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Abstract

Acoustofluidics is a field of microscale physics that has received increasing interest the
past few decades. Specifically interesting is the method of acoustic trapping used for cell
separation, which has opened possibilities for faster label-free cancer diagnosis. Thus a
thorough understanding of the devices is a necessity. In this thesis we investigate the
damping effects of the rubber tubes used to control fluid flow in the acoustic trapping
devices by means of numerical simulations.
We start by deriving the governing equations for the first order pressure and displacement
fields respectively. We then apply a coordinate transformation to the derived equations,
significantly reducing computation times, as it only becomes necessary to model in two
rather than three dimensions. Perfectly matched layers are also introduced as the refer-
ence point for perfect damping.
Validation of these transformations, then leads to a dedicated investigation of PDMS
tubes, using a measure called the standing wave ratio (SWR) to quantify observations.
It was found that in general the tubes do have a damping effect on the acoustic fields,
however the magnitude of these effects are very volatile to changes in geometry.
In an attempt to maximize damping effects, an investigation of the implementation of a
material with linearly varying density was performed. The results seemed to imply that
there is a region of densities for which the acoustic waves become much more travelling in
nature, which in turn impacts the traps strength and could thus be of interest.
The results presented in this thesis are a step towards a greater understanding of the
previously disregarded damping effects that arise in the laboratories.
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Chapter 1

Introduction

Acoustofluidics in general and more specifically microscale acoustofluidic devices have been
increasingly considered and used in the fields of biology and clinical diagnostics. Specif-
ically, there has been a lot of research and experimentation regarding cell separation in
hopes of developing new label-free methods targeted specifically at isolating circulating
tumor cells (CTC) [1]. CTC’s are in essence cancer cells that are exist in circulating blood,
and have been shown to be found in patients with various types of cancer but rarely in
healthy patients, making them a viable indicator of whether or not the patient in question
has cancer. The basic idea behind label-free methods is to utilize specific physical prop-
erties and characteristics of the cells to separate them, most of which are based on the
trapping of cells by exploitation of ultrasonic standing waves in microfluidic devices actu-
ated by piezotransducers [2][3][4][5]. However, to do this, a thorough understanding of the
acoustic devices used for acoustic trapping is needed, and thus a lot of theoretical research
and numerical simulations has been done for various acoustofluidic devices [2][4][5][6].

1.1 Simplification of Numerical Models

Typically the numerical models in question are developed in full three dimensions making
any simulations of longer devices very computationally heavy and thus, for very long
geometries, completely infeasible. In the article ”Three-Dimensional Numerical Modeling
of Acoustic Trapping in Glass Capillaries” by Mikkel W. H. Ley [6] the longest device
length simulated was 10 mm, which when compared to the 50 mm capillary presented
in the article ”Continuous flow ultrasonic particle trapping in a glass capillary” by Ian
Gralinski [2] is far from optimal. This forms one of the aims of this thesis, namely to
transform the typical governing equations from their full three dimensional form to a
simple two dimensional form, by use of axis-symmetry. The hope is that by doing so, a
better theoretical understanding of longer geometries can be developed.

1



2 CHAPTER 1. INTRODUCTION

1.2 Damping Effects

Figure 1.1: A picture of a standard microflu-
idic device used for particle trapping. The
picture is taken from ”Acoustic streaming
in the transducer plane in ultrasonic particle
manipulation devices” by Junjun Lei [5].

Another aim of the thesis, is to get a bet-
ter understanding of the effects that the
rubber tubing used to transport fluid into
and out of the acoustic devices have on the
acoustic fields. In figure 1.1 we see the
standard experimental set-up for ultrasonic
particle trapping, and as evident the rub-
ber tubes cover a large part of the device
itself and thus could have a significant im-
pact on the acoustic fields within. The rea-
son this is of such great interest, is that the
way the acoustic pressure field p and veloc-
ity field v (which is directly related to the
pressure) behave has a significant impact
on the particle trapping force, namely the
acoustic radiation force F rad. For mixed
travelling and standing waves, the radiation force is given by,

F rad = −4

3
πa3

pa

[
κfl 〈(f0p)∇p〉 − 3

2
ρfl 〈(f1v) ·∇v〉

]
, (1.1)

where, apa, κfl, ρfl, f0 and f1 are the particle radius, the fluid compressibility, the fluid
density and the monopole and dipole scattering coefficients respectively [6]. Thus it be-
comes important for the strength of the trap, whether or not the pressure field p is a
standing or travelling wave which to a great extent can depend on the potential damping
properties of the rubber tubes. A formal introduction to the above mentioned fields will
be presented in chapter 2.

1.3 Outline

Chapter 2: The Governing Equations

Due to the long time spent on getting a thorough understanding of the governing equa-
tions for acoustics in both fluids and solids, this chapter represents a somewhat thorough
explanation and derivation of the equations that form the basis of further investigations.
Specifically, we derived the wave equations for the first order pressure and displacement
fields through use of perturbation theory and linear elastic solid theory respectively.

Chapter 3: Coordinate Transformation

In this chapter we introduce the weak form formulation and walk through the coordinate
transformations required to reduce the governing equations from three to two dimensions.
An introduction to perfectly matched layers is also included (PML).
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Chapter 4: Numerical Modelling

We introduce the finite element method (FEM) as well as the general system, which will
form the starting point for further simulations. On the basis of this system, we validate
the coordinate transformed equations as to ensure they yield the same results as the full
three dimensional equations. We also run tests to ensure that the PML is correctly applied
to the system.

Chapter 5: Results

In this chapter we investigate the effects tubes of the kind depicted in figure 1.1 have
on the acoustic fields of interest. We also extend the investigation to different damping
methods in an attempt to replicate optimal damping as represented by PML.
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Chapter 2

The Governing Equations

2.1 Governing equations of fludics

To mathematically describe the motion of fluids, the Eulerian specification of continuum
fields will be adopted. In this picture, we observe how the fields at a fixed position r evolve
in time t. Consequently the position and time are completely independent variables. In
general, the field of an arbitrary physical quantity is described as an average of the quantity
in question over a fluid particle of volume ∆V(r) centered at position r at time t. Hence
we define the density ρ(r, t) and velocity field v(r, t) as

ρ(r, t) ≡ 1

∆V(r)

∑
i∈∆V(r)

mi (2.1a)

v(r, t) ≡ 1

ρ(r, t) ∆V(r)

∑
i∈∆V(r)

mi vi, (2.1b)

where the index i refers to individual particles enclosed by the volume ∆V(r) [7]. Having
defined the two most fundamental fields of acoustofluidics, we are now ready to derive the
governing equations for fluids using the basic concepts of mass and momentum conserva-
tion.

2.1.1 The continuity equation

The continuity equation can be derived using the principle of mass conservation. We
consider a fixed arbitrary region Ω in the fluid, where the total mass enclosed M(Ω, t) as
a function of time is given by a volume integral of the density field ρ(r, t) over Ω,

M(Ω, t) =

∫
Ω

dr ρ(r, t). (2.2)

Due to non-relativistic mass conservation, the only way the total mass M(Ω, t) can vary
in time is due to a mass flux through the surface ∂Ω of the region Ω. To describe the flux,

5



6 CHAPTER 2. THE GOVERNING EQUATIONS

we introduce the mass current density JM (r, t) defined as the mass flow per oriented area
per time,

JM (r, t) = ρ(r, t)v(r, t), (2.3)

where v(r, t) is the advection velocity. Hence we can write an expression for ∂tM(Ω, t) as
the surface integral over ∂Ω of the mass current density defined in equation (2.3),

∂tM(Ω, t) =

∮
∂Ω

da (−n) · JM (r, t) = −
∮
∂Ω

da n · (ρ(r, t)v(r, t))

= −
∫

Ω
dr ∇ · (ρ(r, t)v(r, t)),

(2.4)

where the negative sign of the surface normal vector n ensures that positive flux implies
an inflow into the region Ω, and where Gauss’s theorem was applied to the vector field
ρ(r, t)v(r, t) in the final step of equation (2.4). However, an expression for ∂tM(Ω, t) can
also be obtained by simply differentiating the expression for M(Ω, t) obtained in equation
(2.2),

∂tM(Ω, t) = ∂t

∫
Ω

dr ρ(r, t) =

∫
Ω

dr ∂tρ(r, t). (2.5)

Equating equations (2.4) and (2.5) we get the famous continuity equation,∫
Ω

dr ∂tρ(r, t) = −
∫

Ω
dr ∇ · (ρ(r, t)v(r, t)) ⇒ ∂tρ(r, t) = −∇ · (ρ(r, t)v(r, t)), (2.6)

where we have used that the integrands have to be equal since the volume integral is over
an arbitrary region Ω.

2.1.2 The Navier-Stokes equation

The second governing equation of fludics is the infamous Navier-Stokes equation, which
can be derived on the basis of momentum conservation. Again we consider a fixed region
Ω in the fluid and consider the total momentum P (Ω, t) enclosed,

P (Ω, t) =

∫
Ω

dr ρ(r, t)v(r, t). (2.7)

Unlike M(Ω, t), which could only vary due to advection through the surface ∂Ω of the fixed
region, P (Ω, t) not only varies due to advection but also due to forces given by Newton’s
second law. These forces can either be body forces that act on the entire region Ω such
as gravitation, or they can be contact forces that act on the surface ∂Ω such as pressure
and viscosity forces. Hence the rate of change in time of the total enclosed momentum
∂tP (Ω, t) can be expressed as,

∂tP (Ω, t) = ∂tP (Ω, t)adv. + ∂tP (Ω, t)grav. + ∂tP (Ω, t)pres. + ∂tP (Ω, t)visc.. (2.8)

Starting with the first term of equation (2.8), we define the momentum current density
JP (r, t) similar to the mass current density defined in equation (2.3),

JP (r, t) = (ρ(r, t)v(r, t))v(r, t). (2.9)
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The difference being that JP (r, t) is a tensor of rank two rather than a simple vector.
Using equation (2.9) we can write an expression for ∂tP (Ω, t)adv. as the surface integral
of JP (r, t) over ∂Ω,

∂tP (Ω, t)adv. =

∮
∂Ω

da (−n) · JP (r, t) = −
∫

Ω
dr ∇ · (ρ(r, t)v(r, t)v(r, t)), (2.10)

where Gauss’s theorem has been applied to the second rank tensor field ρ(r, t)v(r, t)v(r, t).
An expression for the second term in equation (2.8) can easily be determined as the volume
integral of gravitational force density fgrav.(r, t) over the region Ω,

∂tP (Ω, t)grav. =

∫
Ω

dr fgrav.(r, t) =

∫
Ω

dr ρ(r, t) g(r, t), (2.11)

where g(r, t) is the acceleration of gravity. The change in total momentum due to pressure
can be obtained by a surface integral of the force exerted by pressure over ∂Ω,

∂tP (Ω, t)pres. =

∮
∂Ω

da (−n) · (p(r, t)1) = −
∫

Ω
dr ∇ · (p(r, t)1) = −

∫
Ω

dr ∇p(r, t)

(2.12)
where 1 is the identity matrix. The final contribution comes from the viscous friction
that occurs at the surface of the fixed region ∂Ω. This interaction can be expressed using
the Cauchy stress tensor σ′(r, t), which is a tensor of rank two where element σ′i,j(r, t)
denotes the ith component of the frictional force per unit area acting on a surface with
its normal oriented parallel to the unit vector êj (where i, j = x, y, z). Hence the change
in total momentum due to viscosity must be given by,

∂tP (Ω, t)visc. =

∮
∂Ω

da n · σ′(r, t) =

∫
Ω

dr ∇ · σ′(r, t). (2.13)

Inserting equations (2.10), (2.11), (2.12) and (2.13) into equation (2.8) and dropping the
position and time dependence we get,

∂tP =

∫
Ω

dr −∇ · (ρvv) + ρg −∇p+ ∇ · σ′. (2.14)

However an expression for ∂tP can also be gotten from differentiating equation (2.7) with
respect to time,

∂tP = ∂t

∫
Ω

dr ρv =

∫
Ω

dr ∂t(ρv). (2.15)

Equating equations (2.14) and (2.15) and using the fact that the integrands must be equal
given the arbitrariness of Ω, we get the following expression:

∂t(ρv) = −∇ · (ρvv) + ρg −∇p+ ∇ · σ′ (2.16)

We can now use the continuity equation (2.6) to further simplify the above expression
ultimately obtaining the general Navier-Stokes equation,

(−∇ · (ρv))v + ρ∂tv = (−∇ · (ρv))v − ρv(∇ · v) + ρg −∇p+ ∇ · σ′ ⇒
ρ [∂tv + (v ·∇)v] = ∇ · σ′ −∇p+ ρg.

(2.17)
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In order to further elaborate on the Navier-Stokes equation, we will insert an expression for
the Cauchy stress tensor. We notice that it is only possible to have a non-zero contribution
from the stress tensor if the fluid particles move relative to each other, in other words the
stress tensor can only depend on the spatial derivatives of the velocity. Knowing that in
general the velocity gradients in acoustofluidics are very small, we can safely assume that
only first order derivatives will appear. It thus is no big surprise that the Cauchy stress
tensor can be expressed as follows,

σ′ = η
(
∇v + (∇v)T + (β − 1)(∇ · v)1

)
, (2.18)

where η is the dynamic shear viscosity and the term in front of the divergence of the
velocity field, η(β − 1), is the compressibility-induced dilatational viscosity [7]. The term
β is therefore related to the ratio between the before-mentioned types of viscosity. By
insertion of equation (2.18) into equation (2.17) and assuming the fluid is Newtonian such
that the viscosity coefficients η and β are considered constants, we get the celebrated
Navier-Stokes equation for Newtonian fluids,

ρ [∂tv + (v ·∇)v] = ∇ ·
[
η
(
∇v + (∇v)T + (β − 1)(∇ · v)1

)]
−∇p+ ρg

= −∇p+ η∇2v + βη∇(∇ · v) + ρg.
(2.19)

2.1.3 First Order Perturbation

In the following section we intend to derive the Helmholtz equation for the pressure field
in fluids. This will be accomplished using first order perturbation theory together with
the Navier-Stokes equation (2.19) and the continuity equation (2.6). Consider a stationary
(v0 = 0) liquid with constant density ρ0 and constant pressure p0. We will now introduce
the fields of the fluid to a tiny perturbation (denoted with subscript 1) such that the total
fields can be expressed as,

ρ = ρ0 + ρ1 , p = p0 + p1 and v = v1. (2.20)

As to reduce the number of fields in the expressions to come, we will expand the expression
for the pressure field such that the perturbation p1 is approximated by the expression(
∂p
∂ρ

)
ρ1. We notice that the derivative has the dimensions of velocity squared, and for

reasons that will appear later on in the derivation denote it by c2
0, such that the total

pressure field becomes,
p = p0 + c2

0ρ1. (2.21)

Inserting equations (2.20) and (2.21) into the continuity equation (2.6) and the Navier-
Stokes equation (2.19), where we have absorbed the gravitational term into the pressure
term such that the pressure also accounts for the force of gravity, we get,

∂t(ρ0 + ρ1) = −∇ · ((ρ0 + ρ1)v1) ⇒ ∂tρ1 ≈ −ρ0∇ · v1, (2.22)

and,

(ρ0 + ρ1)∂tv1 = −∇(p0 + c2
0ρ1)− (ρ0 + ρ1)(v1 ·∇)v1 + η∇2v1 + βη∇(∇ · v1) ⇒

ρ0∂tv1 ≈ −c2
0∇ρ1 + η∇2v1 + βη∇(∇ · v1),

(2.23)
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where we have chosen to neglect all second order terms. Taking the time derivative of
equation (2.22) and inserting equation (2.23) in the resulting expression we get,

∂2
t ρ1 = −∇ · (ρ0∂tv1) = c2

0∇2ρ1 + η(1 + β)∇2(∇ · v1). (2.24)

Using equation (2.22) to express the divergence of the velocity field in terms of the density
field we get,

∂2
t ρ1 =

(
c2

0 +
η(1 + β)

ρ0
∂t

)
∇2ρ1. (2.25)

In order to get rid of the partial time derivative, we will assume that all first order fields
have a harmonic time dependence,

ρ1(r, t) = ρ1(r)e−iωt , p1(r, t) = p1(r)e−iωt and v1(r, t) = v1(r)e−iωt, (2.26)

where ω is the angular frequency of the acoustic field. This is not a restrictive condition
since it is possible to create any arbitrary time dependence from an infinite superposition
of the complex exponentials e−iωt. In other words, if a solution to the fields with the
above time dependencies is found, a solution to any time dependence can be constructed
from a simple weighted sum of these solutions with differing angular frequencies. Having
implemented the assumption, we quickly realise that the partial time derivative ∂t in
equation (2.25) can be replaced by iω, hence the equation simplifies to,

−ω2ρ1 =

(
c2

0 −
iωη(1 + β)

ρ0

)
∇2ρ1 ⇒ −ω

2

c2
0

p1 =

(
1− iωη(1 + β)

c2
0ρ0

)
∇2p1, (2.27)

where we have used the fact that p1 = c2
0ρ1. Essentially we have now arrived at an

expression that describes the pressure field in a fluid subjected to a tiny perturbation.
However, because the factor ωη(1+β)

c20ρ0
is in the order of 10−5 for acoustic frequencies in the

order of MHz [7], we can Taylor expand the expression as to arrive at a simpler expression.

Letting q = ωη(1+β)
c20ρ0

<< 1 and introducing the wavenumber k0 = ω
c0

we have,

∇2p1 = −k2
0

1

1− iq
p1 = −k2

0

1 + iq

1 + q2
p1 ≈ −k2

0(1 + iq)p1 ≈ −k2
0

(
1 + i

q

2

)2
p1. (2.28)

Letting Γf = q
2 be the viscous damping factor, and by introduction of the complex-valued

wavenumber kf = (1 + iΓ)k0 we arrive at the Helmholtz equation for a damped wave with
wavenumber kf , angular frequency ω and propagation velocity c0,

∇2p1 = −k2
0(1 + iΓf )2p1 = −k2

fp1 , Γf =
ωη(1 + β)

2c2
0ρ0

. (2.29)

2.2 Governing equations of elastic solids

For the purpose of this thesis, knowing how acoustic pressure waves propagate in fluids
does not suffice since in the laboratory, the fluid is enclosed in a solid medium. It is
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hence necessary to develop a mathematical theory to describe acoustic waves in solids.
This is the aim of the following section. The general theory of elastic solids is based on
three basic concepts, the displacement u, the strain tensor s and the stress tensor σ. The
displacement of a solid element located at r0 is defined as follows,

u(r0, t) ≡ r(t)− r0, (2.30)

where r refers to the new temporary position of the solid element at time t [8]. In
the following derivations we will be using index notation such that ri refers to the ith
component of the position vector r, where i = x, y, z, and drop explicitly writing the
position and time dependence. We will now consider the infinitesimal distance dri between
two neighbouring solid elements, defined on the basis of equation (2.30),

dri = dr0i + dui ≈ dr0i + (∂kui)dr0k = (δik + ∂kui)dr0k, (2.31)

where δik is the Kronecker delta, which takes the value 1 when i = k and 0 when i 6= k.
We have applied a first-order Taylor expansion in the relative displacement, which is a fair
approximation for the small deformations typically encountered in the acoustic vibrations
to be considered in this thesis [8].

2.2.1 The strain and stress tensor

The strain tensor s (with components sik) naturally appears from the scalar product
drjdrj ,

drjdrj = ((δji + ∂iuj)dr0i) ((δjk + ∂kuj)dr0k) = (δik + ∂kui + ∂iuk + ∂iuj∂kuj)dr0idr0k

≈ (δik + ∂kui + ∂iuk)dr0idr0k = (δik + 2sik)dr0idr0k , sik =
1

2
(∂kui + ∂iuk).

(2.32)

The stress tensor on the other hand has already been introduced to some extent in the
form of the Cauchy stress tensor when deriving the governing equations of fluidics. Like
with the viscous contribution to the change in the total momentum of the fluid, the total
intrinsic forces in a solid element must be given by the divergence of the stress tensor,

f in = ∇ · σ. (2.33)

Knowing this, we can calculate the total mechanical work done by a displacement δu
inside the solid element in an attempt to link the stress and strain tensors,∫

Ω
dV δW =

∫
Ω

dV δui∂kσik =

∫
Ω

dV ∂k(δuiσik)−
∫

Ω
dV ∂k(δui)σik

=

∮
∂Ω

dAδuiσiknk −
∫

Ω
dV δ(∂kui)σik = −1

2

∫
Ω

dV δ(∂kui + ∂iuk)σik

= −
∫

Ω
dV σikδsik

, (2.34)
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where δW is the mechanical work done by the intrinsic force per unit volume and Ω is
an arbitrary fixed region in the elastic solid with surface ∂Ω. Using the fact that the
fixed region Ω is arbitrary we conclude that δW = −σikδsik. We now apply the standard
thermodynamic expression for the infinitesimal change in the free energy density of the
system F to relate the stress and strain,

dF = −SdT − dW = −SdT + σikdsik ⇒ σik =

(
∂F

∂sik

)
T

. (2.35)

Knowing that, at thermal equilibrium, both the strain and stress have to be zero, we can
use equation (2.35) to conclude that the free energy density must be written in a quadratic
form of the strain,

F = F0 +
1

2
Ciklmsikslm, (2.36)

where Ciklm are the elements of the so called elastic modulus tensor, a tensor of rank
four. Fortunately we choose to only consider isotropic solids, meaning that we can have
no directional dependence. In other words, we apply the fact that the trace of a tensor is
directionally independent to deduce that the only two quadratic terms that can exist in
the elastic modulus tensor must be,

[Tr(s)]2 = (sjj)
2 = (∇ · u)2 and Tr(s · s) = siksik, (2.37)

where the last equality in the first term comes from equation (2.39). Hence the free energy
for an isotropic solid becomes,

F = F0 +
1

2
λs2

jj + µsiksik, (2.38)

where we have introduced the Lamé coefficients λ and µ. We can now find an explicit
expression for the stress tensor in terms of the displacement through a combination of
equations (2.35), (2.38) and (2.39),

σik = λsjjδik + 2µsik = λ(∂juj)δik + µ(∂iuk + ∂kui). (2.39)

2.2.2 Equation of motion

Knowing that the total intrinsic force of a solid is given by the volume integral of ∇ · σ,
we can use Newton’s Second Law to derive how the displacement field in an isotropic solid
with density ρs develops over time,

ρs∂
2
t ui = f int.i + f bodyi = ∂kσik + f bodyi = ∂k(λ(∂juj)δik + µ(∂iuk + ∂kui)) + f bodyi

= λ∂i(∂juj) + µ∂k(∂iuk + ∂kui) + f bodyi = µ∂2
kui + (µ+ λ)(∂i(∂kuk)) + f bodyi ⇒

ρs∂
2
t u = µ∇2u+ (µ+ λ)∇(∇ · u) + f body.

(2.40)
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We now implement the mathematical trick known as the Helmholtz decomposition, where
we split the displacement into a transverse divergence-free field uT and a longitudinal
curl-free field uL,

u = uT + uL , ∇ · uT = 0 and ∇× uL = 0. (2.41)

Inserting the decomposed displacement field into equation (2.40), where we assume no
external forces (f body = 0) we get,

∂tuT + ∂tuL =
µ

ρs
(∇2uT +∇2uL) +

µ+ λ

ρs
∇2uL =

µ

ρs
∇2uT +

2µ+ λ

ρs
∇2uL, (2.42)

where we have used the identity stating that ∇(∇ · (uT +uL)) = ∇2uL +∇×∇×uL =
∇2uL. As evident from equation (2.42), the equation of motion (2.40) reduces to a simple
wave equation with wave speed cT for a divergence-free displacement field (uL = 0).
Likewise, for a curl-free displacement (uT = 0) field the equation reduces to a simple wave
equation with wave speed cL. The wave speeds can be expressed as follows,

c2
T =

µ

ρs
and c2

L =
2µ+ λ

ρs
. (2.43)

In general however, the displacement field is a combination of transverse and longitudinal
components which is primarily due to coupling in the boundary conditions. We now choose
to implement the newly discovered constants cL and cT in the expression for the stress
tensor σ from equation (2.39),

σ = λ(∇ · u)1 + µ
(
∇u+ (∇u)T

)
= ρs

[
c2
T

(
∇u+ (∇u)T

)
+ (c2

L − 2c2
T )(∇ · u)1

]
.

(2.44)
In the derivation of the first order fluid fields, we saw the introduction of a damping term
denoted the viscous damping factor Γf . In order to simulate true physical elastic solids,
we will introduce a damping term of similar nature to Γf to the equation of motion (2.40).
This is done by simply multiplying the right hand side by the factor (1 − iΓs)

2 where
Γs << 1 is the bulk damping factor. As we did with the first order fields in the fluid
domain, we also assume the displacement field u to have harmonic time dependence such
that the partial time derivative on the left hand side of equation (2.40) can be replaced with
the factor iω where ω is the angular frequency of the acoustic vibration. Implementing
this time dependence together with the damping, (2.40) becomes,

−ω2u = (1−iΓs)2 1

ρs
∇·σ = c2

T (1−iΓs)2∇2u+(c2
L(1−iΓs)2−c2

T (1+iΓs)
2)∇(∇·u). (2.45)

Hence we have successfully derived the governing equation for isotropic elastic solids with
damping, which in its simplest form can be expressed as follows,

∇ · σ = − ω2ρs
(1− iΓs)2

u = −k2
su , ks =

ω
√
ρs

1− iΓs
. (2.46)



Chapter 3

Coordinate Transformation

3.1 Coordinate Transformation of General Equations

In the following section a coordinate transformation will be applied to the governing
equations introduced in Chapter 2. The motivation for doing this, as mentioned in the
introduction, lies in the fact that the glass capillaries used in experiments have lengths in
the order of 50 mm [2], meaning that numerically solving the three dimensional governing
equations becomes very computationally heavy. For the remainder of this thesis we shall
only consider glass capillaries of axis-symmetric geometries. Hence it would make sense
to transform the equations from Cartesian to cylindrical coordinates since this allows for
the assumption that all fields of interest can be written in the form,

F (x, r, φ) = F (x, r)eimφ, (3.1)

where m ∈ Z+ denotes the angular mode of the field. The assumption in equation (3.1)
allows for the governing equations to be written in a two-dimensional form, thereby signif-
icantly decreasing the computation time and allowing for numerical calculations on longer
capillaries.

3.1.1 Weak form formulation

Before we can begin the coordinate transformations, it is first necessary to introduce
the weak form formulation as we will be implementing the finite element method (FEM)
for simulations of microscale acoustic chambers later in the thesis using the software
called COMSOL Multiphysics [9]. Hence it becomes important to formulate our governing
equations in the above described form. In FEM, a region of space Ω is discretized in a
mesh with many mesh elements, each of finite size and spanned by neighbouring mesh
element vertices. Hence the higher the number of mesh elements the more continuous the
space becomes at the cost of computational time.

A mesh cell centered at the vertex n is defined as the collection of mesh elements with
a vertex at the location n. We can now introduce the concept of a test function ĝn which
is a function defined within the boundaries of a mesh cell centered at n (i.e. takes the

13
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Figure 3.1: A sketch of a mesh of the region enclosed by Ω, with a test function ĝn
centered in the vertex n. The sketch is taken from ”Implementation of first- and second-
order acoustic perturbation theory in Comsol” by Henrik Bruus [10].

value 0 everywhere else), that takes the value 1 at n and then continuously decays by a
polynomial of order p to 0 at the outer boundaries of the mesh elements defining the mesh
cell. In figure 3.1 we see a sample mesh where the test function ĝn decays linearly (i.e.
p = 1). The reason for introducing these test functions is due to the fact that neighbouring
mesh cells, and thereby test functions, overlap, implying that the set of all test functions
make up a non-orthogonal basis. This allows for any function g(r) to be approximated by
the superposition of ĝn,

g(r) ≈
∑
n

Cgnĝn(r), (3.2)

where Cgn are the solution coefficients for the function g(r), the reason for which will
become clear later in the derivation [10]. Having introduced FEM, we can now implement
it to the governing equations derived in Chapter 2. As evident from equations (2.29) and
(2.46) we are dealing with equations of the following form,

∇ · J − F = 0, (3.3)

where J is a generalised flux and F is a generalised force driving that flux. In the case
of a scalar equation, like the Helmholtz equation for pressure, the flux is a vector Ji
with a scalar divergence and the driving force is a scalar. Explicitly we get the following
expressions for equation (2.29),

Jf = 0 and Ff = ∇2p1 + k2
fp1. (3.4)

One could think that the flux should be ∇p1, however since the equation is for finding
p1 we are looking for a vector current involving p1 and not the gradient ∇p1 which is
directly related to the first order velocity of the fluid v1 (v1 = −i 1

ρ0ω
∇p1 [7]). For a

vector equation, like that of the equation of motion (2.46), the flux is a tensor of rank
two Jij with a vector divergence and the driving force is a vector. Explicitly for equation
(2.46) we get,

Js = σ and Fs = k2
su. (3.5)
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By application of the approximation (3.2) to the general form (3.3) for a general field g(r),
we expect for there to be a defect d(r) whose magnitude depends on the granularity of
the mesh,

∇ · J [g(r)]− F (r) = d(r). (3.6)

Fortunately it so happens that the strong form (3.3) is approximately satisfied if the
projection of the defect d(r) on every test function ĝm(r) defined in a mesh of volume Ω
is 0, ∫

Ω
dV ĝm(r) [∇ · J [g(r)]− F (r)] = 0 ∀ m ∈ Ω. (3.7)

By direct insertion of equation (3.2) into equation (3.7) we have,∫
Ω

dV ĝm(r)

[
∇ · J

[∑
n

Cgnĝn

]
− F (r)

]
= 0 ⇒

∑
n

Cgn

∫
Ω

dV ĝm(r)∇ · J [ĝn(r)]−
∫

Ω
dV ĝm(r)F (r) = 0 ⇒ KmnC

g
n = Fm

(3.8)

where we have assumed that the current operator J(g(r)) is linear and introduced the
stiffness matrix with elements Kmn and the force vector Fm, defined below,

Kmn =

∫
Ω

dV ĝm(r)∇ · J [ĝn(r)] , Fm =

∫
Ω

dV ĝm(r)F (r). (3.9)

In other words, the weak form formulation becomes a simple matrix inversion problem
to find the solution coefficients Cgn, which in turn yields an approximate solution to the
equations on strong form.

3.1.2 Helmholtz Equation

Having introduced the weak form formulation, we can now return to the coordinate trans-
formation of the governing equations from Cartesian to cylindrical. We start by considering
the first order pressure field p1(r, t), from equation (2.29) we know that the field can be
found from the Helmholtz equation,

∇2p1(r, t) = −k2
fp1(r, t). (3.10)

In the following, we will divide through by the harmonic time dependence represented by
the complex phase e−iωt as to kill the time dependence, simplifying further mathematical
treatment. In order transform equation (3.10) from Cartesian coordinates to cylindrical
coordinates, the pressure field itself becomes,

p1(r) = p1(x, y, z) = p1(x, r, φ) = p1(r′), (3.11)

where r′ denotes the position expressed in cylindrical coordinates. However, the Laplacian
does not transform so simply due to the fact that ∂φêr = êφ and ∂φêφ = −êr. To find
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an expression for the Laplacian in cylindrical coordinates we introduce the nabla operator
written in cylindrical coordinates,

∇ = êx∂x + êr∂r + êφ
1

r
∂φ. (3.12)

The Laplacian thus becomes,

∇2 = ∇ ·∇ =

(
êx∂x + êr∂r + êφ

1

r
∂φ

)
·
(
êx∂x + êr∂r + êφ

1

r
∂φ

)
= ∂2

x + ∂2
r +

1

r
∂r +

1

r2
∂2
φ = ∂2

x +
1

r
∂r(r∂r) +

1

r2
∂2
φ.

(3.13)

Inserting equations (3.11) and (3.13) into equation (3.10), we get the cylindrical Helmholtz
equation,

∂2
xp1(r′) +

1

r
∂r(r∂rp1(r′)) +

1

r2
∂2
φp1(r′) = −k2

fp1(r′). (3.14)

We now apply the assumption introduced in equation (3.1) in order to reduce the equation
to two dimensions. With this, each angle derivative ∂φ gives a factor im, and thus the
equation becomes

∂2
xp1(x, r) +

1

r
∂r(r∂rp1(x, r))− m2

r2
p1(x, r) = −k2

fp1(x, r) (3.15)

where we have divided through by the complex phase eimφ as to remove the angle depen-
dence. We continue by rewriting the equation to the weak form introduced in equation
(3.7) using the test function p̃1(x, r),∫

x,r
p̃1(x, r)

[
∂2
xp1(x, r) +

1

r
∂r(r∂rp1(x, r)) + k2

fp1(x, r)− m2

r2
p1(x, r)

]
2πrdxdr = 0,

(3.16)
where the integral has been reduced from a volumetric integral to a two dimensional
integral using the fact that the integrand is angle independent. After simplification, we
recover the weak form equation of the two dimensional Helmholtz equation,∫
x,r
p̃1(x, r)

[
∂x [2πr∂xp1(x, r)] + ∂r [2πr∂rp1(x, r)] + 2πp1(x, r)

(
k2
fr −

m2

r

)]
dxdr = 0,

(3.17)
where the generalised flux Jp and the the generalised driving force Fp are given as,

Jp = 2πr∂xp1(x, r)êx + 2πr∂rp1(x, r)êr , Fp = 2πp1(x, r)

(
k2
fr −

m2

r

)
. (3.18)

3.1.3 Equation of Motion

We will now consider the transformation of the general equation of motion for elastic solids
with effective damping introduced in equation (2.46),

∇ · σ(r, t) = −k2
su(r, t). (3.19)
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As with the pressure field we divide through by the complex phase e−iωt as to remove the
time dependence, and transform the displacement field as follows,

u(r) = u(x, y, z) = u(x, r, φ) = u(r′). (3.20)

In order to fully transform the equation, we need to evaluate the dot product ∇ · σ(r′).
In the following we shall drop explicitly writing the position dependence, as to simplify
further expressions. Using equation (3.12) we have,

∇ · σ =

(
êx∂x + êr∂r + êφ

1

r
∂φ

)
· σ =

(
∂xσxx + ∂rσrx +

σrx
r

+
∂φσφx
r

)
êx

+

(
∂xσxr + ∂rσrr +

σrr
r

+
∂φσφr
r
−
σφφ
r

)
êr

+

(
∂xσxφ + ∂rσrφ +

σrφ
r

+
∂φσφφ
r

+
σφr
r

)
êφ.

(3.21)

As evident, there are an extra two terms in the r and φ components of the divergence with
opposite signs. These two expressions come from the angle derivatives of the unit vectors
êr and êφ. Inserting equation (3.21) into equation (3.19) and using the assumption from
equation (3.1), which replaces all angle derivatives ∂φ with the factor im, and immediately
dividing through with the complex phase eimφ we get the following equation,

0 =

(
∂xσxx + ∂rσrx +

σrx + imσφx
r

+ k2
sux

)
êx

+

(
∂xσxr + ∂rσrr +

σrr − σφφ + imσφr
r

+ k2
sur

)
êr

+

(
∂xσxφ + ∂rσrφ +

σrφ + σφr + imσφφ
r

+ k2
suφ

)
êφ.

(3.22)

where all the stress tensor components σij(x, r) and displacement components uk(x, r)
are functions of the axial and radial coordinates only. Similar to the transformation of
the Helmholtz equation, we now rewrite equation (3.22) to the weak form using the test
function ũ(x, r),

∫
x,r
ũ(x, r) ·



(
∂xσxx + ∂rσrx +

σrx + imσφx
r

+ k2
sux

)
êx

+

(
∂xσxr + ∂rσrr +

σrr − σφφ + imσφr
r

+ k2
sur

)
êr

+

(
∂xσxφ + ∂rσrφ +

σrφ + σφr + imσφφ
r

+ k2
suφ

)
êφ


2πrdxdr = 0.

(3.23)
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After simplification we end up with the following expression for the transformed weak
form equation of motion in elastic solids,

∫
x,r
ũ ·

 2πk2
sru+ (∂x [2πrσxx] + ∂r [2πrσrx] + 2π (σrx + imσφx)) êx

+ (∂x [2πrσxr] + ∂r [2πrσrr] + 2π (σrr − σφφ + imσφr)) êr

+ (∂x [2πrσxφ] + ∂r [2πrσrφ] + 2π (σrφ + σφr + imσφφ)) êφ

dxdr = 0. (3.24)

From equation (3.24) we see that the generalised flux Ju is a 2 by 3 matrix and the
generalised driving force Fu is a three dimensional vector,

Ju = 2πr

σxx σrx
σxr σrr
σxφ σrφ

 , Fu = 2π

 σrx + imσφx + k2
srux

σrr − σφφ + imσφr + k2
srur

σrφ + σφr + imσφφ + k2
sruφ

 (3.25)

3.2 Perfectly Matched Layers (PML)

For the purpose of later use, we introduce the concept of a perfectly matched layer (PML).
A PML is essentially an artificial absorbing layer for waves used to prevent any reflections
thereby simulating open boundary conditions. The reason this is of interest lies in the fact
that a PML is the perfect absorber, thereby being a great reference point when attempting
to simulate the effects of damping the rubber tubes can have on acoustic chambers. The
mathematical implementation of a PML with length LPML is relatively simple. Let us
assume we wish to dampen outgoing waves in the x direction, this can be done by a
complex-valued coordinate stretching in the x direction within the PML region, which
is a region placed in extension to the system in question. This stretching is based on a
real-valued function denoted s(x) which takes the value 0 outside the PML region and
quadratically increases within the PML region with a smooth transition,

s(x) = kPML

(
x− L
LPML

)2

, L ≤ x ≤ L+ LPML, (3.26)

where L is the length along the x axis from the origin to the start of the PML region,
and kPML is the absorption strength [6]. In Chapter 4 of the thesis we explore the range
of values for kPML that ensure perfect damping, since if the absorption strength is too
small then the damping will not be effective thus allowing for possible reflections. On the
other hand, if kPML is too large we expect for the wave to be reflected immediately on the
boundary of the PML region, due to a too extreme transition, instead of damped. Having
defined the function s(x), the mathematical implementation of the coordinate stretching
can be expressed as follows,

∂x → ∂x̃ =
1

1 + is(x)
∂x and dx → dx̃ = (1 + is(x))dx. (3.27)

In other words, ∂x̃ and dx̃ are to replace the ∂x and dx in all equations and boundary
conditions of interest.



Chapter 4

Numerical Modelling

4.1 Discription of system

In the following section we will describe the system we will be modelling using the finite
element software COMSOL Multiphysics [9]. Of the many various acoustic chamber de-
signs, we have chosen a system that closely resembles the one presented in ”Continuous
flow ultrasonic particle trapping in a glass capillary” by Ian Gralinski [2]. The main rea-
sons for this lies in the fact that it is of cylindrical geometry, allowing for the application
of the coordinate transformations presented in Chapter 3, and the fact that the results
found from numerical modelling can to some extent be compared to the experimental
findings of the article. According to the article, the glass capillary used for experiments,
made of PYREX borosilicate glass had an outer radius of R2 = 650µm, an inner radius
of R1 = 425µm and a total length of 50 mm, however for the purpose of this thesis we
will be modelling a capillary of total length Ltot = 20 mm (such that L = 10 mm) as to
reduce the number of resonances in the system as well as to enhance to quality of the
simulated results given the limited computational power at hand. The parameters R2, R1

and L are depicted in figure 4.1. As previously mentioned we intend to only model in two

Figure 4.1: Cross-section in the y = 0 plane, of the glass capillary which is to form the basis
of the investigations to be presented in this thesis. It is based on the capillary described
in ”Continuous flow ultrasonic particle trapping in a glass capillary” by Ian Gralinski [2].
The outer grey rectangles represent the PYREX glass, the cyan blue region represents the
water and the grey rectangle in the centre represents the artificial actuator. The dotted
rectangle illustrates the two dimensional region which will be modelled.

dimensions using the coordinate transformed governing equations (derived in Chapter 3).

19
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The main reason for doing so lies in the fact that by only modelling in two dimensions
we are able to significantly reduce computing time, and thereby allow for the simulation
of longer geometries that were previously infeasible when modelling in the full three di-
mensions. Also, by using the lines of symmetry inherent in the geometry we only need to
simulate a quarter of the entire cross section, as evident in figure 4.1, which in turn lets
us recover a solution of higher resolution. In the experiments the glass capillary was actu-
ated by means of an piezoelectric transducer of approximate dimensions 4× 1× 0.5 mm3

(L × W × H) that was bonded to the outside of the capillary using a silicon adapter.
In other words the actuation was localized on the surface of the capillary. Hence the
actuation method is not axis-symmetric meaning that it is not possible to model using
our coordinate transformations in two dimensions. A potential workaround would be to
simulate an actuating ”band” wrapped around the glass chamber with a similar length
and height to the transducer. However, it was found in ”Three-Dimensional Numerical
Modeling of Acoustic Trapping in Glass Capillaries” by Mikkel W. H. Ley [6], that an
actuation of 0.1 nm at the bottom of a chamber (similar in nature to the actual actuation
described in the ”Continuous flow ultrasonic particle trapping in a glass capillary” by Ian
Gralinski [2]) led to displacements of the PYREX glass at the top of the chamber that were
an entire order of magnitude greater (∼ 1 nm). This significant amplification effect would
be neglected with the actuation ”band”, since such band would constrain the glass to a
maximum displacement of the actuation. Hence we have chosen to actuate the chamber
by means of a suspended rod in the centre of the fluid domain with the same length as
that of the described piezoelectric transducer but with a radius of Ract = 1

10R2. Although
not very realistic, doing this will allow for the glass boundaries to vibrate freely thereby
closely resembling the actual method of actuation.

4.1.1 Boundary Conditions

Before any computations can be made, it is necessary to define the boundary conditions
of the system. As evident in figure 4.1 we have five types boundaries to consider, fluid-air
and solid-air, fluid-solid, the boundaries to the symmetry lines and finally the boundaries
on the actuator. Starting with the fluid-air and solid-air boundaries, we apply the soft-wall
condition for the boundaries between the fluid and air since the surrounding air cannot
sustain any appreciable pressure,

p1 = 0. (4.1)

For the solid-air boundary we apply the zero-flux condition as we have mass conservation,

n · σ = 0. (4.2)

We now consider the fluid-solid boundary. Seen from the fluid at this interface we expect
the normal velocity of the solid to be equal to the normal velocity of the liquid [11].
Knowing that that ∇p1 = iωρ0v1 [7] and due to harmonic time dependence vs = −iωu,
we get the following boundary condition,

n · v1 = n · vs ⇒
−i
ωρ0

n ·∇p1 = −iωn · u ⇒ n ·∇p1 = ω2ρ0n · u. (4.3)
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Seen from the solid we again require a zero-flux, however we now have an extra contribution
in the form of the pressure from the liquid, hence

n · σ + p1n = 0 ⇒ n · σ = −p1n. (4.4)

For the boundaries that lie on the axes of symmetry we must require that there can be no
displacement normal to the boundary and that the velocity of the fluid must be zero. This
intuitively makes sense, since if the normal components of the displacement and velocity
were non-zero at this boundary it would no longer be a line of symmetry. Mathematically
we thus have,

n · u = 0 and
−i
ωρ0

n ·∇p1 = 0 ⇒ n ·∇p1 = 0. (4.5)

Finally we consider the boundaries between the artificial actuator and the fluid. This
boundary is identical to the fluid-solid boundary with the exception that the displacement
is simply the maximum actuation amplitude d0 (which will be set to d0 = 0.1 nm for all
future simulations) in the radial direction and 0 in the x and φ directions,

n ·∇p1 = ω2ρ0n · (d0êr) (4.6)

4.1.2 Material parameters

In order to simulate the above described system it is necessary to know the physical
parameters of the materials to be modelled. From the axis-symmetric governing equations
(3.17) and (3.24), we see that the important fluid parameters happen to be the speed of
sound cf and the viscous damping factor Γf which is itself a function of the density ρf , the
viscosity parameters η and β, the speed of sound and the angular frequency ω as evident
in equation (2.29). For the solid domain, the parameters of interest are the density ρs, the
bulk damping factor Γs and the stress tensor σ which is a function of the longitudinal and
transverse speeds of sound cL and cT . cL and cT can be found from the Young’s Modulus
E and Poisson’s ratio ν of the solid according to the following expressions [8],

c2
L =

(1− ν)

(1− 2ν)(1 + ν)

E

ρs
and c2

T =
1

2(1 + ν)

E

ρs
. (4.7)

In table 4.1 we see the values of the above described parameters. As previously mentioned
we will be modelling water in a PYREX glass capillary explaining why these materials are
included in table 4.1, polydimethylsiloxane (PDMS) is also included as it will be utilized
as the reference material to test for damping phenomena later in the thesis. We see from
the table that Γ for water is 0.004, however if one calculates using equation (2.29) for
η = 0.89 mPas and β = 3.0 at f = 1 MHz one gets 5 × 10−6 a difference of 3 orders of
magnitude. The reason for this inconsistency is due to dissipation in the acoustic boundary
layer, which is a viscous effect that is not calculated in our simplified model where only
first order pressure fields are considered [7].



22 CHAPTER 4. NUMERICAL MODELLING

Material Density, ρ
Long. speed
of sound, cL

Trans. speed
of sound, cT

Bulk damping
factor, Γ

water 998 kg m−3 1497 m s−1 1497 m s−1 4.0× 10−3

PYREX 2230 kg m−3 5592 m s−1 3424 m s−1 4.0× 10−4

PDMS 1028 kg m−3 1019 m s−1 32.2 m s−1 8.9× 10−3

Table 4.1: Parameters at 25 °C used for simulations. cT for PDMS was calculated from ρ
and cL using equation (4.7). Γ for PDMS was derived from the attenuation coefficient for
f = 3 MHz [12]. The other parameters come from ”Fluid-solid coupling in COMSOL” by
Henrik Bruus [11].

4.1.3 Mesh

Having defined the primary system to be modelled and the corresponding boundary con-
ditions, it is time to define the granularity of the mesh with which the simulations will be
run. This is essentially the trade-off between computation time and accuracy or resolution.
In order to find a suitable granularity we will perform a mesh convergence analysis. To do
so, we define a mesh parameter dbulk to describe the size of the mesh elements, however
since we expect a high divergence in the first order pressure field near the actuation re-
gion, we define a secondary parameter dedge = 1

2dedge to describe the element size on the
boundary of the actuator. A visualisation of the mesh can be seen in the top of figure 4.2.
The primary idea behind a mesh convergence analysis is to compare solutions to the fields
of interest with decreasing mesh size parameter dbulk and ideally find the parameter value
whereby a further decrease does not result in an improved solution. We hence define a
relative convergence parameter C(g) for a solution g with respect to a reference solution
gref , taken to be the solution with the lowest dbulk the computer is capable of computing
[13],

C(g) =

√∫
(g − gref )2dxdr∫

g2
refdxdr

. (4.8)

As the computer used for simulating had 8 GB of RAM, the lowest mesh size parameter
was set to dbulk = 0.015R2 which corresponds to solving for 597091 degrees of freedom
with a peak RAM usage of 3.62 GB and a solution time of 18 s. In the bottom of figure 4.2
we see the convergence of all three fields develop similarly as the mesh size parameter dbulk
is decreased, which is to be expected as they are all first order fields. Based on the figure,
we have chosen a threshold of C = 0.04 thereby requiring a mesh granularity defined by
dbulk = 0.052R2 in order for all fields considered in this thesis to abide to the threshold
value, which will be implemented in all computations unless otherwise stated.

4.2 Validation

In the following section we intend to validate some of the results found in the theoretical
section of this thesis, as to ensure that the simulations can be relied upon. Specifically we
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Figure 4.2: Top: A visualisation of the mesh for hbulk = 0.15R2. Bottom: A semi-
logarithmic of the relative convergence parameter C for the three primary fields of interest
p1, ux and ur as a function of decreasing mesh element size dbulk. The horizontal dashed
line indicates a threshold of C = 0.04 which was chosen as a trade-off between computa-
tional time and accuracy. To ensure that all fields come below this convergence threshold
we require a mesh size of dbulk = 0.052R2 denoted by the vertical dashed line.

are interested in the validation of the axis-symmetric equations (3.17) and (3.24), as well
as an investigation of the implementation of PML.

4.2.1 Helmholtz equation

Starting with the Helmholtz equation, the idea is to compare the simulated fields with an
analytical solution to equation (2.29). In cylindrical coordinates we have,

∇2p1 = −k2
fp1 ⇒

(
∂2
x +

1

r
∂r(r∂r) +

1

r2
∂2
φ

)
p1 = −k2

fp1 (4.9)

where we have used equation (3.13) to write the Laplace operator in cylindrical coordi-
nates. The above equation can be solved by separation of variables. We assume that the
pressure field can be written as,

p(x, r, φ) = px(x)pr(x)pφ(φ), (4.10)

where we have omitted time dependence and the subscript 1 for simplicity. Inserting
equation (4.10) into equation (4.9) and dividing through by p we get (where the explicit
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dependence has been dropped),(
1

px
∂2
xpx

)
+

(
1

rpr
∂r(r∂rpr) +

1

r2pφ
∂2
φpφ

)
= −k2

f . (4.11)

We see that the first set of parenthesis only depends on x and the second set only depends
on r and φ. The only way it is possible for these terms to be equal for arbitrary choices
of x,r and φ is if they are both equal to a constants. We denote the constants −k2

x and
−k2

r respectively, such that k2
f = k2

x + k2
r , giving the following two equations,

1

px
∂2
xpx = −k2

x and
1

rpr
∂r(r∂rpr) +

1

r2pφ
∂2
φpφ = −k2

r . (4.12)

Multiplying the second equation in equation (4.12) by r2, we get a term that only depends
on the angel φ and a term that only depends on r. Hence we can conclude that the angle
dependent term must be equal to a constant which we denote −k2

φ, yielding the equation,

1

pφ
∂2
φpφ = −k2

φ. (4.13)

We see that equation (4.13) and the first equation in equation (4.12) are the same type of
equation with the following known solutions,

px(x) = Aeikxx +Be−ikxx and pφ = Ceikφφ +De−ikφφ, (4.14)

where A,B,C and D are constants whose values depend on the given boundary conditions.
Knowing that the pressure field has to be periodic in φ, we have that pφ(φ) = pφ(φ+ 2π)
which is only possible if kφ = m where m ∈ Z. Hence, the final equation to solve becomes,

r2

(
1

rpr
∂r(r∂rpr)

)
= −r2

(
k2
r −

m2

r2

)
⇒ 1

rpr
∂r(r∂rpr) +

(
k2
r −

m2

r2

)
= 0. (4.15)

The general solutions to equation (4.15) are the cylindrical Bessel functions. Choosing to
ignore the second kind Bessel function, the Neumann function Nm, which diverges at the
origin, we get the following solution to the radial equation,

pr(r) = EJm(krr) (4.16)

where Jm is the first kind Bessel function and E is a constant. For a cylinder of radius
R1 and length L we know from equation (4.1) that p1(L, r, φ) = 0, allowing us to simplify
the expression for px to (only considering outgoing waves, i.e. B = D = 0),

px(x) = cos(kxx) , kx =
nπ

L
, (4.17)

where n ∈ Z. The complete solution thereby becomes,

p(x, r, φ) =
∑
n

∑
m

pampJm(krr)e
imφ cos(kxx), (4.18)
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where pamp is the total combined constant [14]. As evident, we recover the assumption for
the angle dependency applied in the derivation of the axis-symmetric equations where m
is the angular mode. Applying the hard-wall boundary condition n ·∇p(x,R1, φ) = 0 on
the walls of the cylinder, we must require,

∂rJm(krR1) = 0 ⇒ krR1 = γmk, (4.19)

where γmk is the kth root of the derivative of the Bessel function J ′m. The first couple of
values are γ01 = 3.8317, γ11 = 1.8412 and γ12 = 5.3314. Knowing that k2

f = k2
x + k2

r , we
therefore get the resonance frequencies of the system to be,

ω2
mk(1 + iΓf )2

c2
f

=
(nπ
L

)2
+

(
γmk
R1

)2

⇒ ωmk ≈ cf

√(nπ
L

)2
+

(
γmk
R1

)2

. (4.20)

To check whether the derived weak-form Helmholtz equation can reproduce these analyt-
ical results, we defined a geometry in COMSOL with radius R1 and length L = 5 mm and
implemented hard-wall boundary conditions on the boundaries at r = 0 and r = R1 and
soft-wall boundary condition on the far end of the cylinder defined by x = L. The system
was actuated with the following constraint,

p(0, r, t) = d0

(
1 +

r

R1

)
e−iωt, (4.21)

where d0 = 0.1 nm as per usual. Since the Helmholtz equation only describes the first order
field, it is necessary set the bulk viscosity damping factor to the calculated Γf = 5× 10−6

rather than the physical Γf found in table 4.1 caused by second order phenomena. If
this is not done, the fields die too quickly, meaning that the expected Bessel resonances
cannot be found visualised numerically. Starting with the m = 0 case, we expect the first
resonance frequency to be f01 ∼ 2.148 MHz using equation (4.20). Performing a frequency
sweep near the expected resonance, we recovered a resonant solution at the frequency
fsim = 2.149 MHz, a deviation of 0.05% from the expected frequency. As evident in figure
4.3, the simulated pressure field fully corresponds to the expected analytical solution,
which together with the very small deviation from expected frequency seems to fully
validate equation (3.17) as well as the modelling method introduced earlier in this chapter.

We perform a similar study for m = 1, where an additional boundary condition must
be implemented. Due to the field having an angle dependency, the magnitude must go to
zero on the axis as to ensure no discontinuities are created. For the first angular mode,
we expect the first resonant frequency to be f11 ∼ 1.032 MHz, a frequency sweep in this
region revealed a peak at fsim = 1.034 MHz, a deviation of only 0.19%. The simulated
and analytical solutions to the pressure can be seen in figure 4.4 where it becomes evident
that the simulated fields evolves completely as expected from theory.

4.2.2 Equation of motion

As there is no analytical solution to the displacement of an elastic solid in three dimensions,
the best form of validation available is to compare results with a full three dimensional
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Figure 4.3: Top: Colour plot of the first order pressure field for angular mode m = 0 at
frequency f = 2.149 MHz. Bottom: The first order pressure for angular mode m = 0 field
plotted as a function of the radial coordinate r at axial position x = 0.5L (the dotted line
in the top figure). The green line shows the simulated pressure field, whilst the dotted
line is the analytical solution to the Helmholtz equation with pamp = −1.259 MPa.

numerical solution. For the validation we consider a cylinder of radius R2 and length
L = 5 mm made of PYREX glass. The actuation will be done by a actuating band of
length 1

10L wrapped around cylinder in one of the ends, which depending on which angular
mode we are considering, will be actuated in different ways. The boundary conditions are
the general zero-flux condition n · σ = 0 on the boundaries with air for both the three
dimensional model as well as the two dimensional one, a symmetry condition on the surface
defined at x = 0, and the general symmetry condition on the axis for the two dimensional
model alone, both given by n · u = 0. Starting with m = 0, the actuation in the case of
the two dimensional mode simply becomes,

u(x,R2, t) = d0e
−iωtêr , 0 ≤ x ≤ 1

10
L. (4.22)

For the three dimensional model, it is necessary to transform the above actuation from
cylindrical to Cartesian coordinates. This is done using the well known relation between
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Figure 4.4: Top: Colour plot of the first order pressure field for angular mode m = 1 at
frequency f = f = 1.032 MHz. Bottom: The first order pressure for angular mode m = 1
field plotted as a function of the radial coordinate r at axial position x = 0.5L (the dotted
line in the top figure). The green line shows the simulated pressure field, whilst the dotted
line is the analytical solution to the Helmholtz equation with pamp = 1.767 MPa.

the two coordinate systems,uxuy
uz

 =

1 0 0
0 cosφ − sinφ
0 sinφ cosφ

 ·
uxur
uφ

 . (4.23)

This yields the following actuation in Cartesian coordinates to be used in the three di-
mensional model,

u(x, y, z, t) = d0
y

R2
e−iωtêy + d0

z

R2
e−iωtêz , 0 ≤ x ≤ 1

10
L and y2 + z2 = R2

2, (4.24)

where we have used the fact that on the boundary cosφ = y
R2

and sinφ = z
R2

. We then
found a resonant frequency that was present in both simulations (the two dimensional
model can only find axis-symmetric resonances, whilst the three dimensional model finds
all resonances), and compared the two numeric solutions. In figure 4.5 we see the compari-
son of the three components of the displacement field in cylindrical coordinates, where the
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results from the three dimensional model have been transformed using equation (4.23).
Since we only look at φ = 0 we have ux = ux, ur = uz and uφ = −uy. As evident, both the
radial and axial components evaluated by the two dimensional model are very similar to
the ones evaluated by the full three dimensional model. There is a small deviation in the
angular component, this can be explained by the fact that the three dimensional model
may have an overlap with an acoustic mode that is not axis-symmetric and hence the
non-zero contribution. However, the deviation is very small when compared to the scales
in the axial and radial components, and thus we can conclude that the model has been
validated for m = 0. In order to validate equation (3.24) for m = 1 we need to find a way
to actuate these modes in the three dimensional model. Knowing that m = 1 corresponds
to a cosine angle dependence (Re(eiφ) = cos(φ)), we can excite these specific modes by
multiplying our previous actuation function with a cosine. Specifically we now have the
following actuation,

u(x, y, z, t) = d0
y2

R2
2

e−iωtêy + d0
zy

R2
2

e−iωtêz , 0 ≤ x ≤ 1

10
L and y2 + z2 = R2

2, (4.25)

where we once more have used the fact that cosφ = y
R2

. A similar study was performed
where we found a resonant frequency in both models, and compared the displacements
in a very similar manner. The results can be seen in figure 4.6. As evident, the radial
and axial components are very similar when comparing across the models. However there
is a huge deviation in the angular component. The reason for this significant deviation
is unknown, and has thus been left as an unresolved issue that must be taken up by the
Theoretical Microfluidics Group (TMF) at a later stage. Luckily, we have chosen to always
use the angular mode m = 0 for all remaining results presented in this thesis. The reasons
being partly due to the problem with the validation of equation (3.24) for m > 0, but
also because it is easier in practice to actuate the m = 0 angular modes compared to the
m > 0 modes, thus making the results gotten in the rest of the thesis more realistic.
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Figure 4.5: Top: Comparison of the radial component of the displacement field ur for
m = 0 at three different radial positions r = R2, r = R2

2 and r = 0 for φ = 0 computed
by the two dimensional model and the three dimensional model respectively. For the
two dimensional model (dotted lines) the frequency used was f2D = 282.8539 kHz, for the
three dimensional model solutions (solid lines) the frequency used was f3D = 284.3602 kHz.
Middle: Comparison of the axial displacement ux under same conditions as for the radial
displacement. Bottom: Comparison of the angular displacement uφ under same conditions
as for the radial and axial displacements.
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Figure 4.6: Top: Comparison of the radial component of the displacement field ur for
m = 1 at three different radial positions r = R2, r = R2

2 and r = 0 for φ = 0 computed
by the two dimensional model and the three dimensional model respectively. For the
two dimensional model (dotted lines) the frequency used was f2D = 529.255 kHz, for the
three dimensional model solutions (solid lines) the frequency used was f3D = 533.590 kHz.
Middle: Comparison of the axial displacement ux under same conditions as for the radial
displacement. Bottom: Comparison of the angular displacement uφ under same conditions
as for the radial and axial displacements.
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4.3 PML Testing

In the following section we intend to implement and explore a PML to the primary system
described in the very beginning of this chapter. More specifically we will test how close to
the source of actuation the PML can start without influencing the fields outside the PML
region, and for which absorption parameters the PML successfully dampens the incident
wave. The PML will be implemented as an extension to the primary system such that it
starts at x = L with a height of R2 and a length of LPML. To achieve the best results,
LPML should be similar of length to the longest wave length in the system [6]. Assuming
that we are running simulations at frequencies f ∼ 1 MHz as to match the frequencies
used in the laboratories [2], we get the longest wave length in the system to be that of the
longitudinal wave in PYREX at,

λmax =
cLPY REX

f
=

5592

1× 106
= 5.592 mm ≈ 1

2
L. (4.26)

Hence we set LPML = 1
2L. The geometry as well as the damping effects caused by imple-

mentation of PML can can be visualised in figure 4.7. As evident, both the displacement
and pressure fields quickly die once they enter the PML region, the start of which is
marked by the dotted line.

0 5 10 15
0

0.5

Figure 4.7: Colour plot of both the total displacement
√
u2
x + u2

r (hot) and the pressure
field p (cold) for the frequency f = 1.55 MHz, a PML length of LPML = L

2 = 5 mm and
an absorption strength of kPML = 100. The dotted line represents the start of the PML
region.

4.3.1 Absorption strength

In order to check for which values of kPML the incident pressure wave is fully dampened
such that no traces of back scattering from the end of the region at x = L + LPML or
from the start of the PML region at x = L can be seen, we run a logarithmic parameter
sweep of the absorption strength. The parameter was thus varied from kPML = 1× 10−5

to kPML = 1 × 108, and for each iteration the the pressure and displacement fields were
evaluated at specific points in the acoustic chamber. Before the plots can be analysed
it is necessary first to introduce the ”acoustic energy” used for both the pressure and
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displacement fields. Starting with the pressure field,

Eac = avg

[
1

2

p2

ρfc
2
f

]
= avg

[
1

2
κfp

2

]
, (4.27)

where κf is the compressibility of the fluid and avg denotes an averaging operation done
by COMSOL within the domain where the pressure field is defined. For the displacement
field, the following expression was defined as a measure of the energy,

Eac = avg

[
1

2
ρsω

2
√
u2
x + u2

r

]
. (4.28)

As to ensure any conclusions would be valid, we chose to monitor the acoustic energy Eac
in three different points for each of the fields. A point in the actuator region p1, a point
in the channel p2 and a point in the PML region p3, defined in the figure caption. From
figure 4.8 we can conclude that the range of kPML for which both the displacement field
and the pressure field are fully dampened is for 1 ≤ kPML ≤ 2× 105. The reason we can
conclude that the region of constant acoustic energy corresponds to the region of perfect
damping lies in the development of the acoustic energy in the PML region, denoted by the
green line in the plots. As evident, once the energies in the actuator region and chamber
respectively begin to flatten out, the energy in the PML region drops to zero. This implies
one of two things, either the wave is completely dampened once it enters the PML region,
or it is completely reflected at the start of the PML region. However, if it was the case that
the wave was completely reflected, we would expect the acoustic energy in the chamber
(red line) to be comparable to when the parameter kPML is very small, however we see
it drop significantly implying that we have perfect damping. The reason we expect the
energy to be comparable if the wave were reflected is because for small values of kPML

the wave practically propagates unaffected through the PML region and reflects at the far
end, which is what is seen in both graphs for kPML < 1. For higher kPML we begin to see
the acoustic energy fluctuate, implying that the absorption strength is now so large that
the transition is too extreme for the wave to enter the PML region and is thus reflected
instead. For the rest of this thesis we will therefore be applying an absorption strength of
kPML = 100 whenever PML is implemented, unless otherwise stated.

4.3.2 Distance from actuator

Having found that the range of absorption strength is very large and thereby not a param-
eter to be careful about when implementing PML (given that the results are insensitive
to kPML when within the range), we now have investigate how close to the actuation we
can place a PML without it having consequences on the resulting fields outside the PML
region. To do this we evaluated the fields for different device lengths L > Lact, the results
of which can be seen in figure 4.9. From the figure we see that the shorter the device
length, or rather the closer the PML region is to the region of actuation, the more the
fields deviate from the true unaffected field, i.e. the field for L = 8 mm. We also notice
that the PML region has no impact on the field within the channel when x > 5 mm. A



4.3. PML TESTING 33

reason for this could lie in the hypothesis that the wave needs to have undergone a full
oscillation after actuation before it can be dampened without any influence on the field for
x < LPML. This matches well when recalling that the longest wavelength of the system
was λL ≈ 5.5 mm. Hence, we can conclude that a length of L = 10 mm is long enough to
ensure that the implementation of a PML region has no impact on the fields for x < LPML.
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Figure 4.8: Top: The acoustic energy of the pressure field Eac in the chamber plot-
ted as a function of varying absorption strength kPML for three different points in the
system. The points were defined as, the actuator region p1 = (0.5Lact, 0.5R1), the chan-
nel p2 = (0.75L, 0.5R1) and the PML region p3 = (L + 0.5LPML, 0.5R1). The dotted
vertical lines at kPML = 1 and kPML = 7 × 104 represent the range for which Eac
is constant and thereby the range for which we have perfect absorption. Bottom: A
similar plot for the displacement field. The points were defined as, the actuator region
p1 = (0.5Lact, 0.5(R1 + R2), the channel p2 = (0.75L, 0.5(R1 + R2)) and the PML region
p3 = (L + 0.5LPML, 0.5(R1 + R2)). The vertical lines at kPML = 1 and kPML = 2 × 105

represent the range for which the energy is constant and thereby the range for which we
have perfect absorption.
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Figure 4.9: Top: Magnitude of the pressure field |p| at r = 1
2R1 as a function of the axial

position x for different device lengths L with a fixed PML region with length LPML = 5 mm
placed at x = L. The pressure was measured along the r = 0.5R1 line. The vertical line
represents the end of the actuator region. Bottom: A similar plot for the magnitude of
the radial part of the displacement field |ur|. The displacement was measured along the
r = 0.5(R1 +R2) line. The vertical line represents the end of the actuator region.
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Chapter 5

Results

In the following chapter, we shall investigate the impacts of using rubber tubes to pump
water in and out of the acoustic devices. Specifically we will be investigating two different
types of material damping known as free layer damping and constrained layer damping
respectively [15]. After this, we will explore the impacts that materials with linearly
varying densities might have on the pressure field.

5.1 Impact of Polydimethylsiloxane (PDMS)

As a starting point we assume that the material used for the transportation of water
into the chambers is made of polydimethylsiloxane (PDMS), a silicone based rubber. The
reason for assuming this, is that it is frequently used to build micro-fluidic devices, and
hence its material properties are well known as evidenced in table 4.1. In order to eval-
uate the impact of having a layer of PDMS around the ends of the cylindrical device we
introduced in Chapter 4, it is necessary to investigate the device with no damping and
with full damping. The latter will be simulated using PML as introduced in Chapter 3.

5.1.1 The no-damping and full-damping cases

As mentioned, we start our investigation by creating reference solutions representing a
completely undamped device allowing for many internal reflections and a perfectly damped
device where no reflections occur at the far ends of the device. However, before we can
do this, it is first necessary to find a common system resonance, such that we ensure the
solutions are comparable. To do this we consider the geometries introduced in figure 4.1
for the undamped system and the geometry explained in figure 4.7 for the damped system,
and then simulate the acoustic energy of the pressure field defined in equation (4.27) for
different frequencies. More specifically, we implemented a frequency sweep starting at
f = 0 MHz and ending at f = 5 MHz, in steps of 50 kHz. The results can be seen in
figure 5.1. As evident the black line representing the system without damping has a lot
more spikes compared to the smooth blue line representing the system with PML. The
reason for this lies in the fact that the undamped system will have all the standing-wave
resonances caused by internal reflections in the x direction, which are exactly the ones
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Figure 5.1: Plot of the acoustic energy density of the pressure field Eac as a function
of the frequency f . The black line represents the results for the undamped system, the
blue line represents the system perfectly damped by addition of a PML. The two dotted
vertical lines correspond to the first two resonance frequencies for the Helmholtz equation,
evaluated on the basis of equation (4.20) for n = 0 and k = 1, 2.

killed by the PML. Another interesting note lies in the fact that there seems to be three
primary resonances within the system that appear for both the damped and undamped
systems, specifically at f ≈ 1.5 MHz, f ≈ 2.5 MHz and f ≈ 4.5 MHz. As described in the
caption, the dotted lines represent the first two resonance frequencies of the Helmholtz
equation for the pressure. Intuitively one would think that the resonances should align
with the specified peaks, however, we experience a shift which could be due to the fact that
the liquid domain is coupled through the fluid-solid boundary condition (equation (4.3))
rather than the hard-wall boundary condition which forms the basis of the resonances
marked by the dotted lines. In the following we shall compare the solutions to the two
above-mentioned systems as well as the system to be described where we implement a
PDMS tube, at the common resonance at f = 1.560 57 MHz (the exact number comes
from closer inspection of the undampened solution).

5.1.2 Geometry

In order to model the tubes, we add a rectangle of height hm and length Lm on top of the
glass capillary in the far end of the geometry described in figure 4.1. Specifically for the
described geometry the tube starts at x = L−Lm and r = R2. However, from some initial
runs of the model with this new geometry having implemented the correct parameter
values (from table 4.1), it was noticed that the displacement field in the PDMS region of
the geometry was very discrete implying that the mesh parameter dbulk = 0.052R2 was
not granular enough to describe the field within the PDMS. To solve this, given that we
have a limit of 8 GB RAM, it was necessary to rebuild the mesh in such a way that the
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mesh element size in the glass and fluid were increased as to allow for a more granular
mesh in the PDMS region. The applied mesh can be visualised in the top of figure 5.2.

Figure 5.2: Top: A visualisation of the rebuilt mesh for the geometry with incorporated
PDMS layer. The mesh parameters have been scaled with a factor 4 as to allow for
inspection. Bottom: Plot of the magnitude of the pressure field |p| along the line r = 0.5R1

for three different systems as a function of the axial position within the chamber region.
We are only plotting in the chamber region, since this is the area of interest concerning
whether or not the displacement and pressure waves are travelling or standing. The three
systems plotted for are the undamped system (blue line) at f = 1.5606 MHz, the PML
system (red line) at f = 1.5696 MHz and the PDMS (system) at f = 1.5705 MHz.

5.1.3 Standing Wave Ratio (SWR)

In the bottom of figure 5.2 we see a comparison of the solution to the three systems. Where
hm = 2R2 and Lm = 0.5L are estimated from the experimental picture shown in figure
1.1. However, before we can compare the three systems, we need a way to characterise the
amount of damping in the system. For a fully damped system, we expect only travelling
waves at the resonance frequency, since all reflections will be killed by the damping. On
the other hand we expect for the acoustic waves to be standing in the case of no damping,
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since there is no mechanism to absorb the energy of the waves and hence there will be 100%
reflection on the boundaries. In general we have for standing waves that the intensity over
a full period of the wave is periodic with position with a given maximum and a minimum
of zero due to the existence of nodes where the amplitude is zero at any given time. On
the other hand, a purely travelling wave will have a constant intensity over a full period.
Knowing this, we will introduce a measure, the standing wave ratio (SWR), to characterise
the degree to which an arbitrary wave is a standing wave and thereby the degree to which
the system is undamped. We define the ratio for a general acoustic wave denoted v as
follows,

SWR =
max [〈|v|〉]
min [〈|v|〉]

, (5.1)

where 〈v〉 denotes the time average over a full period of the absolute value of the field (since
the intensity is proportional to the square of the field amplitude, the same conclusions hold
for the amplitude itself). We see that for a completely standing wave the ratio tends to
infinity, meanwhile for a purely travelling wave the ratio becomes 1, implying that the
range of the measure is SWR ∈ [1,∞] and the larger SWR is, the more standing the wave
is and the more undamped the system is. With a measure established, we return to the
bottom of figure 5.2 and evaluate SWR for the three systems,

SWRPDMS =
11348

745
≈ 15.23

SWRNo Damp =
20779

373
≈ 55.71

SWRPML =
11426

5482
≈ 2.08.

(5.2)

As expected, the system with the lowest SWR and thereby highest damping is the one
with PML where all reflections in the x direction are killed, whilst the system without any
damping has the highest SWR. Interestingly, the system with the PDMS seems to have a
significantly lower SWR than the system without damping which implies that the PDMS
tube seems to have a damping effect on the system. The reason it seems as though the
damping in the PDMS is higher from figure 5.2 at the end of the chamber, is due to the
fact that the PDMS overlaps the chamber whilst all the damping in the case of the PML
occurs after x = 8 mm.

5.1.4 Free Layer Damping

The method of placing a layer of damping material on top of a vibrating system is generally
known as free layer damping [15]. This method works on the principle that the vibrational
energy from the glass chamber is transmitted to the damping material, which in our case
would be the PDMS layer, where after it is dissipated due to the higher bulk damping
factor compared to PYREX (see table 4.1). The choice of dimensions for the results
represented in figure 5.2, although estimated from the basis of a photo from an actual
laboratory, were somewhat arbitrary. In other words we have no idea how volatile the
SWR calculated for the system in equation (5.2) is to changes in the geometry of the
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PDMS region. We therefore continue our investigation of PDMS with a dimension sweep,
where we vary the height hm from 1 to 8 glass widths, hg = R2 − R1 = 0.225 mm, in
steps of 1 hg, and the length Lm from 1 mm to 8 mm (right at the end of the actuator
region) in steps of 1 mm, and calculate the SWR for every combination. To do this,
the mesh parameter was increased once more as to allow for the larger PDMS region
(hm = 5hg and Lm = 8 mm). The results can seen in figure 5.3. As evident, the SWR is
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Figure 5.3: A matrix plot showing the SWR for all combinations of Lm from 1 mm to
8 mm in steps of 1 mm and hm from 1 hg to 8 hg in steps of 1 hg for the single layer
damping system. The scale has been capped at 55 as this is the SWR corresponding to
the system with no damping.

very sensitive to changes in geometry and it seems that the height of the PDMS region
is the most significant parameter in terms of obtaining maximum damping. Specifically
we notice that heights hm = 3hg and hm = 6hg in general seem to produce the most
damping and the lowest SWR was measured at hr = 3hg and Lm = 6 mm to be 4.64,
which is significantly lower than the 15.23 gotten from the first iteration, but not as
effective as the PML layer. However, contrary to expectations, the damping does not
increase regularly with the height of the PDMS layer. This might have something to do
with the resonances in the PDMS. The energy from the acoustic wave in the PYREX glass
can more easily be transferred to the PDMS layer, if the frequency matches a resonance
frequency in the PDMS layer which very much depends on the height of the PDMS layer.
Another interesting note from figure 5.3, is the fact that the PDMS seems to dampen a lot
more if placed right after the actuator region (when Lm = 8 mm). This intuitively makes
sense since the acoustic wave has no chance to propagate freely before being absorbed by
the PDMS layer. Another point is that by having the PDMS start right there is only a
single abrupt change in acoustic impedance between the PDMS and the actuator region,
skipping the abrupt change from the free chamber to the start of the PDMS region for
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when Lm < 8 mm. Acoustic impedance Z for a one dimensional wave is defined as

Z =
ρc

A
, (5.3)

where ρ is the density of the material in which the acoustic wave is propagating, c is the
speed of sound and A is the cross-sectional area through which the wave is travelling.
Hence, we have abrupt changes when A is suddenly increased, as is the case at the start
of the PDMS layer. The reason changes in acoustic impedance are of importance, is due
to the fact that the higher the change the more reflection implying a higher chance of
generating standing rather than travelling waves.

5.1.5 Constrained Layer Damping

Free layer damping is not the only type of damping method out there involving the ap-
plication of materials with damping properties. The other main type of damping that
falls within such a category is constrained layer damping [15]. Constrained layer damping
is based on the idea of adding a stiff material (PYREX glass) on top of the damping
material (PDMS layer) which as with free layer damping is placed on top of the system
we are interested in damping. This method is typically recommended for the damping of
stiff materials, since the PYREX layer on top of the PDMS forces the damping of shear
waves (the dominant type of wave in stiff materials), due to the fact that vibrations in the
r direction are constrained. The implementation of this type of damping to our modelling
system was done by adding a layer on top of the PDMS layer from previous simulations
with the same material parameters as the PYREX glass of length Lm and height hg. A
similar investigation was then done where the parameters Lm and hm were varied in the
same way as was done to obtain the results in figure 5.3. Doing this leads to the results
displayed in figure 5.4, which also gives a visual representation of the constrained layer
damping mechanism with an overlapping mesh. As evident, we generally see an increase
in damping the thicker the PDMS layer becomes. Specifically we obtain the lowest SWR
equal to 5.28 at hm = 6hg and Lm = 1 mm, which is higher than for the free layer damping.
However, there are many more dark elements in figure 5.4 compared to figure 5.3, imply-
ing that in general constrained layer damping is more effective with respect to generating
travelling waves for a larger span of geometries.

5.1.6 Extended Region

In the results above, we have only considered systems which end in a boundary with the
surrounding air at x = L. However, in the experiments outlined in various articles [3][4][5],
the rubber tubes are responsible for transporting the fluid into the acoustic chambers, and
thus in reality it is not an air boundary, but rather a continuation of the fluid enclosed
by a rubber layer rather then glass. The basic geometry can be seen in the top of figure
5.5 for the simple free layer damping, where the parameter Lext is used to describe the
length of the rubber tube that extends beyond the glass channel. To investigate the
effects of including the more realistic geometry, we measured the SWR for various values
of Lext the results in the case of both free layer and constrained layer damping. The
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Figure 5.4: Top: A visualisation of the rebuilt mesh for the geometry with the constrained
layer damping mechanism. The mesh parameters have been scaled with a factor 4 as to
allow for inspection. Bottom: A matrix plot showing the SWR for all combinations of Lm
from 1 mm to 8 mm in steps of 1 mm and hm from 1 hg to 8 hg in steps of 1 hg for the
constrained layer damping system. The scale has been capped at 55 as this is the SWR
corresponding to the system with no damping.

specific dimensions of the PDMS layers which are to be extended have been chosen on
the basis of figures 5.3 and 5.4 as the geometries with the lowest SWR. Specifically this
implies hm = 3hg and Lm = 6 mm for the free layer damping system and hm = 6hg
and Lm = 1 mm for the constrained layer damping system. The results can be seen
in the bottom of figure 5.5. Firstly we notice that the SWR is significantly higher for
small Lext compared to when we just had a fluid-air boundary at x = L. The reason for
this could be related to the sudden change in acoustic impedance (defined in equation
(5.3)) experienced when the cross sectional area of the fluid domain increases in size as
the pyrex glass region ends at x = L. A sudden change in acoustic impedance generally
leads to reflections thereby increasing the measured SWR. For larger values of Lext we see
two very different phenomena for the two types of damping. For the free layer damping,
we simply experience random fluctuations in the measured SWR which seems to imply
that the geometry that caused the lowest SWR in the original geometry with the simple
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Figure 5.5: Top: A visualisation of the mesh for the geometry with the extended free
layer damping. Bottom: Plot of the SWR as a function of varying tube lengths, denoted
by Lext, for both the system with free layer damping (blue line) and constrained layer
damping system (red line). The general parameters of the damping mechanisms have
been set to be the ones which resulted in the lowest SWR in figures 5.3 and 5.4.

fluid-air boundary, does not yield any minimum SWR when the geometry is extended
beyond the glass capillary. The fact that the length does not impact the SWR also points
towards the earlier conclusion drawn from figure 5.3 where we stated that it was the
height hm rather than the length Lm that impacted the damping of the system, and
thereby the SWR, mostly. For the constrained layer damped system, we see that after
some initial fluctuations for low Lext, the SWR seems to drop to a significantly lower
value where after it slowly continues to drop with increasing Lext. The reason for the
fluctuations in the start, could be due to the same reasons as that of the fluctuations
evident for low channel distances in figure 4.9, namely that the longest acoustic wave
present in the system λmax ≈ 5.6 mm has not undergone a full oscillation. The dropping
SWR after initial fluctuations seems to imply that the longer the constrained damping
mechanism becomes, the higher the damping effect. However, the lowest SWR is only 9.52
at Lext = 20 mm which is significantly higher than the 5.28 achieved without extension
which implies that the reflection caused by the change in impedance increases the SWR
more than the extension can decrease it.
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5.2 Optimizing Damping Effects

In the following section, we investigate the possibilities of achieving fully travelling waves
through material manipulation which may or may not be experimentally feasible.

5.2.1 Varying Density

In the following section we attempt to achieve the lowest possible SWR by linearly varying
the density in the material the capillary is made of. Specifically we fix the density at the
centre of the entire capillary, i.e. at x = 0, to be equal to the density of PYREX glass
as per usual. We then define a end density, denoted ρend, as the density at the ends of
the capillary, i.e. at x = L. In COMSOL, we then implemented a function such that
the density of the material varied linearly from ρs (density of pyrex glass) at x = 0 to
ρend at x = L. In figure 5.6, we see the measured SWR for the acoustic pressure waves
when varying the end density ρend from 500 kg m−3 implying a decreasing density as x
increases, to 4500 kg m−3, implying a increasing density as x increases. The reason this
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Figure 5.6: A plot of the SWR as a function of the end density ρend. The large vertical
line represents the original density of the material ρs = 2230 kg m−3. The small vertical
line represents the minimum SWR achieved (4.61), which occurs at a end density of
ρend = 3750 kg m−3

might yield results, even when we are not altering the bulk damping factor Γ, is due to
the fact that the longitudinal and transverse speeds of sound in the material, denoted cL
and cT respectively, depend on the density of the material (see equation (4.7)). Hence, it
is expected that the larger the end density ρend compared to ρs the more stiff the material
becomes and thus the more dampened the acoustic waves become. As evident from figure
5.6, we see that the SWR is high for end densities lower than the original density which
is to be expected since it only allows for wilder fluctuations in the ends as the density is
lower and thus the material softer. On the other hand for higher end densities we find
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a region from ρend = 3500 kg m−3 to ρend = 4000 kg m−3 where the SWR is very small
which as mentioned above was to be expected. The lowest value achieved was SWR=4.61
which occured at ρend = 3750 kg m−3, which is on par with the lowest SWR achieved
for the layer damping methods however still far from the optimal damping achieved by
implementation of PML. It is however important to remember that these results are based
on the assumption that when the density of the material is changed, it has no impact on
any of the other fundamental material parameters, i.e. the Young’s modulus E, Poisson’s
ratio ν and the bulk damping factor Γ. This is far from true, but since we have no
expression for how the Young’s modulus and Poisson’s ratio change with density, and
since we rely on experimental results for the bulk damping factors, it is the best we can
do.



Chapter 6

Conclusion and Outlook

In this thesis we have studied how the rubber tubes used to control flow rates in acoustic
trapping devices impact the acoustic pressure field. The motivation for doing this was
that the first order acoustic pressure field has a direct impact on the strength of the trap
(recall equation (1.1)). Our aim was thus first to develop the numeric capabilities required
to investigate longer geometries since full three dimensional modelling would require to
much computation time. Secondly, our aim was then, by use of these capabilities, initialize
an investigation into how the rubber tubes could have an impact on the acoustic fields.

6.1 Conclusion

In order to reduce computation time, we chose to consider axis symmetric geometries,
as this allowed for a simplifying assumption with respect to the angular coordinate. Ap-
plication of this assumption then led to the reformulation of the wave equations for the
pressure and displacement fields in a two dimensional form rather than their original full
three dimensional forms. In our validation of these results, we concluded that the equa-
tion for the pressure field was very closely aligned with theory for angular modes. On the
other hand, for the displacement field we could only fully validate the reduced equation
for the 0th angular mode. The 1st angular mode seemed to cause problems in the angular
component of the displacement field, which will have to be reviewed in another setting.
We then continued with the investigation of rubber tubes that were attached on the ends
of the acoustic device. To quantify the effectiveness of the damping generated by tubes,
a measure called the standing wave ratio was introduced, and in an initial simulation it
was found that the PDMS tubes did indeed have a significant damping impact on the
acoustic device. However, further investigation showed that the effects were very volatile
to changes in geometry, and thus it became hard to draw any general conclusions other
than it seemed as though the thicker the tube the greater the damping. An extension of
the tubes to beyond the glass capillary introduced us to the problems of reflections caused
by changes in acoustic impedance which seemed to play a large role in the transition from
glass to PDMS.
Finally, we attempted to optimize damping effects by considering a material with linearly
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varying density. It was found that there exists a small window where the acoustic pressure
waves become largely travelling. This is an interesting result as the increased density does
not result in increased damping, rather it would seem that the oscillations simply become
travelling rather than standing.

6.2 Outlook

In the following section we highlight the various improvements and relevant ideas regarding
the work done in the thesis which there simply was no time to incorporate.

6.2.1 Failure to validate reduced wave equation for elastic solids

As previously mentioned, there were issues in the validation of the dimension reduced
elastic wave equations which naturally opens up to further investigations. The interest-
ing point was that there were only issues with the angular component. Hence a clever
starting point for this investigation would be to review the transformations done for this
component.

6.2.2 Reduction of acoustic impedance

Also previously mentioned, the extension of the PDMS tubes beyond the glass capillary
led to increased SWR rather than the expected decrease. It was hypothesised that the
reason for this was the sudden change in acoustic impedance experienced by the pressure
field at the boundary. Thus to avoid this complication, a linear transition could be made
as to ensure a slow continuous development of the acoustic impedance.

6.2.3 Computational power

Although we successfully managed to reduce the computational power required to model
the acoustic devices, it was found that, due to the limited amount of RAM at disposal, an
increase in mesh size and thus decrease in resolution was necessary for the investigations
regarding PDMS. An easy solution to this problem would be to simulate on computers
with a higher amount of RAM.
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