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In this contribution we discuss the vortex picture of the fractional quantum Hall 
effect. Provided the vortices remained pinned in the presence of a transport current 
we show that this vortex picture implies the existence of plateaus. Finally we give an 
argument which elucidates why the ground state at v # l/m is an inhomogeneous 
vortex state rather than a homogeneous state. 

1. Introduction 

When the Hall-resistance, VH/Z,, of a 2-dimensional 
electron as is depicted as a function of the magnetic 
field, B, t 1 e experimental curves display plateaus around 
filling factors v = p 

1 
Q, where p and Q are small integers, 

and Q is odd. The p ateaus are positioned with a extraor- 
dinary accuracy at values VH/I = (q/p)h/e*, showing 
that we are dealin 

a 
with a macroscopic quantum effect. 

= 1 we spea about the integer quantum Hall ef- 
&rt YIQHE) and when q = 3,5,7,. . . the phenomenon is 
called the fractional quantum Hall effect (FQHE). 

The plateau is the hall mark of the quantum Hall 
effect, and the basic theoretical challenge is to explain 
the formation of plateaus and in particular to explain 
the extreme accuracy of the I/H/Z-quantization. In the 
present paper we show that together with a pinning as- 
sumption, the vortex picture of the FQHE leads to the 
formation of plateaus, and we discuss the possibility that 
the vortex picture may apply also to the IQHE. 

In section 2 we review the essential features of the 
vortex picture of the FQHE [1,2,3,4]. The nature of 
the vortex coordinate is discussed in section 3. Then, 
in section 4, we discuss why the ground state has to 
become inhomogeneous when the filling factor differs 
slightly from l/m. Finally, in section 5, we show how 
the vortex picture implies the existence of plateaus. The 
argument presented in section 5 is consistent with and 
supplementary to the argument given in [3 , but it is 
simpler, because an explicit discussion of t b e 
forces is avoided. 

pinning 

2. The vortex picture 

The vortex picture of the FQHE [2,3,4] that has 
emer 

7 
ed from Laughlin’s theory [l of the incompress- 

ible e ectron liquid is characterized i, y the following fea- 
tures: at the filling factor v = p/q the ground state is 
a homogeneous liquid. However, if by a small change of 
the magnetic field B the situation Y # p/q is produced, 
the ground state becomes inhomogeneous by containing 
topolo ical defects in the form of vortices or antivor- 
tices. fi n the region between the topological defects the 
electron density varies with B as 

0749-6036/90/070349+03$02.00/0 

n(B) = +,,, 
” (1) 

where B, = (n,h)/(ev) is the magnetic field correspond- 
ing to v = p/q, and ns is the average electron density 
i.e. the density of the homogeneous mid-plateau state at 
B = B,. We emphasize that for any iven fillin factor 
v = p/q, the relationship (1) will be ulfilled on y m an P e;, 
interval around p/q (finite plateau width). According 
to (1) the level of the electron liquid rises in the re 

ig 
ion 

between the topological defects as the magnetic fie d is 
increased, and it is lowered when the magnetic field is 
decreased. 

Within the Lau 
l/m, the shapes an ci: 

hlin theory, treating the case v = 
velocity fields of the to 

fects follow from his quasi-hole and P 
ological de- 

quasi-e ectron wave 
functions. In his theory the presence of a vortex at the 
position z,, is described by 

where z = z - iy. The state (2) has a reduced electron 
density and a circulating current around zs, so the image 
of this state is a vortex of the bathtub kind. 

Let us consider the situation where the magnetic field 
has been increased from B, to B. In this case the round 
state contains Nm(B hgis the 
number of electrons. cy 

Bv - 1) vortices, where 
ithin each vortex region there is 

a charge deficit of l/m of an electron charge. The charge 
removed from the vortex regions will appear in the re- 
gion between the vortices. Thus by charge conservation 
equation (1) will be fulfilled. 

In the presence of disorder, say the fluctuating po- 
tential from ionized donor atoms, the vortices will be 
localized in local energ minima. 

ple. 
The relationship (1 is valid in the bulk of the sam- T. 

The conditions near the edges, which is of particular 
importance for narrow channels, requires a s ecial treat- 
ment, but we shall not discuss the role of e B 
the present context. 

ge states in 
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3. The nature of the vortex coordinate 

A priori one might think of the vortex coordinate, 
zs, in equation (2) as either (a) a quantum mechani- 
cal position variable, or (b) a parameter. In the first 
case we must treat \Eh as a function of N + 1 quan- 
tum mechanical position variables zs, z!, 22,. . . , ZN, and 
consequently the electron density is 

h 
/. . J dzodzz . . dzN\k;@,,, i.e. the 

iven as n(zi) cc 
e ectron density is P 

omogeneous. In the second case the electron density 
is n(zi) a J...Jd.z2 . . . dzNQk;@h displaying a reduced 
density around .zs. In order to investigate which of the 
the two possibilities that is appro 
many particle state, 8, that resu ts when, from a filled P 

riate we consider the 

lowest Landau level containing N + 1 electrons, we re- 
move an electron from the state 4n.s. The state il, is 

where 

Qo,r = (2nZ22Pp!)-’ (5)rexp (-g) 

(3) 

(4) 

are the sin le particle states of the lowest Landau level. 
The state %. IS a vortex state state [5] with a circulat- 
ing current I = pn/2?r12 around the vortex centre and 
a density n(]z]) = (1 -exp(- ~]*/2I~))/(27r1~). Actually 
Cp is identical with the Lau II lin vortex wave function 
$v.en in (2) for m = 1 anf zo = 0. Since the state 

IS stationary in the lowest Landau level approxima- 
tion of the Laughlin theory, the centre-coordinate, zOr of 
the vortex will maintain its sharp value in the course of 
time. In contradistinction any proper quantum mechan- 
ical position variable cannot maintain a sharp value for 
any span of time. Therefore we conclude that zs must 
be treated as a parameter. 

4. Why not a homo eneous ground state 
at Y B 1/m? 

In this section we elucidate what prevents the ex- 
istence of a homogeneous state at v # l/m, with an 
ener 

r! 
y lower than the vortex state. 
onsidering the ground state wave function 

0 = @(Vi,. . , TN) = fed+) (5) 

we initially imagine that all the electrons, except elec 
tron 1, are kept at arbitrary fixed positions. The velocity 
field of electron 1 is then given as 

h e 
vl = --v,4 + --Al, 

M h4 

where Al = :B (-yl, x1,0). Now consider the singular 
gauge transformation [6] 

ma0 
aj = F $ Vhlln(.Zj - 2;) 

:#3 
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which attaches an infinitely thin flux tube with m flux 
quanta to each particle, but which does not give rise 
to any magnetic forces. This gauge transformation [7] 
changes Laughlin’s ground state wave function into 
4’, = ngj ]Zj-riJmexp(-1/(4P) C ].Q]~), showing that 
the Vi4 term in (6 

I 
vanishes in the singular gauge. In 

this gauge we there ore obtain 

vi = LA; 
M (8) 

where Ai = Al + aI. 
Considerin first the midplateau state at v = l/m, 

we calculate t e circulation of vi along an arbitrary ?I 
closed curve. Since fA.del = Bo, where (T is the en- 
closed area, we obtain 

f 
vl.dsl = $ jA\.ds, = 5 (Ba - N,m@c) , (9) 

where N,, is the number of electrons inside the closed 
curve. Releasing the fixed electrons and averaging over 
their positions we obtain 

(f v,.ds,) = 5 (Bo - noum@o) = 0, (10) 

where we have used that (N,) = ans. In a mean field 
description at v = l/m the average contribution to the 
velocity field from the statistical vector potential ai ex- 
actly cancels the contribution from the physical vector 
potential Al. 

Then let us consider what would happen if the den- 
sity remained homo eneous after the magnetic field has 
been changed into j = BO + AB. Taking the line inte- 
gral along a circle of radius R we find from (8) that 

(j&da,) = ; xR’AB + V= i;ABR. (11) 

At Y 
f 

l/m the contributions from the statistical and 
the p ysical vector potential no Ion er cancels. As a 
consequence the entire electron liqm ‘twill rotate with a 
velocity field that increases linearly with R. This absurd 
conclusion of course arises because we assumed that the 
electron density remained homogeneous. In reality the 
electron liquid solves its rotational problem, not by ro- 
tating as a whole, but by the setting up of many small 
rotations in the form of vortices or antivortices. However 
in the region between the vortices we still have (A;) = 0. 

5. Plateau formation 

We consider the situation where a current is passed 
through a rectangular sample with v slightly less than 
l/m! so that the electron liquid contains a collection of 
vortices. First imagine the idealized case where there 
is no disorder to pin the vortices. In this case the en- 
tire vortex pattern flows along with the li uid. 
arbitrary fixed position in the sample the e ectron 4 

At an 
den- 

sity will therefore fluctuate between n, when a vortex 
free region is passing, and a reduced density each time 
a vortex passes our point of observation. The time av- 
erage of the electron density is therefore no. But since 
force balance re uires that the electron liquid, with its 
vortex pattern, 1 ows along with the velocity v = E/B 
the time average of the current density is j = enoE/B, 
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which is the free electron result, implying the absence of 
plateaus. 

Then consider a real sample where the vortices are 
expected to remain pinned in the limit of low temper- 
ature and small currents. In this case the inter-vortex 
region is stationary and it will therefore be possible to 
establish a stationary path (from one side of the sample 
to the other) which is everywhere well away from any of 
the pinned vortices [5]. Thus along this path we have 

Therefore, by integration along this path we obtain the 
same Hall response, 

h 
v, = m--I, 

e2 

as in the mid-plateau state. But this is tantamount to 
the formation of a plateau. A more detailed discussion, 
in particular with respect to possible minute deviations 
from (13), is given in [5]. 

Also in the genera1 fractional case v = p/q the elec 
tron round state is supposed to form an incompressible 
liquid with h a omogeneous density. As the filling factor 
is made slightly different form p/q topological defects 
arise in the liquid. However, the essential thing is that 
(1) is fulfilled in the intervortex region, so that the ex- 
planation of plateau formation around p/q is the same 
as for the v = l/m-case. 

The p/q-states have been described in terms of the 
hierarchy theory [8,9,10], according to which the quas- 
particles,. i.e. the vortices, are supposed to condense into 
a Laughlm-type correlated state. Recently, however, the 
appropriateness of the hierarchy theory has been ques- 
tioned [ll]. Although the hierarchical theory offers a 
possible classification of the FQHE states, the theory has 
some conceptual difficulties. As more and more vortices 
are created in the liquid the correlations characteristic of 
the v = l/m-state are gradually weakened. However, it 
takes a large number of vortices to form a Laughlin-type 
condensate, in fact so large a number that the average 
distance between the vortices is comparable to the size 
of a vortex. This sug ests that the vortices may have 
stopped to be well de a ned physical objects (or to exist 
at all) before there are enough of them to form the new 
condensate of the dau hter state. Also, the feature that 
the vortex centre coor g; mate is a parameter rather than a 
quantum mechanical position variable, makes it unclear 
to which extend the vortices will be able to imitate the 
v = l/m-condensation. In our view, it is still an open 
question how the incompressibility of the v = p/q-states 
is best accounted for. 

6. Discussion 

At present, the formation of plateaus in the IQHE 
and the formation of plateaus in the FQHE are gener- 
ally considered as rather distinct phenomena. Whereas 

plateau formation in the IQHE is considered to be a 
single- 
the F d 

article localization phenomenon, the plateaus in 
HE simply would not be there if it were not for 

the electron-electron interaction. Nevertheless, the pos- 
sibility of establishing a unified theory of lateau forma- 
tion has been discussed in a few papers 11,12,13,3]. In 

P this context it is appropriate to ask the ollowmg ques- 
tion concerning the plateau formation in the IQHE: is 
equation (1 fulfilled in an interconnected region with 
such a i topo ogy that the formation of plateaus around 
integer filling factors can be explained by the same ar- 
gument, given in section 5, as the formation of plateaus 
around filling factors v = l/m? This will be the case if 
the ground states around integer filling factors are vor- 
tex states. But it can also be the case if there exists a 
phase se 

P 
aration into incompressible and corn 

.P 
ressible 

re ions 13,14,15]. In the latter case (12) wil be ful- 
filgd in the incompressible regions whereas the current 
density is zero in the compressible regions. Both 
bilities implies that electron-electron interaction \ 

jossi- 

role also in the IQHE. 
p ays a 

To illustrate the meaning of vortex states around in- 
teger filling factors we have considered the case where 
Y is sli 
ity fiel f 

htly less than one [5]. In this case the veloc- 
and the density deviation of the vortices, dis- 

tributed around in the liquid, will be rather much like 
that displayed by the state (3). 

In our view all plateau formation results from the 
fulfillment of (1) in an interconnected region with a suit- 
able topology, and we find it most likely that fulfillment 
of (1) in the FQHE as well as in the IQHE is due to the 
existence of vortices. 
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