion of an electron in a magnetic field. The result-
ing diagrammatic expansion of the conductivity requires
the consideration of both self-energy effects and vertex
corrections. It was demonstrated in Ref. 9 that it is es-
sential to include vertex corrections in order to determine
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the effect of impurity scattering on the magnetoconduc-
tivity of a quantum wire. The physical reason for this is
that only backscattering from the impurities contributes
to the resistivity.

In the present paper we use a Boltzmann equation
to determine the transport properties of quantum wires
formed by additional confinement of the two-dimensional
electron gas of, e.g., a GaAs-GaAlAs heterojunction. The
presence of a confining potential in addition to the mag-
netic field removes the degeneracy of the Landau levels
and allows one to associate a group velocity with each
single-particle state. The distribution function describ-
ing the occupation of these single-particle states satisfies
a Boltzmann equation, which we solve exactly in the case
of impurity scattering. The resulting magnetoconductiv-
ity agrees with that obtained in Ref. 9 within the Kubo
approach. In the case of electron-phonon scattering we
solve numerically—and in certain limits analytically—
the integral equation for the distribution function. The
conductivity is determined as a function of temperature
and magnetic field in the case when both impurities and
phonons contribute to the scattering of the electrons.
Our paper extends previous work discussed above by giv-
ing a more complete account of the simultaneous influ-
ence of electron-impurity and electron-phonon scattering.
By starting from the Boltzmann equation we include ver-
tex corrections from the outset, thus simplifying the for-
mal development in comparison to that involved in the
use of the Kubo formalism.

Apart from its simplicity, the use of the Boltzmann
equation has the additional advantage that it allows one
to go beyond linear-response theory in a straightforward
manner. Although the present paper treats in detail only
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the regime of linear response, our approach may readily
be generalized to take nonlinear effects into account.
Since conduction in a quantum wire involves current
transport in one dimension, it is necessary to consider
the role of localization. This was done in Ref. 16, where
it was shown that weak localization in quantum wires is
destroyed in a magnetic field greater than a critical value
B., where the critical magnetic field B, apart from nu-
merical factors is given by B, ~ h€/eLsW?. Here £ is the
elastic scattering length, W is the width of the quantum
wire, while Ly is the phase coherence length. For the pa-
rameters considered in Ref. 16 this yields a B, somewhat
less than 0.1 T. In what follows we shall assume that the
magnetic field is sufficiently strong that localization ef-
fects are always negligible. The transport properties of
the quantum wires may then be obtained from a Boltz-
mann equation, in which the quantizing effect of the mag-
netic field is incorporated in the manner described below.
We shall also disregard Coulomb-blockade effects which
have been shown to be of importance in some systems.”
The paper is organized as follows. In Sec. II we intro-
duce the single-particle states derived from the presence
of a confining potential in addition to a homogeneous
magnetic field. The Boltzmann equation and its solution
are discussed in Sec. III. In Sec. IV we treat scattering
due to impurities, while scattering from impurities and
acoustical phonons forms the subject of Sec. V, where
we consider both deformation-potential and piezoelectric
coupling. Finally Sec. VI deals with the case where scat-
tering from impurities and optical phonons is important.

II. THE SINGLE-PARTICLE ENERGY
SPECTRUM

We consider an electron moving in the zy plane under
the influence of a constant magnetic field in the z direc-
tion. In addition a parabolic confinement potential limits
its motion in the y direction whereby a wire is formed in
the z direction. The Hamiltonian for such an electron is

ﬁ:

2, 1o 2

oys (P +eA)’ + oKy, (1)
m* being the effective (band) mass of the electron. For
simplicity we have neglected the Zeeman splitting, since
we shall be mainly concerned with quantum wires in
GaAs-based structures, where the Zeeman energy is a
few percent of the cyclotron energy Aw. to be defined
below. The electron spin therefore only enters as a fac-
tor of 2 in the expression for the current density. In
the z direction we impose periodic boundary conditions,
and for the vector potential A we use the Landau gauge
A = B(~y,0,0). Consequently the eigenfunctions of the
Hamiltonian are products of plane waves and harmonic-
oscillator functions involving Hermite polynomials Hy,

1 1
T — . pik=
nk (37, y) \/Ee *“—‘*"'—(\/7?2nn!eh)1/2
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with L being the length of the quantum wire. The center
coordinate y;, and the characteristic length £ of the har-
monic oscillator are specified below. The wave function
in the 2z direction is taken to be a § function.

In the case where K is zero and only the magnetic
field is present the natural system of units is based on
the cyclotron frequency w. and the magnetic length £,
given by

eB

m*’

I
2 _
te=p )

We =

When K is different from zero, we define the quantity =,
which describes the relative strength of the confinement
potential, by

K

*,,27
mTwe

Hl

¥ (4)

and the natural units are now based on the hybrid fre-
quency wy and the hybrid characteristic length £, given
by

on=1+iee, =1+ (5)

By inserting the function (2) in the Schrodinger equa-
tion

ﬁ‘ynk = Enk\I’nkv (6)

one finds that (6) is satisfied, provided

1 h%k?
enkzh'wh<n+§>+ Pyl n=20,1,2,..., (7)
where m is a renormalized mass defined by
1
me 1Y s (8)
8

The center of the harmonic-oscillator wave functions is
given by

wchk _1
wo= iz = (LE ) TERE 9)

The confinement potential Ky2/2 removes the degene-
racy of the Landau levels through the k& dependence ex-
hibited in (7). Note that the dispersion relation is that
of a free particle with a renormalized mass m. When
the strength of the confinement potential goes to zero,
the renormalized mass m becomes infinite (correspond-
ing to degenerate Landau levels), while in the opposite
limit (v — o), the renormalized mass becomes equal to
the effective mass m*. The k-dependent energy levels
are plotted in Fig. 1, where we have also indicated the
position of the Fermi level corresponding to a definite
electron density.

In the following we shall describe conduction through
the quantum wire on the basis of the Boltzmann equa-
tion for the distribution function of the excitations with
energy €,x. The group velocity v of the excitations is
seen to be

108 hk

R A T (20)
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FIG. 1. The two lowest k-dependent energy bands €or and
€1k of the quantum wire. The dashed line represents an arbi-
trary Fermi level above the bottom of the second band.

If the confinement potential is not simply parabolic, the
relation between v,; and k becomes more complicated
than Eq. (10), but the method described in the following
is still applicable, provided one modifies the group veloc-
ity accordingly, and incorporates the new wave functions
into the matrix elements appearing in the collision prob-
ability.

III. THE BOLTZMANN EQUATION

We consider the distribution function f,; for the exci-
tations specified by the energy e,x, with group velocity
vUpk = hk/m. Unlike the usual semiclassical description
of transport in a magnetic field, the magnetic field has
here been taken into account from the very beginning,
in defining the excitations with dispersion relation (7).
The effect of an electric field E, in the z direction is,
however, included in the usual manner through the ac-
celeration equation

hk = —eE,. (11)
The Boltzmann equation'® is
Ofnr | ; Ofnk Ofnk
= 12
at 5ok at ) (12)

where the right-hand side of the equation contains the
collision term. Since we are interested in the linear re-
sponse to a static electric field, the time derivative 8f/8t
is equal to zero, while f,,; in the second term on the left-
hand side may be replaced by the equilibrium function
f%.. Using Eq. (11) the Boltzmann equation then be-
comes an inhomogeneous integral equation of the form

el ° 0 Ofnk
e fO% (1= fO) = , 13
kBTv kfnk( nk) ( ot ol ( )

with the integral term on the right-hand side—the colli-
sion term—to be specified below.

Before we consider specific scattering mechanisms, let
us write down the conductivity ¢ in terms of the dis-
tribution function. In the present work we define o as
0 = jo/FEs, j. being the current density in the x direc-
tion. In terms of the two-dimensional resistivity tensor p
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we get 0 = 1/p,, because j, = 0. However, in the pres-
ence of the magnetic field a current in the z direction will
also induce an electric field in the y direction. This Hall
response will be dealt with in a future publication. For
j= we have

. > dk
Je = —262/ E;Unkfnk- (14)

We shall introduce the deviation function v, by the def-
inition

frk = foi + foe(1 = o) ¥nk. (15)

Then the current density becomes
) < dk 0 0
Je = —2e Z 'Z;Unkfnk(l = frk)¥nk. (16)

Since we shall be dealing with distribution functions that
change sign upon k — —k, we may restrict k to positive
values and work instead with the distribution function as
a function of energy: ,(e). In this notation k is then
a function of energy, and we denote the k£ value which
solves € = enk by kn(g). Furthermore, by introducing
the function ¢, defined by

kT
el,

bn P, (17)

we may express the conductivity as

o= }75_ - 2%22;/00 de (-afaos(s)> dule)  (18)

0

since dk = de/hw. Note that ¢ has dimension of length.
The chemical potential entering the equilibrium distri-
bution function f© will be assumed to be independent of
temperature, equal to £, since the quantum wire under
typical experimental conditions is in contact with a large
reservoir of electrons.

The Boltzmann equation considered in this paper is an
inhomogeneous integral equation of the form

where
ek,
Xk = _kBTvnkak(l — Fok)s (20)

while the integral operator H is defined by

8fnk _
( at )coll h “qunk (21)
with
o = % /_ ) %dk'mn, (ks &) (e — P ). (22)

Here K is an integral kernel to be specified in later sec-
tions.
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By introducing the scalar product (A4, B) through the
definition

> dk
(A,B) = Z/ 5. Ank Brk (23)

the conductivity may be written as

o = 2L (X,9). (29)

In cases where we cannot solve explicitly for 7, it is useful
to employ a variational principle, which yields a lower
bound on ¢ by virtue of the Schwarz inequality

(%, Hy)(U,HU) > (U, Hy)?, (25)
where U is an arbitrary trial function. Since Hy = X,
this gives a lower bound on the conductivity

2
v> 2kpT (X,U) ' (26)
EZ (U, HU)
This lower bound will be used to determine the low-
temperature conductivity when the scattering is due to
acoustic phonons, both with and without impurities, and
the resulting analytic expressions are compared to the re-
sults of the numerical solution of the integral equation.
We shall always write our calculated values of the con-
ductivity, as limited by the various scattering mecha-
nisms to be considered in subsequent sections, in the form

2
o= ?z—l , (27)
where | has the dimension of a length. As may be ex-
pected, in the presence of impurity scattering ! tends to
a finite value as T tends to zero, while it increases expo-
nentially in the absence of impurity scattering, when the
electrons are scattered only by phonons.

IV. IMPURITY SCATTERING

In this section we consider the case of elastic impurity
scattering treated recently in Ref. 9. Our aim is to show
how the results of Ref. 9, which were obtained by use
of the Kubo formalism, are derived within the present
framework. The collision integral is

8fnk _ oo £ , , -
( ot >coll B En,:/ 27Tdk wnn'(k,k )(fnk fnlkt)’

— o0

(28)

since the scattering is elastic.
rule we have

According to the golden

Wt (B, K'Y = Z%Knkwwk'nza(snk ennr). (29)

The square of the matrix element (nk|V|n'k’) for scat-
tering from impurities may be written as
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|(nk |V ]k |2 /d2 /dzr’V (')
x{nk|r) (x| k") (n'K'|v') {r'|nk). (30)

We shall perform an ensemble average over the distri-
bution of impurities, corresponding to the replacement

V(E)V(E) - (V(E)V(E") = F(r,r'). (31)

When the impurity potential may be approximated by
a ¢ function in space, the function F is proportional to
the § function §(r — r’), corresponding to a “white-noise”
model

F(r,r') = A?nimpd(r — 1'). (32)

Here we have introduced the number of impurities per
unit area Mimp together with the constant A, which de-
notes the magnitude of the matrix element for scattering
from a single impurity. The dimension of A4 is that of an
energy times an area.

In order to distinguish between states of equal energy
but opposite sign of k, we introduce the “branch index”
s = +1:

bs©) = ko) = oy e — (nt Dn), (39)

provided

(n+ Lhon <. (34)

The density of states at the Fermi energy ep is in-
versely proportional to the s-independent Fermi velocity
vp(ep) = %kn(s)‘ Finally, since ¢,, is odd in k and
hence changes sign with s, we may write ¢, = s¢,. The
problem then becomes that of solving the matrix equa-
tion

s = Z Bn o sd)n - s,¢n')a (35)

and calculating the conductivity according to Eq. (18).
The matrix B™.® is positive and symmetric with respect
to interchange of ns with n’s’. Its elements are

1.7 1 1 1
Br® = — A’y ) Ju 36
ns ﬁz 4 mp T VU Unt Zh\/_ ns ( )

Here we have defined the following dimensionless quan-
tities:

F:;s’ = \/271' Eh/

— o0

Aylun(y — Yro )| [ (y — vk, )%

(37)

where u,(y) is the normalized y-dependent part of the
wave function (2). The overlap integral F.* has the
form P™%(z) e~ 7, where P®(z) is a polynomial in z,
and where z = (y,, — ¥&,.,.)>/(212).

In Fig. 2 we show the result of solving the matrix equa-
tion (35) and calculating the conductivity according to
Eq. (18) as a function of the Fermi energy e, for differ-
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FIG. 2. The conductivity for a quantum wire with impurity
scattering plotted vs the Fermi level for three different choices
of the confinement potential corresponding to v = 1, 0.5, and
0.25. The dashed line is the 7' = 0 result and the solid lines
correspond to kT = 0.05Awx. The magnetic field is 9 T.

ent choices of the parameter v determining the strength
of the confining potential. As can be seen in the figure
the conductivity rises quickly as the Fermi level increases
above %ﬁwh. This is due to the increasing separation be-
tween the two edge states, expressed by the overlap inte-
gral Fy™ of Eq. (37) which leads to the exponential factor
in Eq. (38) below. When e hits the next Landau level
(cf. Fig. 1), the conductivity starts to decrease because a
channel for backscattering is opened, i.e., the n = 0 edge
state can scatter to the opposite edge through the n =1
edge states. However, when the n = 1 edge states become
decoupled, the conductivity starts to increase again. This
qualitative behavior is repeated each time a new Landau

|

2e? 2(2BsT + BiT + Bgy)

o =
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level crosses the Fermi level. The height of the conduc-
tance peak at gﬁmh increases strongly with increasing
channel width. At finite temperature these features are
somewhat smeared, as evidenced by the figure, but still
clearly visible.

Our calculation is relevant for the case where the scat-
tering between different channels is so strong that the
Boltzmann picture is valid, in other words, the calcu-
lated mean free path must be considerably shorter than
the length of the wire. In the high magnetic field limit
this means that the wire may not be so broad that the
edge states become decoupled. Thus in practice we are
dealing with wires only a few times [, wide.

When Awp/2 < ep < 3hwy/2 only the lowest Lan-
dau level is involved, corresponding to n = n’ = 0 in
Eq. (35). Then the solution becomes particularly simple,
bo = 1/238;. By means of the Sommerfeld expansion
we obtain the following low-temperature expression for

the conductivity o = 2e2/hBJ7,

2 2 22
o= 2%lh\/%r—h— hrrsz exp (2k%17 /(14 7))

Aznimp
872 1+ kpT\’
g [“w (7)) (32)

where kp = ko4 (eF) is the Fermi momentum. The con-
ductivity increases with temperature because electrons
are excited into states which have a smaller overlap with
the states at the opposite branch. Consequently the elec-
trons have a smaller backscattering probability. The re-
sult (38) is valid only to lowest order in (kgT/hwp)?. In
obtaining our numerical results we do not use the Som-
merfeld expansion, but calculate directly the integral over
energy according to the expression (18).

As an illustration of the matrix inversion involved in
the solution of the Boltzmann equation we shall also
give the expression for the zero-temperature conductiv-
ity in the case when 3%w;/2 < er < 5hwp/2. By uti-
lizing the symmetry ¢,+ = —¢,_. the 4 x 4 matrix
equation becomes a 2 X 2 equation which may readily
be solved for ¢g and ¢1,. The resulting conductivity
o = (2e2/h)2(do+ + P14) is at T = 0 K given by

; (38)

The result (39) yields the conductivity at zero tem-
perature, when the Fermi energy ep satisfies the condi-
tion 3hwp /2 < ep < 5Awp/2, in agreement with Ref. 9.
The generalization to more Landau levels is straight-
forward. The B matrix in Eq. (35) is in general a
2(no + 1) x 2(no + 1) matrix given by Eq. (36), where
no is the quantum number associated with the highest
occupied Landau level at 7' = 0 K.

It is convenient to relate the conductivity calculated in
the following two sections to the zero-temperature con-
ductivity o2p associated with motion in two dimensions

h 2(Bo} By + Boy BiY) + (Bot + BoY)(Boy + Biy)

(39)

—

in the absence of a magnetic field and a confinement po-
tential. The latter is given by

2
€ "Nap
mr Timp = €N2D Himp; (40)

o2p =

where nyp is the electron sheet density and pimp is the
zero-field, zero-temperature mobility,

eT;
Mimp = T;Ln:p (41)




48 MAGNETOCONDUCTIVITY OF QUANTUM WIRES WITH . ..

with

1 _ m* A%nimp (42)
Timp R3 )

We shall thus express our calculated conductivity in units
of (2€?/h)limp, Where

limp = 7_imp“}clc (43)

is a characteristic length which depends on the impurity
content as well as the magnetic field.

H1r/)nk =

gﬁz ST lgalP o)1 -
n' k' q
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V. ELECTRON-PHONON SCATTERING

Next we turn to the consideration of inelastic pro-
cesses. The present section treats the case where the
electrons are scattered by acoustical phonons due to the
combined deformation potential and piezoelectric cou-
pling, while the following section discusses the coupling
of electrons to optical phonons.

Before specializing to a particular model let us write
down the contribution to the collision operator from the
scattering against phonons. The phonons are assumed to
be in thermal equilibrium. Then the integral operator H
is given by the following expression:

T (eni)|0k, k' +qe (Ynk — Yninr)

X {8(entr — Enk + hwg)[1 + N°(wg)] + 8(enikr — ek — hwg) N°(wg)}- (44)

Here g4 is the electron-phonon coupling parameter,
which will be specified below, while N%(w,) is the equi-
librium phonon distribution. For simplicity we have as-
sumed that the phonon frequencies only depend on the
magnitude of q. In Eq. (44) we have explicitly written
the factor 0y xr4q, discussed in the Appendix. Utilizing
the relationship

Fe)1—fledthwy)] = [f () — f (e Fuwg)][1+ N (£w,)],

(45)
the collision integral (44) can be written as
27 FO(enk) = fO(enk + ohiwy)
s = 25 g L0 |
nqa sinh”(fuwq/2kpT)
X(wnk_djn’k—q,)&(sn’k—q, _Enk'“o'ﬁwq)} (46)

with o assuming the two values +1 and —1 corresponding
to phonon absorption and emission, respectively.

Our calculations of g, are based on the standard
electron-phonon interaction Hamiltonian, which disre-
garding umklapp processes takes the form

Hep = 4/ 2prq Mx(q)A(

where p is the ion mass density, V' the normalization vol-
ume, p(q) the Fourier component of the electron density
operator, &tq a phonon creation operator, and A the po-
larization index. The coupling function M is given by

Mi(q) = -V(q)q-&x, (48)

V (q) being the electron-ion potential and £ a unit vector
describing the polarization A. For a detailed treatment
of electron-phonon coupling in semiconductors see, e.g.,
Ref. 19. The values of the GaAs parameters used in our
calculations are listed in Table 1.

a)(aq+aly), (47

A. Coupling to acoustical phonons

In GaAs heterostructures at low temperatures the
electron-phonon scattering is mainly due to the combined
piezoelectric coupling and the deformation-potential
coupling.2°722 Below we briefly sketch how these cou-
plings are derived.

The deformation potential coupling only involves the
longitudinal-acoustical phonons. The coupling to the
transverse-acoustical phonons is suppressed by the square
of the ratio between the speed of sound and the speed of
light. In the long-wavelength limit the coupling function
M for the deformation-potential coupling is written as

q, (49)

where =, known as the deformation potential, is the zero-
wave-vector limit of V(q).

The electron-ion potential V' for the piezoelectric cou-
pling is found from the basic piezoelectric equations.'®
For GaAs (zinc-blende structure) the only nonvanishing
independent piezoelectric constant is k14 (reduced nota-

Mdf —

(1}

TABLE I. The GaAs constants used in this paper. Unless
otherwise indicated the values are taken from Ref. 27.

Parameter Symbol Value

Ion mass density p 5.3x10% kgm™3
Longitudinal sound velocity c 5.2x10° ms™!
Transverse sound velocity zc 3.0x10° ms™?
Sound velocity ratio T 0.58

Static dielectric constant Ko 12.8
High-frequency dielectric constant Koo 10.6
Piezoelectric constant (Ref. 23) his 1.38x10°Vm™!
Piezoelectric coupling, Eq. (52) P 54x1072°J%2 ;"2
Deformation potential (Ref. 21) E  2.2x107'8g
Effective electron mass m* 0.067mo
Optical-phonon-energy Fuwo 36 meV




11 150

tion), and the coupling function M}” in this case becomes
M,I\)Z = ize}"l‘l(éw(jyé}\,z + ‘ijZéA,w + éz‘ja:ék,y)v (50)

where ¢; = (q/q); and &x,; = (€x):-
case A is retained.

It is noted that M9 is real while MP? is imaginary;
thus to second order the two terms do not interfere, and
the absolute square of the total coupling function M?2¢ is
given by

In the piezoelectric

1Mac|2 — |Mdf|2_+_ |Mpz]2~ (51)

To obtain a more tractable form of the piezoelectric
coupling we perform angular averages for the longitudinal
and the (two) transverse modes separately and then add
the terms.!%23 While this represents an approximation
compared to retaining the full q dependence of the cou-
pling in the collision integral, we expect it to involve only
minor quantitative differences. In adding the transverse
and longitudinal contribution we must remember the dif-
ferent average sound velocities associated with each of the
terms, originating in the factor 1/,/wy = 1/,/cq in Eq.
(47). Expressing the transverse sound velocity as z times
the longitudinal sound velocity we obtain the following
angular average of the absolute square of the piezoelectric
coupling function MP?:

| MP?|2 = (ehyq)? (12 + - ! ;g) P, (52)

where we have introduced the constant P, and where it
is understood that the only sound velocity appearing in
the following is the longitudinal one.

The electron-phonon coupling parameter gq intro-
duced in Eq. (44) now becomes

L(22¢? + P) |(nkle o 'k) 2. (53)

|gac(a)* = Ve 1

The matrix element appearing in this expression is
treated in detail in the Appendix. In writing Eq. (53)
we have taken the phonon frequency w, to be given by

wq = Cq. (54)

B. Coupling to acoustical phonons
in the low-temperature limit

In an analytical study of the low-temperature limit we
use the variational principle discussed in Sec. III above
and choose a trial function given by

U = Uy = sgn(k). (55)

Thus U is 1 on the branches corresponding to k being
positive, while it is —1 on the branches corresponding to
k being negative. This choice will lead to an expression
for the conductivity which in the case of a single occupied
Landau level and in the limit of low temperature agrees
with a numerical solution of the integral equation. This
suggests that the trial function is in fact the exact one
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under these conditions.

First we evaluate the scalar product (U, X') appearing
in the general expression (26) for the lower bound on the
conductivity. By changing the integration variable to the
energy €n; we get

(XU) = 523 £ (eno), (56)

where €,9 is the k& = 0 value of €,;. Because of the
symmetry of the integral operator H given in Eq. (46)
the denominator occurring in Eq. (26) becomes

(U, HU) = Z/ / dklZKnnkk

x5 L1~ sgn(k)sgn(®)). (57)
As discussed in the Appendix &' = k—gq,. The occurrence
of the factor [1 — sgn(k)sgn(k — ¢z)] in the integrand of
Eq. (57) implies that the summation over g, becomes
restricted by ¢, > k for £k > 0, while ¢, < k for k <
0. Using the symmetry with respect to reversal of all
momenta variables we may thus restrict the & integral to
the interval 0 to oo, which limits ¢, to the region g, > k.
If @ denotes the angle between q and the z axis, the
integration over @ is therefore restricted by
c080>§, 0<g<oo. (58)
Thus we have to carry out three integrations (over g, k,
and cos #) as well as two sums (over n and n').
Let us consider the simplest case, in which n = n' = 0.
If the sound velocity is much less than the Fermi velocity
then the energy-conserving ¢ functions are

2
S(enikr —Enpthwy) ~ 6 <2h—(q2cos2 0 —2kq cos 0)) . (59)
m

The g integral is now restricted to the interval ¢ > 2k,
while k/q < cos@ < 1. This yields, after performing the
¢ integral as shown in the Appendix,

1 > de 22,2
471'3712cp/0 v(e)? /2k dq (E'q" +P)

wIo,0 (q,zg) e~ S ems + o)

(U,HU) =

)

4 sinh? (fuw, /2kT)
(60)

where Iy o(q,2k/q) is given by Eq. (A5). We may carry
out the final integration over energy by expanding the dif-
ference of the Fermi functions in powers of w,. Since the
contribution due to terms involving higher-order deriva-
tives of the Fermi function is seen to vanish by the use
of partial integration, we obtain

1 ®  de 6f°
2m3h%cp Jo  v2(e) e
< /oo dq(H2 9* + P)Io,0(g,2k/q) hwq
2k 4sinh? (fw,/2kpT)

(U, HU) =

(61)
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The remaining steps are standard. We assume that the
temperature is much less than the Fermi temperature,
so that the integral over ¢ yields 1/vZ, while k may be
replaced by the Fermi momentum kg. Furthermore, we
assume that the temperature is small compared to the
characteristic temperature ® defined by

kp® = hkpe. (62)

Then we obtain

8 mszkBT —_2 P
(U, HU) = 72 pcht (H 1—1;‘2;

e~ 2kpEh/(147) o —20/T (63)

This results in the final conductivity expression

2
o= 2%10, (64)

where the length [, is given by

weh3pkp

2k%.02 /(14v) ,20/T 65
m2(4k%E2 + P)° ¢ (65)

l, =

At low temperatures the conductivity thus increases ex-
ponentially, in agreement with the result of the numerical
calculation (see Fig. 3). In the presence of impurities, as
we shall see in Sec. V C, the scattering against phonons
yields a contribution to the inverse conductivity which
is proportional to T rather than exp(—20/T'), provided
the temperature is sufficiently low that the impurities
dominate the scattering.

C. Scattering from acoustical phonons and
impurities

When the impurity scattering dominates we may use
the variational principle with a trial function which is
proportional to the solution for impurity scattering alone.
We shall consider the case where only the lowest Landau
level n = 0 is important. The trial function is thus chosen
to be proportional to 1/B8; as given by Eq. (36),

U(k) = k® exp (2k%1}, /[1 +4]) . (66)

Since we have chosen the exact solution to the impu-
rity problem as our trial function, the calculated upper
bound on the contribution from electron-phonon scatter-
ing 1/0,n is exact, to lowest order in the magnitude of
the electron-phonon coupling. At low temperatures we
may make the approximation

2
o - P () G-k o
which is justified, since k& — k' = g, and the restriction
to low temperatures implies that the phonon momentum
is small. Furthermore, we may neglect the deformation-
potential coupling since the piezoelectric coupling domi-
nates for small g according to Eq. (53), and also set the
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matrix element appearing in Eq. (53) equal to unity. By
inserting U in Eq. (26) and carrying out the integrals we
obtain

-~ 2 3
o = ha3CE) 14y (1 + 4“%) (kBT) , (68)

2¢2 Ph g4 v&% hwy,

where é€p = ep/hwy, and
lph = —., (69)

This T3 behavior agrees well with our numerical calcula-
tions in the parameter range where it is expected to ap-
ply. In Figs. 3 and 4 we show the calculated conductivity,
obtained by numerical solution of the integral equation,
for samples with different amounts of impurities.

g/[(Zez/h) limp]

T (K)

FIG. 3. Plots of the normalized conductivity vs tempera-
ture for a GaAs quantum wire at the magnetic field B =9 T,
the confinement parameter v = 0.5, and the Fermi level
ep = 0.6Awp. Taking into account both impurity scatter-
ing, Eq. (35), and acoustical-phonon scattering, Egs. (46)
and (53), the five dotted curves, oi,...,05, are numerical
results for the zero-field, zero-temperature mobilities, pimp =
7.5, 75, 300, 3000, and 30 000 m?/(V s), respectively. The last
two rather unrealistic high mobilities are considered to allow
a study of the transition from impurity-dominated scattering
to phonon-dominated scattering at temperatures low enough
[T < ©® ~ 4.0 K—see Eq. (62)] for the approximative result
Eq. (64) to apply. The two full curves 0,4 and g.5 are plots
of the conductivity (rescaled to match o4 and o5) calculated
from Eq. (64) where only the acoustical-phonon scattering is
present. The full curve gimp is the case where only impurity
scattering is present. The two full curves 0:4 and o5 are the
results of assuming that the inverse conductivities for each
scattering mechanism considered separately may be added,
Ot = 0ajOimp/(Taj + Timp) (j = 4,5), to approximate the
exact numerical calculations of the total conductivity.
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FIG. 4. Plots of the normalized conductivity vs tempera-
ture for a GaAs quantum wire at the magnetic field B =9 T
and the Fermi level e = 0.6/wn. The confinement param-
eter in panel (a) is v = 1.0 and in (b) it is v = 0.5. The
dashed curve in each panel is the case where only impu-
rity scattering is taken into account. The four full curves
in each panel are the result of combining impurity and acous-
tical-phonon scattering for each of the following values of the
zero-field, zero-temperature mobility pgimp = 0.9, 9, 90, and
900 m?/(Vs).

VI. SCATTERING FROM OPTICAL PHONONS

Next we investigate the combined effects of scattering
by longitudinal-optical phonons!® and impurities. The
chief differences from the preceding section involve the ¢
dependence of the electron-phonon matrix element and
the absence of dispersion in the phonon frequencies. The
conductivity is obtained by solving the Boltzmann equa-

tion in the limit where the temperature is much less than
hwo/kp.

A. Coupling to optical phonons

We shall use the simple model where the phonon fre-
quency is independent of momentum,

(70)
|

M2 1
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X (djnk

with K7 (g,) given in Eq. (75). The argument of the
energy-conserving ¢ function is zero for

m:k(l——s

for each value of nk, provided the square root is real.
The branch index s assumes the values +1 and —1 corre-
sponding to forward and backward scattering. The Boltz-

hwp(n —n') + ochwy
78
R2k2/2m ) ’ (78)

~ h2rL 4sinh®(hwo/2kpT) .
- ¢n’k—q,) 6(5n’k—q1
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The electron-phonon matrix element!? is given by
1 M2
/ 2 0 n
g’ ) = VM () (1)
where V is the normalization volume and where
2 hw 1 1
M2 = 2n 220 (~———>. (72)
€0 Koo Ko
The function M is given by
MY (u) = [(nk|e' 4T 'k, (73)

which is calculated in the Appendix, where also u is de-
fined.

The approximation in Eq. (70) allows us to integrate
over the y and z components of the phonon momentum.
Using a 6 function for the wave function in the z direc-
tion, we get

Y lg(nn’,q))?

qy9qz

2

" (ga),

MO
= W‘Kn (74)

where

©(gz, qy)] (75)

qz)—/ \/(m

B. Scattering from optical phonons and impurities

We now consider the case of impurity and optical-
phonon scattering. The Boltzmann equation in this case
reads

eE, o 0 _ Ofnk imp Ofnn op
kBTUnkfnk(l nk)_< ot e coll

coll
(76)

The collision integral for the phonon scattering given in
Eq. (46) simplifies in the case of optical phonons to

Z ZK:ZI (g=) !fo(enk) — %enk + aﬁwo)‘

— enk — ohwg), (77)
f
mann equation now simplifies to
1= BrE()[da(e) — s'bu (e)]
+ 32 O (€0 ale) — (e + o, ()

where the matrix B is given by Eq. (36). The optical-
phonon scattering gives rise to the matrix C, which is
given by
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1

Cr¥ (e, 0)

ns

In GaAs the typical optical-phonon energies are about
36 meV. Furthermore, since the cyclotron energy Aw,. in
GaAs is 1.5 meV B/T, the typical situation will be that
the energy spacing between the Landau levels as mod-
ified by the confinement potential Awj is much smaller
than the phonon energies fuvy > Awp. Since we are in-
terested in temperatures that are small or comparable
in magnitude to the energy spacing Awp, we are there-
fore always in a situation where kT is much less than
hwp. Under these circumstances it is possible to sim-
plify the Boltzmann equation for electrical transport by
considering it to be a coupled system of equations for
the functions ¢(e & nfuwy) with n integer. Since the cur-
rent is mainly determined by the distribution of electrons
¢(e) within a thermal layer of thickness comparable to
kpT, it is sufficiently accurate to neglect the contribu-

7
al- @ ()
20
2 |
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1 -
r— | ——_
2.
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N
®
N
- 75
> (e) (d)
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FIG. 5. The conductivity with combined impurity and op-
tical phonon scattering for a GaAs quantum wire. The nor-
malized conductivity is plotted vs temperature for different
choices of confinement potential strengths, Fermi energies,
and mobilities. The magnetic field is B = 9 T. The confine-
ment parameter is y = 1 for panels (a) and (c) and v = 0.5 for
(b) and (d); the Fermi level is ep = 0.6Awy, i.e., close to the
bottom of the first band, for (a) and (b), and panel (c) and
(d) have er = 1.3Awn. The conductivity is shown for each of
the following values of the zero-field, zero-temperature mobil-
ity, fimp = 0.9, 9, 90, and 900 m?/(V's). The dashed curve in
each panel is the case where only impurity scattering is taken
into account.

= ()L — £°()] A%(2m)? 4 sinh(hwo/2ksT)

x> |%(e) = £O(e + ohwo)]

K7 [skp(g) — 8'kni (e + ohuwp)]

o (€)0m (= + 0 hirg) (80)

tions from ¢(¢ + nhwy), when n is different from zero.
The collision integral may therefore be approximated by
the “scattering-out” term, corresponding to the neglect
of vertex corrections in the Kubo approach.

In calculating the conductivity from Eq. (79) we thus
neglect the “scattering-in” terms involving ¢,,/ (e + 0 fwo),
while retaining the full collision matrix for the impuri-
ties. We have then evaluated the solution of Eq. (79)
numerically and inserted the solution in the conductivity
formula (18). Results are shown in Fig. 5. The low-
temperature behavior is dominated by the impurities,
which give rise to an initial increase of the conductiv-
ity, in accordance with Eq. (38). The optical phonons
come in at higher temperatures, yielding a maximum of
the conductivity as a function of temperature. The posi-
tion of the maximum is roughly proportional to the loga-
rithm of the strength of the impurity scattering, since the
phonon contribution depends exponentially on tempera-
ture. Note, however, that the acoustical phonons have re-
duced the conductivity for the high mobility cases rather
strongly at the temperature range shown here; see Fig.
4. The dashed line represents the conductivity without
optical phonon scattering.

In comparing the curves in Figs. 3-5 we observe that
the optical-phonon scattering in clean systems tends to
dominate the total scattering already at fairly low tem-
peratures, around 50 K. This is in contrast to the sit-
uation in typical GaAs-based two-dimensional electron
gases,?? where the optical-phonon scattering begins to
dominate around 100 K. This effect originates in the
increased phase space for scattering in one dimension,
caused by the fact that only the = component of the
momentum is conserved in the scattering process, while
Eq. (75) includes contributions from all perpendicular
components g,,.

VII. CONCLUSION

We have shown that the magnetoconductivity of quan-
tum wires may be discussed in a simple and unified fash-
ion within the framework of a Boltzmann equation, by
taking into account the influence of the magnetic field on
the electron group velocity and the matrix elements gov-
erning the transition probability. By treating in detail
the scattering from acoustical as well as optical phonons
in the presence of impurity scattering, we have deter-
mined the temperature dependence of the magnetocon-
ductivity for realistic choices of parameters in GaAs-
based structures. In particular, we have found that the
magnetoconductivity exhibits a maximum as a function
of temperature, depending on the relative strength of the
impurity and electron-phonon scattering. The calculated



11154

magnetoconductivity oscillates when the Fermi energy
or the magnetic field is varied. Our detailed calcula-
tions show that the scattering against optical phonons
in quantum wires is significant at temperatures some-
what smaller than the corresponding temperatures for
the two-dimensional case.

We have found that the inverse of the sum of the in-
verse conductivities (the Matthiessen conductivity) in
general is not a good approximation to the total con-
ductivity. If the impurity scattering dominates, the tem-
perature dependence of the electron-phonon contribution
is changed from exponential to power-law behavior; cf.
Egs. (65) and (68). If the different scattering contribu-
tions are of comparable magnitude the Matthiessen con-
ductivity overestimates the total conductivity with up to
a factor of 2 dependent on parameter values. This over-
estimation is in accordance with the general resistivity
theorem'® for the Boltzmann equation: pior > p1 + p2.
Only in the case where the phonon scattering dominates
we find a good agreement between the Matthiessen con-
ductivity and the total conductivity; cf. Fig. 3.

In order to address the existing experiments2?726 more
thoroughly a treatment including a calculation of not
only the longitudinal conductivity but also the Hall con-
ductivity is in demand.

The effects predicted in this paper should be observ-
able in quantum wires of sufficient purity, since otherwise
the electron density may vary considerably due to fluc-
tuations in the electrostatic potential from the donors.
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APPENDIX

In this appendix we study the square of the matrix
element (nk|exp(iq-r)|n'k’). Using the single-electron
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wave functions in Eq. (2) and performing the = and y
integrals one obtains

1 ,
(k| exp(iq-r)|n/k')|? = i kg o8 yln—n

nmax .

X [L'"_"w(u)]2 e ™, (A1)

Mmin
where nmiy = min(n,n’) and nymax = max(n,n’); L7 (u)
are the Laguerre polynomials while u is given by

1 1

1
= — —(qaln)? + =(qyfn)>.
u 1+72(q n)*+ 5 (auln)

(A2)
The Kronecker § function appearing in Eq. (Al), and
which is written explicitly in the expressicn for the in-
tegral operator H in Eq. (44), is a consequence of the
translational invariance along the = direction.
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ural to use the polar coordinates (g, 8, ¢) with the = axis
as the polar axis so that ¢, = gcos#, ¢, = gsinfcos ¢,
and ¢, = gsinfsin¢g. According to Egs. (44) and (53)
the only ¢ dependence is through u defined above. It is
therefore of interest to calculate the integral

2w
Inw(greos®) = [ o= [Lrw)]” e (a9)
0
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of the form u = 3 + acos® ¢, so the integrand of I, ./
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