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Abstract

The applications of acoustofluidic devices has shown promising results using high
acoustic impedance materials such as glass or Silicon, with regard to acoustophore-
sis. In this thesis we model and investigate all-polymer based acoustofluidic devices
with particularly focus on PMMA, due to low costs and commercial availability.
We present a 2D model constructed in the Finite Element Method (FEM) simu-
lation software COMSOL, where we couple the dynamics of linear elastic solids with
Newtonian fluids by imposing certain boundary conditions. We study four device
candidates with different geometrical properties, by conducting an eigenfrequency
search and evaluating the candidates by acoustic energies, half-wave resonances,
acoustic forces and effective particle focusing times. Finally we compare our re-
sults with experiments conducted at Lund University in Sweden, as carried out by
AcouSort AB, evaluated on the same parameters, to establish a connection between
theory, simulations and experiments.
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Chapter 1

Concepts of a continuum

When analyzing kinematics and mechanical behavior of physical systems we natu-
rally perceive matter as continuous, but as we know matter consists of molecules
and inside these molecules we find particles which is surrounded by empty space, so
in general matter are not continuous.

Dealing with continuum physics we say that matter is continuously distributed
in space and fills out the entire region of interest, the bulk, and at the same time
we can take an infinitesimal volume of the region having the same properties as
the bulk. Saying that matter is continuously distributed is equivalent to a perfect
resolution. In this thesis we shall treat solids and fluids as being continuous in space
and time.

1.1 Matter

It is clear that the continuous description of matter does not hold for all length scales.
Looking at atomic scales such as Ångstrøm we find that matter is quantized. Giving
a quantitative estimate of the continuum length scale, starts with the assumption
that molecular fluctuation inside a small volume V , inside a much larger region,
obeys the Poisson distribution given in Eq. (A.1). With this probability distribution
the variance is the number of molecules N which means that the relative error can
be written as

∆N

N
=

√
N

N
=

1√
N

= ε. (1.1)

1



CHAPTER 1. CONCEPTS OF A CONTINUUM 2

Setting the relative error ε to 10−3 we can obtain a lower limit for the volume. For
water we get

N

V
=

NA

Mw

ρw = 33 nm−3 (1.2)

molecules per unit volume, with molar mass Mw = 18 g/mol and ρw = 1.0 g/m3

both for 1 atm and 20 ◦C. With the relative error 10−3 we write N = ε−2, assuming
that a single water molecule occupy a box with site length l we get

N

V
=
ε−2

l3
= 33 nm−3. (1.3)

Under these conditions the length becomes l = 31 nm, which can be interpreted
as a lower limit for which the continuum approximation holds within an error of
10−3. This statistical approach is just one way of characterizing a length scale for
which the continuum approximation holds, in reality it is much more complex. The
Poisson distribution holds best for gases, but working with volumes consisting of

∼1021 molecules it is fair to say that the error goes like
√
N
N

and valid within an
order of magnitude. It should also be mentioned that there exist an upper limit for
which the continuum approximation is not valid, above this limit the properties of
the bulk will differ.

1.2 Frame of reference

In general there are two ways of perceiving motion in fluids namely the Lagrangian
and Eulerian picture. In Fig. 1.1 we follow a fluid parcel undergoing a flow as time
passes. At time t we see that the velocity v of the fluid parcel is determined by the
spacial components r = (x, y, z) inside the volume ∆V = ∆x∆y∆z, this is exactly
the Eulerian frame of reference characterized by the control volume ∆V and the
fixed frame of reference. One could on the other hand follow the fluid particle at
any time meaning that the frame of reference is not fixed, this is the Lagrangian
frame of reference. In the following we will use the Eulerian picture, which means
that any field g in the fluid is determined by g = g(r, t), where g is generic in the
sense that it can be both a scalar field or a vector field, so in general g(r, t) is a
tensor field with rank zero up to two. It should also be emphasized that the field is
described with respect to the parcels center of mass.
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Figure 1.1: Reference frame showing the principles of the Eulerian way of perceiving
fluid motions. The black line indicates the streamline for which the velocity is always
tangent. The blue arrows indicates the velocity vector with respect to the center of
mass at given time.

Within fluid mechanics it is natural to introduce both the density- and velocity
field

ρ(r, t) =
1

∆V

∑
i∈∆V

mi (1.4a)

v(r, t) =
1

ρ(r, t)∆V

∑
i∈∆V

mipi, (1.4b)

where the sum over the i ’th element inside ∆V captures all fluid particles inside
the control volume. Noting that the density is a scalar field where the velocity is a
vector field. In general we can define a field, inside the fluid, as

dG(r, t) = g(r, t)dM = g(r, t)ρ(r, t)dV (1.5)

where we have made use of the continuum approximation saying that mass is con-
tinuously distributed inside V . The field G(r, t) is extrinsic in the sense that it
scales with the system e.g. mass, where g(r, t) is intrinsic and does not scale with
the system e.g. density. A concrete example of Eq. (1.5) could be dM = ρ(r, t)dV .

In the following we will work with fluid dynamics, where the rate of change in
the field is of interest,

dg(r, t)

dt
=
∂g

∂x

dx

dt
+
∂g

∂y

dy

dt
+
∂g

∂z

dz

dt
+
∂g

∂t
=
∂g

∂t
+ (v · ∇) g, (1.6)

which defines the operator

D

Dt
=

∂

∂t
+ (v · ∇) , (1.7)



CHAPTER 1. CONCEPTS OF A CONTINUUM 4

known as the material derivative, defined for every tensor field in the fluid, where
v is the velocity of the fluid parcel. Working with infinitesimal volume elements we
need to integrate over a given volume Ω, to describe global (extrinsic) values. In
general the volume Ω can depend on time,

G(t) =

∫
Ω(t)

g(r, t)ρ(r, t) dV. (1.8)

However in this thesis we will only consider steady volumes Ω(t) = Ω.

1.2.1 The pressure field

Pressure is a contact force acting on the surface of a body. In other words, pressure
is a spatial scalar field acting on every point normal to the surface. Pressure acts
towards the surface, and hence by convention of the unit normal vector, a minus sign
appears on the surface normal n. This pressure can be subdivided into numerous
amounts of infinitesimal surface elements dA = ndA, that is, the normal to the
surface of every surface-element dA. The force exerted on the body, by the pressure
field p(r) then is,

dF = −p(r) dA (1.9)

and the total force can then be obtained by integration over the entire surface, that
is, adding all contributions from the surface elements

F = −
∮
∂Ω

p(r) dA = −
∮
∂Ω

p(r)n dA. (1.10)

This is the result for a pressure force acting with scalar pressure field p(r) on a
body of macroscopic size. Working with fluids on a microscopic scale, yields the
need for exploration of pressure fields on a material particle. We utilize infinitesimal
dimensions of a particle with volume dxdydz = dV , experiencing pressure p(r) =
p(x, y, z) in a fluid. The pressure on the side of this cube, is infinitesimally different,



CHAPTER 1. CONCEPTS OF A CONTINUUM 5

Figure 1.2: (a) Illustrating the concept of pressure on a material volume (blue).
(b) Illustrating the general concept of stress on a infinitesimal material volume dV
(blue).

dFz = [p(x, y, z)− p(x, y, z + dz)] dxdy ≈ −∂zp(r)dxdydz = −∂zp(r) dV (1.11)

which by the same means of the x- and y-component becomes

dF = −∇p(r)dV (1.12)

and once again by integrating the force becomes

F = −
∫

Ω

∇p(r) dV (1.13)

which tells us that integrating the pressure gradient in a volume Ω, is equivalent to
integrating all of the infinitesimal contributions from pressure on the closed surface
∂Ω,

∫
Ω

∇p(r) dV =

∮
∂Ω

p(r)n dA (1.14)

which indeed is Gauss’ theorem1 in terms of pressure.

1see Eq. (B.8)



Chapter 2

Governing equations in fluid
dynamics

2.1 The continuity equation

The governing equations are formulated by following the lecture notes [1, Bruus].

We consider an indeed arbitrary shaped region in space with volume Ω and surface
∂Ω, see Fig. 2.1. The total mass of this region is given by integrating the density
over the entire region

M(Ω, t) =

∫
Ω

ρ(r, t) dV, (2.1)

where we can determine the rate of change in mass of the region Ω by taking the
time derivative of the total mass M(Ω, t). Further, as indicated on Fig. 2.1, some
current J = ρ(r, t)v(r, t) (which is a mass current density in this case) flowing inside
the region, can also potentially change the mass of the region, that is advection.
The total mass is then also equal to the surface integral over ∂Ω of the mass current
density, and we obtain

∂tM(Ω, t) = ∂t

∫
Ω

ρ(r, t) dV =

∮
∂Ω

(−n)·J(r, t) dA =

∮
∂Ω

(−n)·ρ(r, t)v dA (2.2)

Here n is the surface outward normal vector pointing outward from the surface at
any particular point on a small part dA of the surface ∂Ω, and hence −n implies
that the mass current density is entering the region. Note that this principle apply

6
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in general, regardless of what physical current J represents (e.g. charge, momenta,
energy etc.). Since that the region is fixed in time, we can take the time derivative
∂t inside the integral and apply Gauss’ theorem, so

∂tM(Ω, t) =

∫
Ω

dV ∂tρ(r, t) =

∮
∂Ω

dA (−n)·ρ(r, t)v = −
∫

Ω

dV ∇·ρ(r, t)v (2.3)

and further utilize that the region Ω is arbitrary, from which it follows that the
integrands must be identical. Obtaining directly from Eq. (2.3)

∂tρ(r, t) = −∇·ρ(r, t)v(r, t) or ∂tρ(r, t) = −∂jρ(r, t)vj (2.4)

which is the continuity equation on vector and index notation1, respectively. The
continuity equation states that if density changes in time it is due to a divergence
in the mass current density.

Figure 2.1: (a) Reference system showing the principle of an arbitrary current J
inside a domain of fluid. The grey area Ω should be considered as a fixed and
arbitrary region of continuous matter. (b) A generalized flux J · dA. with the
normal defined as pointing outward with respect to the surface ∂Ω surrounding Ω.

2.2 The Navier-Stokes equation

In classical mechanics the dynamics of a system is governed by the acting forces
which equals the rate of change in momentum, this is also the case in fluid dynamics.
The momentum is defined as

dPi = vidM = viρdV, (2.5)

1see appendix B.1 for details
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identifying Pi as an extrinsic field the global momentum becomes

∂tPi =

∫
Ω

∂tviρ dV, (2.6)

for a fixed volume Ω.

In general the forces can effectively be divided into two contributions, body and
surface forces. In general there is a lot going on in the bulk e.g. interatomic in-
teraction, but for now only long ranged forces are of interest, such as gravity. The
body forces are written as f b, where the lowercase denotes that it is a force per
unit volume. Considering the surface, all the information are in the stress tensor
σ, having the dimensions of forces per unit area. The sum of forces acting on the
system becomes

F =

∫
Ω

f b dV +

∮
∂Ω

n · σ dA. (2.7)

Since the rate of change in momentum (Newtons second law) equals the acting forces
plus the advection of momentum, the dynamics becomes

∂tPi =

∫
Ω

∂tviρ dV =

∫
Ω

f bi dV +

∮
∂Ω

σij dAj −
∮
∂Ω

njvjρvi dA. (2.8)

Solving this equation it is necessary to determine the stress tensor. As mentioned
the stress tensor is force per unit area

dF = σ · dA or dFi = σijdAj (2.9)

noting the similarity between pressure and stress. Since the stress is defined as a
tensor it describes the relation between forces and surfaces in space, see Fig. 1.2 (b).
From Eq. (1.9) pressure is defined as the inward normal force on a surface hence the
stress tensor will contain the mechanical pressure in the diagonal.

From Fig. 1.2 (b) a force acting on the surface can be divided into three categories;
inward normal force - pressure, outward normal force - tension and a tangential
force - shear. These information are also contained in the index notation, where the
subscript i denotes the direction of which the force acts and the subscript j denotes
the direction of the surface on which the force is acting on. If the stress components
σij 6= σji (consider Fig. 1.2) there will exist a torque and the elements will begin
to rotate. In mechanical equilibrium this is not valid and the conclusion must be,
that in mechanical equilibrium the stress tensor for a fluid must be symmetric by
construction.

σ = σᵀ or σij = σji (2.10)
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The shear stress will naturally be induced by spatial variations in the velocity
field. These variations can be fully described with the velocity gradient tensor ∂ivj.
Assuming that there exists a linear relation of the form

σij = −pδij + η (∂ivj + ∂jvi) + (β − 1)η∂kvkδij, (2.11)

having the term ∂ivj we must also have ∂jvi ensuring that σij = σji. Fluids obeying
this relation is said to be Newtonian.

Applying Gauss’ theorem on Eq. (2.8) with a fixed volume Ω the equation become∫
Ω

∂t(viρ) dV =

∫
Ω

f bi dV +

∫
Ω

∂jσij dV −
∫

Ω

∂jvjρvi dV, (2.12)

since this is true for any volume the integrands must be identical

∂t(viρ) = f bi + ∂jσij − ∂jvjρvi. (2.13)

From the continuity equation Eq. (2.3) the rearranging of Eq. (2.13) becomes

∂t(viρ) + ∂jvjρvi = ρ (∂t + vj∂j) vi = f bi + ∂jσij. (2.14)

Identifying the general Navier-Stokes equation

ρ (∂t + vj∂j) vi = ρ
D

Dt
vi = f bi + ∂jσij

ρ (∂t + v · ∇)v = ρ
D

Dt
v = f b +∇ · σ.

(2.15a)

(2.15b)

The term on the left-hand side can be interpreted as the total acceleration by the
material derivative in Eq. (1.7).

By taking the divergence of the stress tensor in Eq. (2.11) the Navier-Stokes
eqaution becomes

ρ (∂t + vj∂j) vi = f bi − ∂ip+ η
(
∂2
j vi
)

+ βη∂i∂jvj

ρ (∂t + v · ∇)v = f b −∇p+ η
(
∇2v

)
+ βη∇ (∇ · v)

(2.16a)

(2.16b)

2.3 The equation of state

We will now consider the thermodynamics relating state variables with inspiration
from the book[2, Blundell & Blundell]. Working with variables of state e.g. volume,
pressure and density, it is adjacent to introduce the equation of state. Knowing the
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temperature T and number of molecules N in a gas of volume V the equation of
state f would take the form

p = f(T,N, V ), (2.17)

where

dp =

(
∂f

∂T

)
ρ,V

dT +

(
∂f

∂N

)
T,V

dN +

(
∂f

∂V

)
T,N

dV. (2.18)

For an ideal gas one exact equation of state is

pV = NkBT = nRT (2.19)

or

p =
N

V
kBT =

NA

M
ρkBT = ρRsT. (2.20)

Working with fluid systems actuated at frequencies around MHz the isentropic pro-
cess2 is a good approximation. For an isentropic process we know that the change
in internal energy dU is due to the work dW done on the system

dU = dW, (2.21)

which follows from the first law of thermodynamics, stating that the change in
internal energy comes from the change in heat and the work. For an ideal gas the
change in internal energy is given by dU = CV dT and the work as dW = −pdV ,
combining this with Eq. (2.19) the differentials becomes

CV dT = −pdV = −N
V
kBTdV. (2.22)

Evaluating Eq. (2.22) the relation between volume and temperature for an adiabatic
expansion becomes (

V1

V2

) nR
CV

=

(
T2

T1

)
(2.23)

or formulated in another way

TV γ−1 = constant, (2.24)

where nR
CV

= γ − 1 for an ideal gas, with the polytropic index γ. Since pV ∝ T and
ρV = constant the relation between pressure and density becomes

p

ργ
= constant, (2.25)

known as a polytropic form.

2no flow of heat and equivalent to an adiabatic expansion



Chapter 3

Perturbation theory in fluid
dynamics

Working with frequencies in the MHz-domain a small actuation in the system can
be regarded as small perturbations.

Identifying Eq. (2.16) as a nonlinear partial differential equation where the so-
lutions are not general and there exists no unique solution, but with the theory of
perturbation the problem can be decomposed into solvable equations.

3.1 First-order perturbation

The perturbation must be small (denoted with a subscript indicating the order)

|p1| � p, |v1| � v, ρ1 � ρ. (3.1)

By these means the field can be expanded to first order as

ρ = ρ0 + ρ1, (3.2a)

p = p0 + p1, (3.2b)

v = v0 + v1. (3.2c)

Assuming that the actuation happens so fast that the expansion can be assumed
isentropic, the pressure field can be expanded in ρ as

p(ρ) = p0 +

(
∂p(ρ0)

∂ρ

)
s

ρ1 = p0 + c2
0ρ1, (3.3)

11
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assuming that there exists a linear relation between the pressure and density.

In the unperturbed system the velocity is set to zero, whereas the perturbed fields
are

ρ(r, t) = ρ0 + ρ1(r, t), (3.4)

p(r, t) = p0 + c2
0ρ1(r, t), (3.5)

v(r, t) = 0 + v1(r, t). (3.6)

In the following the spatial and time dependence is omitted. With these relation
the Navier-Stokes equation Eq. (2.16) can be evaluated to first order

ρ0∂1v1 = −∇p1 + η∇2v1 + βη∇(∇ · v1), (3.7)

neglecting the body force.

To first order the continuity equation (2.3) is

∂tρ1 = −ρ0∇ · v1. (3.8)

The equations can be related by taking the time derivative of Eq. (3.8)

∂2
t ρ1 = −ρ0∇ · ∂tv1 = ∇2p1 − (1 + β)η∇2(∇ · v1), (3.9)

using the relations ∇ · v1 = − 1
ρ0
∂tρ1 and p1 = c2

0ρ1 Eq. (3.9) becomes

∂2
t ρ1 =

[
c2

0 +
(1 + β)η

ρ0

∂t

]
∇2ρ1. (3.10)

Within the scope of this project the actuation can be assumed harmonic in time
i.e. every time dependent field gets the factor e−iωt. Since the fields of interest have
the same time dependence the operator ∂t can be replaced with −iω and Eq. (3.10)
becomes a linear partial differential equation

∇2ρ1 = −ω
2

c2
0

[1− i2Γ]−1 ρ1, (3.11)

where Γ = (1+β)ηω

2ρ0c20
. For water at 25 ◦C the factor becomes Γ ≈ 8.2× 10−6 (given the

values in table G.1.) i.e. rewriting the term to first order in Γ yields

k =
ω

c0

[1− i2Γ]−1/2 ≈ k0 [1 + iΓ] , (3.12)

yielding Helmholtz’s equation for the acoustic density field

∇2ρ1 = −k2ρ1, (3.13)
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where the complex valued wavenumber means that the solutions will be damped
waves, with a damping coefficient Γ. If Γ� 1 one must go to large distances before
seeing any effect of the damping, since the characteristic length scale for the damping
is 1

k0Γ
. In the special case where η = 0 the solution will be waves propagating at

group velocity c0. Recall that c2
0 =

(
∂p
∂ρ

)
s

from Eq. (3.3), meaning that if the linear

relation between pressure and density is known, for an adiabatic expansion, the
speed of sound can be determined. From Eq. (2.25) the speed of sound for an ideal
gas is

c0 =

√(
∂p

∂ρ

)
s

=

√
γ
p

ρ
, (3.14)

For the case where ρ1 is proportional to p1 then Eq. (3.13) is also valid for the
pressure field, with the simple Cartesian solution

p1(r, t) =
[
p+eik·r + p−e−ik·r

]
e−iωt, (3.15)

where k · r = kxx+ kyy + kzz.

3.2 Second-order perturbation

In second-order perturbation we just add a third term in 3.2b and collect the second-
order terms from Eq. (2.4) and Eq. (2.16) yielding

∂tρ2 = −∇ · (ρ0v2 + ρ1v1) , (3.16)

ρ0∂tv2 + ρ1∂tv1 + ρ0(v1 · ∇)v1 = −∇p2 + η∇2v2 + βη∇(∇ · v2). (3.17)

Assuming harmonic time dependence the time average of these equations becomes

0 =− ρ0∇ · 〈v2〉 −∇ · 〈ρ1v1〉 (3.18)

〈ρ1∂tv1〉+ ρ0 〈(v1 · ∇)v1〉 =−∇ 〈p2〉+ η∇2 〈v2〉+ βη∇(∇ · 〈v2〉), (3.19)

since the product of two first-order terms does not equal zero, when taking the time
average i.e. product of terms proportional to harmonics such as cosines and sines,
equals

〈
sin2(ωt)

〉
= 〈cos2(ωt)〉 = 1

2
.

For inviscid bulk (η = 0) the velocity can be described with a velocity potential
i.e. ∇× v1 = 0 and (v1 · ∇)v1 = 1

2
∇v2

1, from this Eq. (3.19) becomes

−∇ 〈p2〉 = − 1

c2
0ρ0

〈p1∇p1〉+
1

2
ρ0

〈
∇v2

1

〉
= − 1

2c2
0ρ0

∇
〈
p2

1

〉
+

1

2
ρ0∇

〈
v2

1

〉 (3.20)
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and the time-averaged second-order pressure field takes the form

〈p2〉 =
1

2
κ0

〈
p2

1

〉
− 1

2
ρ0

〈
v2

1

〉
, (3.21)

where we have defined the compressibility κ0 = 1
ρ0c20

.



Chapter 4

Acoustic resonances

4.1 Harmonic fields and acoustic energy

Working with small harmonic actuating in the sense that Eq. (3.1) is valid, then from
the theory of first-order perturbation the acoustics of a fluid system are developed.
In most cases analytical solutions requires high symmetry and well-known boundary
conditions.

To get a feeling of the acoustics we consider a potential flow i.e. ∇× v1 = 0
implying ∇(∇ · v1) = ∇2v1 and that the velocity field can be written as a gradient
of a potential v1 =∇ϕ1. Under these conditions Eq. (3.7) can be rewritten as

ρ0∂tv1 = −∇p1 + (1 + β)η∇(∇ · v1), (4.1)

imposing the harmonic time dependence and ∇ · v1 = i ω
c20ρ0

p1 from first-order con-

tinuity, the velocity can be written as

v1 =∇ϕ1 = − i

ωρ0

(1− 2iΓ)∇p1 ≈ −
i

ωρ0(1 + iΓ)2
∇p1. (4.2)

This shows that the velocity potential is proportional to the pressure field, therefore
the solution for the velocity potential must be of the form

ϕ1(r, t) =
[
ϕ+eik·r + ϕ−e−ik·r

]
e−iωt (4.3)

as in Eq. (3.15). This means that for a potential flow the acoustic velocity field will
have the form

v1(r, t) =∇ϕ1 = ik
[
ϕ+eik·r − ϕ−e−ik·r

]
e−iωt (4.4)

15
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Lets consider the case of a planar flow where v1(r, t) = v1(x, t)êx yielding

v1(x, t) = ik
[
ϕ+eikx − ϕ−e−ikx

]
e−iωt. (4.5)

To determine a unique expression for the velocity, boundary conditions are needed.
For simplicity we will consider the antisymmetric boundary condition at ±L with
an amplitude ω`, which leads to

v1(L, t) = −v1(−L, t) = ω`e−iωt (4.6)

or

ϕ+ = ϕ− = − ω`

2k sin(kL)
(4.7)

with the unique solution

v1(x, t) = ω`
sin(kx)

sin(kL)
e−iωt =

sin(k0[1 + iΓ]x)

sin(k0[1 + iΓ]L)
e−iωt. (4.8)

Acoustic resonances can be identified when the velocity is at its maximum i.e.
when sin(kL) is minimum. Finding the minimum, one can do an approximation as
in Eq. (3.12), but where Γk0L� 1 yielding

v1(x, t) ≈ ω`
sin(k0x) + iΓk0x cos(k0x)

sin(k0L) + iΓk0L cos(k0L)
e−iωt. (4.9)

Since the Γ-term is much smaller than unity, the resonance condition becomes

k0L = nπ, for all n ∈ N. (4.10)

Defining the resonance wavenumber kn = nπ
L

. At resonance the velocity field will be

v1(x, t) ≈ (−1)nωn`

[
x

L
cos
(
nπ

x

L

)
− i

Γnπ
sin
(
nπ

x

L

)]
e−iωnt, (4.11)

where the resonance frequency is defined as ωn = knc0 accomplished by tuning the
actuation frequency.

For a harmonically oscillating system the energy is two times the averaged kinetic
energy - a general result for harmonic mechanics. In relation to fluid dynamics it
is natural to work with the energy density Eac. For the harmonically oscillating
system we find that

Eac = 2 〈Ekin〉 = 2
1

2L

∫ L

−L

1

2
ρ0|〈v1(x, t)〉|2 dx

=
1

2L

∫ L

−L

1

2
ρ0

∣∣∣∣ω` sin(kx)

sin(kL)

∣∣∣∣2 dx =
1

4
ρ0ω

2`2 1

|sin(kL)|2
.

(4.12)
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In practice the frequency can be controlled, which makes it relevant to expand
sin(kL) around the resonances knL

Eac =
1

4
ρ0ω

2`2 1

|sin(kL)|2
≈ 1

4
ρ0ω

2`2 1

|(kL− knL)|2
=

1

4

ρ0ω
2`2

n2π2

ω2
n

(ω − ωn)2 + Γ2ω2
n

,

(4.13)
which is a single peaked function centered around the resonance frequency ωn. The
expression has the shape as a Lorentzian function and has full width at half max-
imum ∆ω = 2Γωn, see Fig. D.1, making it relevant to define the quality factor

Q =
ωn
∆ω

=
1

2Γ
. (4.14)

With a damping factor Γ = 0.004 as in [3], the quality factor yields Q = 125,
whereas the theory yields Q ≈ 1× 105.

The energy in Eq. (4.13) is a special case of a harmonic standing pressure wave
i.e. acoustic resonance, but in general the acoustic energy density will be

Eac = 〈Ekin〉+ 〈Epot〉 . (4.15)

The kinetic energy density are Ekin = 1
2
ρ|v(r, t)|2 where the potential energy density

in acoustics are

Epot = − 1

V

∫
p dV. (4.16)

As in Eq. (2.25) the relation ρV = constant were used, which means that ρdV +
V dρ = 0 or dV = −V

ρ
dρ. Since the linear relation between ρ and p are known to be

dp
dρ

= c2
0 from Eq. (3.3), the potential energy density can be evaluated as

Epot = − 1

V

∫
pdV =

1

V

∫
p
V

ρ

dp

c2
0

=
1

2

p2

ρc2
0

. (4.17)

Working with harmonics the average will contribute with a factor 1
2
, evidently the

acoustic energy density will have the form

Eac = 〈Ekin〉+ 〈Epot〉 =
1

4
ρ|v|2 +

1

4
κ0|p|2. (4.18)

4.2 Acoustic forces

A particle with radius a placed in a quiescent fluid will experience both buoyant and
gravity as in Eq. (2.7), but if the fluid is not at rest i.e. actuated at MHz frequencies,
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there will be a second order effect. If the particle is compressible and the radius a is
much smaller than the acoustic wavelength, it will induce a scattered wave i.e. the
first order velocity will consist of an incoming and scattering term

v1 = vin + vsc. (4.19)

Calculating the effect of the scattered wave, one must determine vsc. In an inviscid
bulk the velocity field can be described with a potential as in Eq. (4.2)

v1 =∇ϕ1 =∇ϕin +∇ϕsc, (4.20)

where both terms obeys Helmholtz’s equation Eq. (3.13) since ϕ ∝ p. The first
order pressure field Eq. (4.2) becomes

p1 = iωρ0 (ϕin + ϕsc) , (4.21)

where the damping factor is set to zero.

The scattered wave give rise to a radiation force F rad, which is a second-order
time-averaged effect and Eq. (2.8) can be written as

F rad = −
∮
∂Ω

(〈p2〉n+ ρ0 〈(v1 · n)v1〉) dA

= −
∮
∂Ω

[(
1

2
κ0

〈
p2

1

〉
− 1

2
ρ0

〈
v2

1

〉)
n+ ρ0 〈(v1 · n)v1〉

]
dA,

(4.22)

for η = 0. To ease the evaluation of this integral, it is reasonable to only consider
the mixed product between the incoming and scattered wave. Since the square of
each field consists of three contributions: ϕ2

in containing no information about the
interference, ϕ2

sc which scales with the square of the particle volume and ϕinϕsc
which is the dominant term. Rewriting the integral yields

F rad = −
∫

Ω

ρ0

〈
vin

(
∇2 − 1

c2
0

∂2
t

)
ϕsc

〉
dV

= −4

3
πa3

(
1

2
κ0 Re{f ∗1 p∗in∇pin} −

3

4
ρ0 Re{f ∗2v∗in · ∇vin}

)
,

(4.23)

where f1 and f2 are scattering coefficients (see [4] for details). In the absence of
viscosity these coefficients are real and given by

f1 = 1− κ̃, (4.24a)

f2 =
2(ρ̃− 1)

2ρ̃+ 1
, (4.24b)
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where κ̃ = κp/κ0 and ρ̃ = ρp/ρ0 is the relative compressibility and density respec-
tively. The subscript p denotes the particle and the subscript zero is water. These
expressions for the scattering coefficients are used unless otherwise stated.

The classic result for the radiation force can be presented for 1D standing waves,
which is the case treated in this thesis, for cosine dependant waves with wave-number
k = 2π

λ
as

F rad
1D = 4πΦa3kEac sin(2kyy) (4.25a)

Φ =
1

3
f1 +

1

2
f2 (4.25b)

where Φ is the so called acoustophoretic contrast factor, which in the complete model
also depends on the boundary layer thickness. However for inviscid bulk it can be
calculated using the coefficients in Eq. (4.24).

When submerging a particle of radius a and density ρp, it will experience a
buoyant force Fb. Naturally the gravitational force Fg is also exerting a force on the
particle opposite to the buoyant force. It is useful when comparing the magnitudes
of acting forces, to look at the buoyancy compensated gravitational force exerted on
such a particle, which is given by

F comp
g =

4

3
πρf (ρ̃− 1)a3g. (4.26)

Here ρf is the density of the fluid in which the particle is submerged and g is the
gravitational acceleration. If the viscous forces are dominant, that is if the Reynolds
number Re = ηva

ρF
= va

νk
� 1, (The kinematic viscosity νk, is not to be confused with

Poisson’s ratio ν, which will be presented in Chapter 5) then the frictional forces
will yield

Fd = 6πηav. (4.27)

known as Stokes’ drag force.



Chapter 5

Linear theory of elastic solids

The foundation of acoustic wave theory in elastic solids is formulated in the following,
on basis of the book by [5, Lautrup] and notes by [6, Bruus]. This will form the
foundation for our further studies in microscale acoustofluidics and the coupling
between elastic solids and Newtonian fluids.

5.1 The displacement field and strain

The displacement field is a quantity describing the macroscopic deformation of a
body, by means of its constituents (material particles) generally displaced simulta-
neously. Consider the original position R as a function of actual position r denoted
by R(r), then the displacement field is given by

u(r) = r −R(r). (5.1)

Figure 5.1: Depiction of infinitesimal material needle displaced from a0 to a and b0
to b, illustrating the concept of displacement.

As seen in Fig. 5.1 a material particle ”needle” is connecting pointsR andR+a0

in space in a Cartesian coordinate system in terms of the vector a0. This is describing

20
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the system before displacement. Right after displacement, the point is now followed
to the positions r and r + a interconnected by the vector a. By the definition of
Eq. (5.1) and expanding to first order in a it is obtained that the displacement is

u(r + a)− u(r) = [(r + a)−R(r + a)]− [r −R(r)]

= a− a0

= (a·∇)u(r) +O(a2)

(5.2)

which makes us able to conclude that displacement of a ”material needle” of in-
finitesimal proportions changes as

δa ≡ a− a0 = (a·∇)u(r). (5.3)

Consider again the situation depicted in Fig. 5.1, where the displacement of the pairs
of material needles is treated. The scalar product of the displacement needles a · b
is invariant under translation and rotation, thus also an indicator for geometrical
changes. By use of Eq. (5.3) the change of the scalar product δ(a·b) = δa·b+ a·δb
becomes

a·b− a0 ·b0 = a·b− [a− (a·∇)u]·[b− (b·∇)u]

= 2a · s · b+O(u2)
(5.4)

Evidently, Cauchy’s strain tensor (which is symmetric by construction)

sij =
1

2
(∂iuj + ∂jui) or s =

1

2
(∇u+ (∇u)ᵀ). (5.5)

appears in the scalar product between the pair of material needles, and indeed is
the measure of local deformation. Note that Cauchy’s strain tensor is only valid
for |∇u| � 1, thus the induced error is proportional to the magnitude of the
displacement gradient. However, the limit holds for magnitudes of displacement
gradients concerning investigations that will be carried out in this thesis.

5.2 Mechanical equilibrium

The sum of forces acting in continuum theory is the superposition of acting surface
forces and body forces. With the force originating from surface forces or stress Eq.
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2.9 and the body forces as dF = f indV , then the total force, will be given as

F =

∫
Ω

fin dV ≡
∫

Ω

f dV +

∮
∂Ω

σ ·dA. (5.6)

In mechanical equilibrium the force must be zero, since otherwise will result in
movement of the body. Thus the state of mechanical equilibrium f in = 0 results in

f +∇ · σ = 0 or fi + ∂jσij = 0 (5.7)

by using Gauss’ theorem on the surface integral of Eq. (5.6) to obtain Cauchy’s
equilibrium equation.

5.3 The stress tensor

Once again we consider a region Ω with closure ∂Ω consisting of an elastic solid with
zero net charge locally. Having an intrinsic force field f in driven by a displacement
field u, the force is required to be of short-ranged nature in a continuum. Conse-
quently, the forces will mutually cancel out in the interior of the volume Ω, leaving
only the force contribution from the surface (stress), thus one must demand

∫
Ω

f in dV =

∮
∂Ω

σ ·n dA =

∫
Ω

∇ · σ dV (5.8)

hence it can be concluded that the intrinsic force must be f in = ∇ · σ. By the
same principles stated in the discussions of section 2.2 and shown in eqs. 2.7 to
2.10, the stress tensor for elastic solids must also be symmetric. Now the volume Ω
with surface ∂Ω interfacing vacuum (i.e. σ · n = 0) is experiencing intrinsic force
density f in driven by infinitesimal interior displacement fields δu. Henceforth, the
system will experience a mechanical work from the displacement-driven force as
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∫
Ω

δW dV =

∫
Ω

f ini δui dV =

∫
Ω

δui∂jσij dV

=

∮
∂Ω

δuiσijnj dA−
∫

Ω

∂j(δui)σij dV

= −1

2

∫
Ω

∂j(δui)σij dV − 1

2

∫
Ω

∂j(δui)σij dV

= −1

2

∫
Ω

σij[∂i(δuj) + ∂j(δui)]dV

= −
∫

Ω

σij δsij dV

(5.9)

and evidently by looking at the integrands, it is obtained that mechanical work in
such a system is relating the stress and strain by

δW = −σij δsij. (5.10)

Using that the infinitesimal change in free energy F , by the thermodynamic relation,
is due to

dF = −SdT − dW = −SdT + σijdsij (5.11)

and ensuring isothermal conditions such that the entropy S vanishes, it can be
obtained that the stress of elastic solids is given as the strain derivative of the free
energy

σij =

(
∂F

∂sij

)
T

. (5.12)

Thus for the case of a system in thermal equilibrium, both the stress tensor σ and
the strain tensor s ought to be zero. This implies that the obtained result for the
stress Eq. (5.12) implies a free energy F in the quadratic form

F = F0 +
1

2
Cijklsijskl (5.13)

denoting an elastic modulus tensor of rank four Cijkl, and the stress tensors for a
total of 81 combined geometrically dependant directions. Since that the treated
elastic solids of this report are assumed to be of isotropic nature, the quadratic
equation Eq. (5.13) reduces to

F = F0 +
1

2
λ(skk)

2 + µsijsij (5.14)
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where it is utilized that the only two directions surviving when considering isotropic
solids are [Tr(s)]2 = (skk)

2 = (∇ · u)2 and Tr(s ·s) = sijsij with the so called
Lamé coefficients µ (shear modulus or modulus of rigidity) and λ (no special name),
which are parameters describing the material properties. By the definition of the
stress-strain relation Eq. (5.12) the stress tensor becomes

σij = λskkδij + 2µsij. (5.15)

The strain tensor itself is a dimensionless quantity, yielding the Lamé units coeffi-
cients [µ] = [λ] = Pa justifying the relation to the stress tensor [σij] = Pa.

5.4 Elastic parameters

Imagine a long straight rod situated along the x-axis of a traditional Cartesian
coordinate system. Hooke’s law states that the force required to prolong a rod of
length L by an amount x is F = kx, where k is the spring constant. Considering
linearly elastic and isotropic solids the force must be proportional to the cross-
sectional area A of the rod. Taking an ensemble of N rods with this area yields
that the total force required to extend the rod is Nkx for uniform changes of length
of the ensemble of rods. Hence the quantity of interest is rather the normal stress
σxx = NF

NA
= Nkx

NA
= kx

A
, which indeed is independent by number of rods N and area

A. Since the force F must act on each cross-section, it follows that the stress must
be the same in every point along the rod. Furthermore, this uniform distribution of
stress suggests that the ratio between the extension x and length L of the rod must
equal the ratio of a shorter part of the rod L′ < L extended by x′ < x as x′

L′ = x
L

.
Consequently, it appears that relative elongation i.e. the strain sxx = x

L
, is more

fundamental when describing the rod, in contrary to the absolute length change x.
Thus, Young’s modulus is neatly introduced as

E =
σxx
sxx

=
F/A

x/L
(5.16)

In the vast majority of linear elastic solids the elongation of such a rod, will induce a
change of the dimensions both in longitudinal and transverse directions. Elongation
in the longitudinal direction yields a contraction of the transverse direction, which
can be described as a strain syy = h/D. Where h is the magnitude of contraction
due to the force elongating the rod. Positive stretching of linearly elastic solids is
proportional to the stretching force F , thus syy

sxx
is independent of F and the negative
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of this ratio

ν = −syy
sxx

(5.17)

indeed is Poisson’s ratio. By the definition of stress Eq. (5.15), and the rod along
the x-axis, it can be obtained that

σxx = λskk + 2µsxx (5.18a)

0 = λskk + 2µsyy (5.18b)

0 = λskk + 2µszz (5.18c)

Rearranging and adding Eq. 5.18b and Eq. 5.18c gives (2λ + 2µ)skk − 2µsxx = 0
which then is rewritten as skk

sxx
= µ

λ+µ
. With Eq. 5.18b it is seen that λskk = −2µsyy,

by dividing both sides by sxx and rewriting, one gets ν = − syy
sxx

= λ
2µ

skk
sxx

= λ
2(µ+λ)

.

Finally Eq. 5.18a multiplied by 1
sxx

gives E = σxx
sxx

= λ skk
sxx

+ 2µ = µλ
µ+λ

+ 2µ, which
then can be solved for µ and λ to give

µ =
1

2(ν + 1)
E (5.19a)

λ =
ν

(1− 2ν)(1 + ν)
E. (5.19b)

5.5 The equation of motion

If Eq. (5.7), Eq. (5.15) and Eq. (5.5) is combined by insertion of the latter two
equations in the first, it is obtained that

fi + λ∂j∂kuk + µ∂j(∂iuj + ∂jui) = 0 (5.20a)

f + µ∇2u+ (µ+ λ)∇(∇ · u) = 0 (5.20b)

which is the expression also know as Navier-Cauchy equilibrium equation. The
proper position of a displaced particle is a function of time, but only with regards
to the displacement u(r, t). Hence the velocity of that material particle, must be
v(r, t) = ∂tu(r, t) with acceleration a(r, t) = ∂2

tu(r, t). The total force is acting
on each and every material particle in a given volume. Newtons second law for
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material particles is stated as dMa = f indV , so dividing with the volume and use
Eq. (5.20a) makes one arrive at

ρ∂2
tu = f + µ∇2u+ (µ+ λ)∇(∇ · u) (5.21)

the Navier’s equation of motion.

5.6 Longitudinal and transverse displacement fields

The equation of motion can be used to obtain the wave equation. The only dif-
ference between the wave equation for small amplitude acoustic waves in fluids to
that of elastic solids is the dimensions. The field in a fluid is represented as either a
pressure- or density field, which is a scalar field. In elastic solids the vector field u
can be represented by acoustic waves. Theoretically the waves of this displacement
vector field, can be entirely split up in two independent directions, respectively, in
longitudinal and transverse components. A Helmholtz decomposition of the dis-
placement field u ensures a divergence-free transverse component and irrotational
longitudinal component, as

u = uL + uT (5.22a)

0 =∇ · uT (5.22b)

0 =∇× uL. (5.22c)

Using a vector identity as ∇(∇ · u) = ∇2u +∇× (∇× u) together with above
Eqs. Eq. (5.22) the relations

∇2u = ∇2uL +∇2uT (5.23a)

∇(∇ · u) =∇(∇ · uL) = ∇2uL (5.23b)

are obtained. Inserting these relations into Navier’s equation of motion Eq. (5.21)
the wave equation reveals itself for the directions as

ρ(∂2
tuL + ∂2

tuT ) = µ∇2uL + µ∇2uT + (µ+ λ)∇2uL.

= (2µ+ λ)∇2uL + µ∇2uT
(5.24)
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Broken up in longitudinal and transverse waves, the resulting equations are

∂2
tuL =

(2µ+ λ)

ρ
∇2uL and ∂2

tuT =
µ

ρ
∇2uT . (5.25)

From the structure of Eq. (5.25) the phase velocities unveils themselves as

c2
L =

2µ+ λ

ρ
=

(1− ν)

(1− 2ν)(1 + ν)

E

ρ
and c2

T =
µ

ρ
=

1

2(1 + ν)

E

ρ
(5.26)

where the latter equality is obtained, by inserting of the found expressions for the
Lamé parameters λ and µ in Eqs. (5.19). The longitudinal compression waves,
moves with a greater velocity than the transverse shear waves. It can be shown by
the ratio cT

cL
that the phase velocity difference is described as an inequality 2c2

T ≤ c2
L.

It is often useful to express the equation of motion (without force f) in terms
of the phase velocities, which again is described by the material parameters. This
will ensure a description of the material by mixed waves in contrary to distinctly
separated longitudinal and transverse waves. By substitution of µ and λ in Eq. (5.21)
with phase-velocities, it is seen that

∂2
tu = c2

T∇2u+ (c2
L − c2

T )∇(∇ · u) (5.27a)

∂tui = c2
T∂

2
kui + (c2

L − c2
T )∂i∂juj (5.27b)

with stress tensor from eq. Eq. (5.15) as

σ = ρ[c2
T (∇u+ (∇u)ᵀ) + (c2

L − 2c2
T )(∇ · u) 1] (5.28a)

σij = ρ[c2
T (∂iuj + ∂jui) + (c2

L − 2c2
T )∂kukδij]. (5.28b)

Evidently the equation of motion takes the compact form

∂2
tu =

1

ρ
∇ · σ. (5.29)

This is the description of the stress tensor and Navier’s equation of motion in elastic
isotropic solids not being infinite. That is, the theoretical separation of longitudinal
compression waves and transverse shear waves, builds upon an assumption of infi-
nite solid materials of elastic nature. In reality finite materials are described by a
mix of longitudinal and transverse waves, by the stress and equation of motion just
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presented above in Eqs. Eq. (5.27) and Eq. (5.28).

Considering a time harmonic dependency of the displacement field u(r, t) (i.e.
harmonic oscillations of displacement) the field is described as u(r, t) = u(r)e−iωt.
It is thus seen that the time derivative of the displacement field is ∂tu(r, t) =
−iω, which is then utilized to described the equation of motion described by phase
velocities in Eq. (5.27) as

−ω2u = c2
T∇2u+ (c2

L − 2c2
T ).∇(∇ · u) (5.30)

Once again by a Helmholtz decomposition using Eq. (5.22) the time-harmonic equa-
tion of motion yields

−ω2(uL + uT ) = c2
L∇2uL + c2

T∇2uT . (5.31)

When separated into purely longitudinal and transverse parts becomes

∇2uL = −k2
LuL and ∇2uT = −k2

TuT (5.32)

with
kL =

ω

cL
and kT =

ω

cT
. (5.33)

which is the Helmholtz’s equation with wavenumbers kL and kT for longitudinal and
transverse components, respectively.



Chapter 6

Computational tasks in COMSOL

6.1 The finite element method

6.1.1 Strong and weak formulation

The finite element method (FEM) is a numerical way of solving both ordinary dif-
ferential equations (ODE) and partial differential equations (PDE). COMSOL is a
numerical FEM software, which is used to simulate the scenarios investigated in
this project[7]. We will now look into the theory behind implementation of FEM in
COMSOL by following the note by [8, Bruus]. FEM is a method where a domain is
discretized into a huge number of triangular mesh cells of finite sizes in the domain
as sketched in Fig. 6.1. The benefit of these finite elements is that local approxima-
tions of the problem can be solved for and pieced together. FEM is a very useful
method in the way that the strong representation

∇·J − F = 0 (6.1)

can be approximated by a so-called weak formulation. Here J is a generalized flux
tensor, which is driven by the generalized force F .

29
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Figure 6.1: Finite element method: 2D depiction of two overlapping basis-functions
ĝk and ĝj in the domain Ω centered over node k and j, respectively. The basis
functions are spanned by the neighboring nodes to node k and j. Note that the tent-
shape of these basis functions is due to linear (first order) polynomials describing
the decrease from value 1 to 0 on the boundary of the cells.

A given mesh cell centered on a node k defines the basis function ĝk, where the
basis function is spanned by neighboring mesh vertices. ĝk is defined such that it
has the value of 1 on node k, whereas ĝj has the value 1 on node j. The values of
these basis functions is continuously decreasing to become zero everywhere on the
boundary of the basis-function cell and at the neighboring nodes. Having a large
number of basis functions sharing two triangular mesh elements such that overlaps
are present (see Fig. 6.1), makes up a set of all basis functions constituting a non-
orthogonal basis. This is allowing any function g(r) to be approximated by the
linear combination

g(r) ≈
∑
k

Ck ĝk(r). (6.2)

where ĝk are basis functions for node k, and coefficients Ck that approximates the
arbitrary function g(r). The approximation introduces a non-zero defect d(r) such
that the strong form Eq. (6.1), where the current J is dependent on the basis
functions, then becomes

∇·J [g(r)]− F (r) = d(r) (6.3)

The strong form requires the terms in the PDE to be well-defined for all points in
the problem at hand, yielding function spaces of infinite proportions. In contrary



CHAPTER 6. COMPUTATIONAL TASKS IN COMSOL 31

for the weak form, it is enough to require that

∫
Ω

ĝm(r)[∇·J [g(r)]− F (r)]dV = 0, for all m ∈ Z (6.4)

such that the equality holds in an integral sense; that is, the projection of the defect
d(r) on each basis function becomes zero. Eq. (6.4) is indeed the weak form of the
boundary value problem.

6.1.2 Linear equations in COMSOL

COMSOL is solving and outputting solutions for systems of linear equations Ax = g.
Splitting up the integral Eq. (6.4) to the form

∫
Ω

ĝm(r)∇·J [g(r)] dV =

∫
Ω

ĝm(r)F (r) dV (6.5)

Introducing a system matrix with a linear current operator J [g(r)]

Amk =

∫
Ω

ĝm(r)∇·J [ĝk(r)] dV (6.6)

which is often referred to as the stiffness matrix, due to historical applications of
FEM in structural mechanics. Moreover, the force load vector is

Fm =

∫
Ω

ĝm(r)F (r) dV. (6.7)

So forth, the weak form of the boundary value problem Eq. (6.4), can be rewritten
in terms of a matrix problem

AmkCk = Fm (6.8)

where Ck evidently is the solution coefficients obtained by classical matrix inversion,
which exists for each field.
The weak form of the boundary value problem is a volume integral over the domain
Ω. To identify the explicit contributions from the bulk and boundary, Green’s first
identity Eq. (B.9) is used on the divergence term in Eq. (6.4) to obtain

∮
∂Ω

ĝm(r)n · J dA+

∫
Ω

[(−∇ĝm(r)) · J − ĝm(r)F (r)] dV = 0 (6.9)

which then can be utilized to construct the model problem for the boundary and
bulk in COMSOL.
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6.2 Theoretical model of acoustofluidic PMMA

device

In this thesis we will model an acoustofluidic PMMA device by a fluid-solid coupling
introduced with the proper boundary conditions obtained from literature by [9,
Bruus]. The device contains water in a micro-fluidic channel of width WF , height
HF and length LF , carved in PMMA with height HS, width WS and length LS for
different dimensions of the device, given in table G.3. After the micro-fluidic channel
has been carved, using precision mechanical machining, a lid of height Hlid is bonded
as a PMMA cover film. A piezoelectric transducer is placed either on top or bottom
(see Fig. 6.2) of the device, the transducer is carved in the middle leaving a finite
gap of width ∆W . The transducer actuates the device by a push-pull actuation at
MHz frequencies, creating a standing wave in the channel at the right frequencies.
This acoustophoresis is used to control, sort and fixate biological cells inside the
channel. A 3D view of the device is given in Fig. G.2, where a cross-sectional view
of the work plane is given in Fig. 6.2. Due to high symmetry in the length-direction
the model is simplified to the 2D work plane. The model is constructed assuming
constant temperature and stop-flow condition.

Figure 6.2: Cross-sectional view of the work plane in Fig. G.2, showing the dimen-
sions of the PMMA device with fluid channel (light blue) surrounded by PMMA
(grey) actuated at the bottom (red arrows - not to scale), with a piezoelectric trans-
ducer (dark grey).

The model used in this thesis is based on time harmonic fields f(r, t) = f(r)e−iωt

and the only two fields of interest are the first order pressure field p and the dis-
placement field u. Using the weak formulation in COMSOL-Multiphysics, the fields
must be governed by equations similar to that of Eq. (6.1). Fortunately the first
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order acoustic pressure field is governed by Helmholtz’s equation

∇ · (∇p) + k2p = 0 (6.10a)

as in Eq. (3.13), and the displacement field is governed by

∇ · σ − ρs∂2
tu = 0, (6.10b)

where the stress tensor σ is given in Eq. (5.28). From first order perturbation
theory discussed in section 3.1, it was found that time derivatives takes the form
∂t → −iω(1 + iΓ) as derived in and shown cf. Eq. (3.12). This damping occurs in
the dynamics of the fluid and solid, which is to be coupled in one complete system.
This means that the governing equations Eq. (6.10) takes the form

∇ ·∇p− Ff = 0 (6.11a)

∇ · σ − Fs = 0 (6.11b)

with

Ff = −ω
2

c2
f

(1 + iΓf )
2p and Fs = −ρsω2(1 + iΓs)

2u (6.12)

6.2.1 Boundary conditions

The following assumptions that must be fulfilled at the boundary interfaces is a
continuous velocity field across the interface, described as

n·v = − i

ρfω(1 + iΓf )2
n·(∇p), (6.13a)

t·σ ·n = 0, (6.13b)

given that the velocity is proportional to the pressure gradient as in Eq. (4.2). The
tangent vector is denoted t. Also the stress must be continuous across the boundary,

n·σ ·n = p (6.14a)

t·σ ·n = 0 (6.14b)

On the solid-air boundary, the normal of the stress σ ·n is zero. That is, the
surrounding air is assumed to be a vacuum, hence there is no stress originating from
the ambient media. The solid-transducer boundary is actuated according to Fig.
6.2 with displacement u = d0 = d0êz. It is noted that the gap of width ∆W on
this figure, is made to ensure an efficient push-pull effect of the actuation. On the
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solid-fluid interface (i.e. seen from the solid) the stress normal to the surface is the
(negative) pressure −pn, since it is working against the solid. Finally, the boundary
condition at the fluid-solid interface (i.e. as seen from the fluid) is coming from the
inviscid first-order acoustic Navier-Stokes Eq. (3.7)

ρf∂tv = −iρfωv = −∇p

By coupling the velocity field in the fluid with the displacement field in the solid,
then exactly at the boundary

v = ∂tu = −iωu

which implies

∇p = ρfω
2u

. To distinguish between fluid and solid properties, the subscript f and s are used,
respectively, in the following. Now the boundary conditions in mathematical form
thus become

solid-air : σs ·n = 0 (6.16a)

solid-transducer : u = d(y)êz (6.16b)

solid-fluid : σs ·n = −pn (6.16c)

fluid-solid : n·∇p = ρfω
2n·u (6.16d)

where the first-mentioned domain is where the boundary conditions are seen from
(e.g. solid-air is the boundary condition as seen from the air). The solid-transducer
condition is modelled with the odd function

d(y) = d0 tanh

(
20

y

WS

)
, (6.17)

where the factor of 20 account for the finite gap ∆W between the two transducers
(see Fig. 6.2), which is in the order of 1

20
WS. This function ensures that the dis-

placement is continuous across the solid-transducer interface. For implementation
in COMSOL see appendix C.
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6.3 Verification and validation

6.3.1 Conceptual agreement

To verify our COMSOL model, we study a well-known problem; the anti-symmetric
actuation of infinite hard walls (see chapter 4).

To model infinite hard walls we use the same model as in section 6.2, but without
the finite solid. Instead we impose the zero flux boundary condition on top and
bottom and the anti-symmetric actuation at±L. Since the walls are assumed infinite
hard and the actuating amplitude d0 is small, compared to the dimension of the
channel, we set the boundary condition v(±L) = ±ωd0. This is implemented as
Eq. (6.16b), but at the side-walls instead of the bottom.

Figure 6.3: Simple configuration for anti-symmetric actuation of infinite hard walls,
with high symmetry. The walls are actuated in counterphase with an amplitude
ωd0, the width of the channel is 2L = 375 µm.

The boundary conditions for the given problem are

∂yp =

{
−ρ0ω

2(1 + iΓf )
2d0 for y = −L

+ρ0ω
2(1 + iΓf )

2d0 for y = +L
(6.18)

Hard walls means that the normal velocity component in the fluid will be zero
at the interface between the fluid and the walls

n · v = 0 (6.19)

or in terms of the pressure
n · ∇p = 0 (6.20)

which is exactly the zero flux condition in this case because our modelled flux is
∇p1.
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The acoustic theory predicts a stationary standing wave for the velocity as in
Eq. (4.8) with the maximum amplitude |v|max ≈

ωnd0
nπΓ

= d0
ΓL
c0 at frequency f =

c0
2L

= 3.99 MHz for n = 1 given in sec. 4.1. For the parameters given in table G.1

the maximum velocity amplitude is |v|theory
max = 19.956 cm s−1 and the COMSOL model

yields |v|model
max = 19.957 cm s−1 an relative error of ∼10−5. This small error appears

in the sense that the analytically line plot in Fig. 6.4 follows the numerical solution.
Parameters used for this model are given in table G.1.
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Figure 6.4: Line plot of the velocity field inside the fluid channel, with width WF =
2L = 375 µm under the hard-walls condition actuated at the eigenfrequency f =
3.99 MHz. (a) Real part obeying the oscillatory walls. (b) Imaginary part obeying
the hard-walls condition, where the resonance yields eighty times larger amplitude.

In the following we are also using COMSOL to model the solid displacement field
of a cantilever as described by [10, Bruus]. To verify our model we make use of
the well-known theoretical solution to the cantilevered beam fixed at one end. The
cantilever will have the length L = 70 mm and height H = 1 mm and the material
is Pyrex 7740 borosilicate glass, with parameters given in table G.1.

The governing equations in this model will be the same as in section 6.2, which
means that the no-stress condition imposed on all boundaries is equivalent to zero
flux, since the modelled flux is the stress. To see if there exist an eigenfrequency,
predicted from theory, the cantilever is excited at the clamped end. This excitement
is modelled as a purely harmonic transverse displacement with amplitude d0 =
0.1 nm. For the given case the natural frequencies of vibrations is given by [11,
Landau & Lifshitz]

fn =
ξ2
n

2π
√

12(1− ν2)

√
E

ρ

H

L2
, n ∈ N, (6.21)



CHAPTER 6. COMPUTATIONAL TASKS IN COMSOL 37

where ξn are solutions to cosh(ξn) cos(ξn) + 1 = 0. These frequencies is related to
the bending moment M = −EIκ, where I is the second order moment depending
on the cross-sectional area of the beam and κ is the local radii of curvature.

The first four eigenfrequencies are

f1 = 0.178 kHz, f2 = 1.12 kHz, f3 = 3.13 kHz, f4 = 6.14 kHz, f5 = 10.2 kHz.

To compare with the model a frequency sweep in the interval from 0.13 to 11 kHz
is computed and for each frequency the glass is probed with the average transverse
displacement squared |uT |2.
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Figure 6.5: Frequency sweep, searching for the eigenfrequencies of a clambed can-
tilever, plotted on a logarithmic scale making it easier to see the peaks.

Comparing Fig. 6.5 shows good agreement with the theoretical values, with an
error of ∼5%. The theoretical solutions also requires that H � L, so making the
cantilever even longer would minimize the error. The hard-wall fluid channel and
the cantilevered beam shows good agreement with the theory, and our COMSOL model
is evidently verified by the analytical comparison to modelled numerics.

6.3.2 Mesh-convergence analysis

In order to determine the accuracy of the results - yet to be presented - a mesh
convergence analysis is to be carried out. As described in section 6.1 and depicted in
Fig. 6.1 a domain of interest in a given investigation is discretized by finite triangular
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mesh elements. The coarseness of a mesh is a crucial factor in pursuit of a solution
of sufficient accuracy. A relative convergence parameter is defined as

C(g) =

√∫
(g − gref )2 dydz

(
∫
gref )2 dydz

(6.22)

where g is the solution for a given field, and gref is the best solution that can be
obtained (i.e. the finest mesh). In this case gref corresponds to a mesh of 752,294
elements and 2,955,149 degrees of freedom (DOF), which was the finest solution that
could be obtained with the available hardware1. In contrary the most coarse mesh
consists of 19,194 elements and 76,119 DOF and can be seen depicted in Appendix
F on Fig. F.1. By means of Eq. (6.22) a plot of how the solution g converges to a
satisfactory level gref as a function of relative mesh size is shown below.
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Figure 6.6: Mesh convergence analysis of the first order pressure and displacement
fields p1 and |u|, respectively, carried out by a parametric sweep of the mesh size
hSize with COMSOL. The convergence plots are obtained using the computed values
of C from Eq. (6.22) versus the relative mesh size parameter defined as 0.1HS

hSize
. On

fig (a) the convergence on standard axes is plotted, showing a exponential behavior,
why (b) is a semi-logarithmic y-axis plot of the same fields. A threshold is chosen for
an acceptable error of ≈ 7% for the pressure field p1 and ≈ 5% for the displacement
field (horizontal dashed line). This establish a value for the mesh size value hSize =
10 µm or 0.1HS

hSize
≈ 15 (vertical dashed line).

1We used a WorkStation running Windows 7 OS with 24 GB RAM for the computations.
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where it is seen that the computed convergence of the field, follows the same
trend converging asymptotically towards zero. Note however, that on the Fig. 6.6
C converges completely to 0, because the solution and reference is equal, g = gref
which is not the case in reality. However gref is a manually set baseline or reference
for the solution in this case. From this point the simulations carried out in this
thesis, are based on this convergence analysis giving us a value for the mesh-element
scale at hSize = 0.01 HS, which scales with solid height HS. The threshold is
chosen as an optimum value with regards to the trade-off between computational
time and accuracy of the solutions. The reduce this computational time during our
investigations, we have establish a routine as follows:

1. A semi-coarse mesh is used to sweep in the interval from 1 to 2 MHz with
hSize = 0.05HS to screen for eigenfrequencies.

2. A zoom on the chosen eigenfrequency is conducted with hSize = 10 µm finding
a single value for the eigenfrequency.

3. Further investigations of this eigenfrequency is conducted with use of hSize =
10 µm

.



Chapter 7

Coupled resonances

7.1 Water

Before analyzing the soft-solid and liquid interplay, it is rather important to see
how the liquid yields to the working actuation. To model water alone we use the
hard-wall conditions, as in sec. 6.3.1, this means that the solid parameters have no
influence and the eigenfrequencies at hand will be the liquid yielding to the hard
walls.

To establish connections between results, the same parameters and geometry as
in sec. 6.2 are used, which is that of Device A given in table G.3 and G.1.

Figure 7.1: Schematics showing the actuation (red arrows - not to scale) using the
hard-wall condition, for the fluid channel with dimensions given in table G.3.

Searching for the eigenfrequencies the liquid domain is probed with the aver-
aged acoustic energy density as in Eq. (4.18), since eigenfrequencies will yield the
Lorentzian shape given in Eq. (4.13). Evidently a parametric sweep can be computed
around the frequencies of interest, in this case 1 to 3 MHz.

40
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Figure 7.2: (a) Frequency sweep searching for water’s eigenfrequency in the interval
from 1 to 3 MHz. (b) Zoom of the given eigenfrequency 1.996 MHz at a higher
resolution with a Q-factor of 125, using more steps.

From Fig. 7.2 it is clear that if we actuate the device with infinite hard walls
around f = 2 MHz, more precise 1.996 MHz matching the acoustic wavelength of
λ = 2WF = 750 µm, the water will resonate. This eigenfrequency yields a pressure
of ∼0.15 MPa and the symmetric surface around y = 0 is evidence of a standing
half wave, see Fig. 7.3. This frequency will be referred to, as the eigenfrequency for
water.

Figure 7.3: (a) Surface plot of the pressure in the fluid channel at the eigenfre-
quency 1.996 MHz yielding a pressure of magnitude ∼0.15 MPa due to the hard-wall
condition. As the color plot indicates it goes symmetrically from −0.15 MPa to
+0.15 MPa. The green line indicates the pressure profile evaluated on the horizon-
tal cutline z = HF/2.
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7.2 Silicon-water

In real life the walls are not infinitely hard, that is why the whole system must be
considered. The Piezoelectric transducer will also induce a strain in the solid and
evidently both the solid and fluid will begin to resonate at certain frequencies. The
solid will begin to wobble and so will the walls at the fluid channel, causing a stress
on the water.

To illustrate this coupling we investigate how the fluid-solid model yields to cer-
tain frequencies by computing a frequency sweep as in Fig. 7.2, using device A, with
dimensions given in table G.3. Since our model builds on the assumption that the
solid is isotropic, we must however consider Silicon as isotropic. That is why we use
Young’s modulus and Poisson’s ratio for a certain crystal direction, in this case the
〈110〉-direction. As well for the transverse and longitudinal speeds of sound. The
parameters used to model the Silicon are given in table G.1.
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Figure 7.4: Frequency sweep searching for the eigenfrequencies for the coupled sys-
tem Silicon-water using device A. For each step in frequency the acoustic energy is
probed. The values for the eigenfrequencies is indicated above each peak.

In Fig. 7.4 the two largest energies are very close to that of the hard-wall given
in Fig. 7.2. Further investigation of the frequency 1.97 MHz shows that the pres-
sure inside the fluid channel takes the same form as for water, see Fig. 7.5. The
deformation of the device seems to be antisymmetric at y = 0, having the largest
deformation in the upper corners and at the fluid-solid interface. Evidently the
push-pull actuation becomes effective at 1.97 MHz, with a maximum displacement
of 10.9 nm hundred times larger than the actuation amplitude d0 = 0.1 nm.

The similarity between the two eigen-frequencies is evidence of water’s influ-
ence. This means that for relative hard solids (≥ 2000 kg m−3) with high acoustic
impedance, the eigenfrequency of water dominates.
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Figure 7.5: Surface plot of the absolute displacement in the solid and the pressure
inside the fluid channel, actuated at 1.97 MHz. The black line around the device
illustrates the deformation of the device (scaled with a factor of 2× 104). The
dimensions is that of device A given in table G.3. The black triangles next to the
color bars are showing the max/min values of the quantity the respective color-bar
is representing.

7.3 PMMA-water

Instead of Silicon we introduce the polymer Poly(methyl methacrylate) (PMMA) as
proposed in [12]. However PMMA is rather soft, having almost the same density as
water and low acoustic impedance. This introduces a strong coupling between the
fluid channel and the surrounding solid. The first step to visualize this coupling is
to do a frequency sweep.
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Figure 7.6: Frequency sweep searching for the eigenfrequencies for the coupled sys-
tem PMMA-water, for device A. The three eigenfrequencies with the highest acoustic
energy density is indicated above each peak.
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Searching for the eigenfrequencies in the Silicon-water device, we found three,
with a acoustic energy density of ∼100 Pa. Coupling water and PMMA yields thirty-
four peaks, due to the PMMA-water similarities. Analyzing all eigenfrequencies
for such a system is comprehensive and that is why we only consider the three
frequencies with the highest energies. Although the energy in the PMMA device
is much less than that of Silicon-water, the pressure and displacement is the same
order of magnitude, see Fig. 7.7. The frequency domain from 1 to 2 MHz is chosen,
since the experimental measurements are preferable in this interval.

Figure 7.7: Surface plot of the absolute displacement in the solid and the pressure
inside the fluid channel, actuated at 1.57 MHz. The black line around the device
illustrates the deformation of the device (scaled with a factor of 1× 104). The
dimensions is that of device A given in table G.3.

Evidently the coupling in the PMMA-water device is rather complex than that
of Silicon-water and the distinct water resonance around 2 MHz does not appear to
be the largest as in Silicon. Coupling low acoustic impedance solids with water thus
makes the system complex and here the model in section 6.2 must be appreciated
to predict the outcome.



Chapter 8

Parametric studies

In cooperation with the Swedish bio-analytic company AcouSort, we have performed
parametric studies of the PMMA device, based on the theory from previous chapters.
The device is produced by the lab-on-a-chip company Microfluidic ChipShop.
The dimensions of the different chips are given in table G.3.

To characterize the different devices we follow a standard procedure, as follows

(i) A frequency sweep in the interval from 1 to 2 MHz is studied. The frequency
with the highest energy is taken out to further investigation.

(ii) If the frequency with the highest energy yields a half-wave resonance pressure
wave in the fluid channel, then the radiation forces are analyzed. If not then
the frequency with the second highest energy is analyzed etc.

(iii) If the net acoustic radiation forces point towards the center of the fluid channel
then the frequency is rated as the best for the given device. If not then (ii) is
conducted with the frequency yielding the second highest energy.

for each device the procedure is performed.

8.1 Top- and bottom-actuated acoustofluidic de-

vices

Accordingly with the work procedure stated above, we found that the best geometric
configuration of the acoustic devices actuated from the top is device C with dimen-
sions given in G.3, and an acoustic energy density of 17.0 Pa at frequency 1.39 MHz.
The bottom actuated device, yielding the best results is the geometric configuration

45
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of device B, with acoustic energy density 5.36 Pa at frequency 1.63 MHz. These
two candidates are from here on denoted Bbot and Ctop, indicating the geometric
configuration and actuation by a superscript. The conducted simulations of devices
A, B and D with other geometric configurations for the top- and bottom-actuations
are shown in Appendix H Fig. H.2 and Fig. H.3, respectively.

Figure 8.1: Graphical depiction of displacement, pressure and radiation forces of the
best geometrical configurations for top- and bottom-actuation. On the top row the
chosen candidate Bbot is shown and on bottom row the candidate, Ctop. The left
panel shows the displacement of the solid and the pressure inside the channel with
corresponding explanatory color-bars for displacement and pressure, respectively.
The line around the devices, is indicating the deformation of the PMMA at the
stated frequencies scaled with a factor 2 × 104. The right panel shows forces and
their directions. Note that the black triangle above/below each color-bar is giving
the max/min value of the quantity it represents.

It is seen how the displacement of the PMMA domain is a somewhat random
though symmetric wobble creating half-wave resonance at the stated frequencies. In
other words, the whole system is wobbling thus creating the acoustic eigenmodes,
at which we find resonances for the water in the microchannel. The whole device is
displaced by the actuation, but does not resemble the actuation symmetry in any
way. In contrary it is shown in Fig. 7.5 that displacement of higher density materials
with hard walls follows the actuation, leading to a resonance close to that of water
accordingly with Fig. 7.2. This is seen as the outer-wall displacement directly fol-
lows the push-pull actuation. Evidently the eigenfrequencies of PMMA systems or
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similar elastic materials will be completely different. The displacement of candidate
Bbot is also seen to be more pronounced than for Ctop, as they are scaled by the
same factor of 2× 104.

The eigenmodes of the systems, creating half-wave resonances lead to an acoustic
radiation force which can be utilized to confine particles in the local zero-pressure
node(s). This is depicted as a surface color plot showing the local magnitude of
forces in color with directions shown as arrows. By looking at the resulting force
fields for both candidates Bbot and Ctop, it is seen that the acoustic fields creates
a force pointing towards the channel-center. The candidate Bbot is showing a nice
and pretty uniform force field, with only a zero-force field mid-channel as wanted.
The acoustic radiation force is maxing at 109 pN. Furthermore it is seen that the
forces especially in the bottom and sides of the channel is having a component
lifting the particle upwards. This is also a desired effect, as it compensates for the
gravitational force, which is dragging the particle down in the bottom of the channel.

It is noted that the force field of Ctop contains two zero-force points, symmetrically
located around y = ±15mm, which potentially could lead to unwanted effects around
those points, making particles able to escape the acoustic trapping. The argument
to choose this candidate is the huge radiation force maxing at 315 pN. The ability to
control and trap particles by the acoustic radiation forces is investigated further in
the next section 8.2. This investigation is including the magnitudes of the different
acting forces and their mutual interaction.

8.2 Acting forces and particle focusing

Given the right conditions, matter can be confined in a fluid due to the radiation
forces, which exactly is the effect of acoustophoresis. This concept is utilized in
different environments, in this case the fluid channel. The wanted effect is to focus
particles in the center of the fluid channel, which can be accomplished by forces
pointing towards the center where the zero force or pressure nodal plane is located
as seen in Fig. 8.1.

To get a feeling for the working time scale, we compute the time it takes for
a particle to travel from top to bottom of the channel. In the following, we use
particles of radius a = 10 µm. Assuming no or very little acceleration in the system
F = ma ≈ 0, and using the expression for buoyancy compensated gravitational
force Eq. (4.26) and Stokes’ drag Eq. (4.27) we have that the sum of 1D forces (in
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z-direction) vanish F comp
g − Fd = 0 or F comp

g = Fd, which is

4

3
πρf (ρ̃− 1)a3g = 6πηavz (8.1)

where the velocity can be expressed in terms of distance and time as vz = HF/t,
where t is the time it takes the beads to travel from top to bottom. Thus by inserting
the values (seen in Table G.1) in the equation and solving for the time t we get the
time tg it takes for the gravity to pull one particle from top to bottom of the channel,
as

tg =
9

2

πηHF

ρf (ρ̃− 1)a2g
= 36.34s. (8.2)

Which is seen to be a rather slow effect originating from the combined and op-
positely working forces F comp

g and Fd. To relate this time and the acting forces,
we will also look at the effect of the radiation force, and the time it takes to get
particles confined in the zero force plane in the middle of the channel. The radiation
force is stated in Eq. (4.23) and acts on particles as also indicated by the force fields
of the chosen candidates Bbot and Ctop as seen in Fig. 8.1. If we assume that the
found acoustic eigen-frequencies for both candidates is exactly half waves fitting in
the dimension WF of the channel, we can write that WF = λ/2 or λ = 2WF . From
previous studies in acoustofluidics, it follows that the time it takes for a particle to
move from an initial position y(0) to a final position y(t) is given by combining and
rearranging Eq. (4.25a) and Eq. (4.27), to yield

trad =
9η

4Φps(kya)2Eac
ln

(
tan[kyy(t)]

tan[kyy(0)]

)
(8.3)

where Φps = 0.328 is the acoustic polystyrene-water coefficient [13], used for
further analysis. This can be used to evaluate the time it should take to focus the
particles. Thus a plot of the spatial position, as a function of time, can give an
indication about other relevant parameters, such as the acoustic force density or
energy.
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Figure 8.2: Plot of the acoustic radiation force Frad and their corresponding time
scales t with a = 10 µm particles for different channel positions y by means of
Eq. (8.3). The initial position of the particles is y(0) = 15 µm from the channel wall
until the micro beads comes to a rest at the pressure nodal plane mid-channel at
y(t) ≈ 0.1875 µm. Candidate Ctop plotted on (a) is focused after time ≈ 0.5 s and
candidate Bbot is plotted on (b) and focused after ≈ 1 s.

On the figure above it is seen how the to forces focusing a particle is behaving
spatially, which is in great accordance with the forces on Fig. 8.3. The forces is
greatest of magnitude on the middle, confirmed by the steeper slope on the graphs.
It is also coherent, that candidateBbot with a lower energy and thus smaller radiation
force performs focusing less efficiently than candidate Ctop.

We conduct simulations of the Frad force field, to investigate the effectiveness of
acoustophoresis of the chosen candidates.
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(a) a = 10 µm, t = 0 s

(b) a = 10 µm, t = 0.05 s

(c) a = 10 µm, t = 0.50 s

(d) a = 10 µm, t = 0.0 s

(e) a = 10 µm, t = 0.05 s

(f) a = 10 µm, t = 0.95 s

BbotCtop

Figure 8.3: Simulation of particle trajectories due to radiation forces where the
buoyancy compensated force F comp

g and Stokes’ drag force Fd are taken into account.
The particle trajectories for the chosen candidates Bbot and Ctop is shown at times
t specified on (a) and (d) (t = 0 s), showing the initial particle grid (12 × 12 =
144 particles). On (b) and (e) at t = 0.05 s the movement of micro beads behaving
in accordance with the force-fields depicted on Fig. 8.1. Finally (c) showing the
particles at t = 0.5 s, which is the time it takes to focus particles for candidate Ctop

and (f) shown at time t = 0.95 s, which is the focusing time for candidate Bbot.
The axes are measured in units of mm and color-bars show the corresponding local
particle velocity in mm/s with an associated max/min value shown besides the black
triangles of color-bars. As All the particle trajectories are computed for a particle
radius a = 10 µm. The simulation is done, such that once a particle gets in contact
with a channel-wall, it will be stuck.

It is seen how the radiation force Frad at time t = 0 s is a grid of the initial posi-
tions of the particles, for both top and bottom actuation. The candidate Ctop which
has the highest acoustic radiation force, does consequently also focus and confine
the particles the fastest. The majority of the particle ensemble is released and thus
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travelling in accordance with the force field as seen in Fig. 8.1, where the symmet-
rically located zero force points around y = ±0.15 mm gives rise to an escape of the
particles situated nearby, as expected. However, the beads travelling towards the
center of the channel, as seen in Fig. 8.3, is moving rapidly due to the great radia-
tion force and the rest of the particles are confined at y = 0 mm at t = 0.5 s. The
candidate Bbot has a more uniform force field, with only a zero-force point located
in the middle of the microchannel. Evidently only few particles escape the acoustic
radiation force, as seen in the simulation of this candidates Bbot particle trajectory
simulation Fig. 8.3 (f). This is naturally a desired trade of this candidate, but is
simultaneously a trade-off, as the magnitude of the radiation force is less than that
of Ctop. The smaller force magnitude yields a confinement of the whole ensemble of
particles at t = 0.95 s, thus almost a factor 2 slower.

It is readily seen how the acoustic radiation force is by far the dominant force for
both candidates, as the time it will take a particle to sink to the bottom ∼36 s is
much greater than the time it takes to confine particles by radiation forces, which
is also consolidated from the orders of magnitude of the forces Fg = Fd � Frad.

With the characteristic length of the channel for the devices as LF = 40 mm
the time it takes to completely focus the particles by radiation forces for the two
candidates Bbot and Ctop, can be translated into a critical flow rate. The focusing
times are computed in Fig. 8.2 and confirmed in Fig. 8.3, by the COMSOL simulations
of particle tracing.

For acoustophoresis to work properly, it must be that the focusing time, must
be less than the time it takes a particle, to sink from top to bottom channel. Fur-
thermore, these times must also be smaller than the time it takes a particle to flow
through the entire channel. The time it takes for a particle to reach the bottom is
much larger than the focusing time and also the the time it takes to flow through
the channel, and thus gravity can be neglected. However the focusing time sets an
upper limit for the flow rate. The critical flow rate for Bbot is

V̇ ≈ 142 µL min−1 or V̇ ≈ 237× 10−9 m3 s−1 (8.4)

where the critical flow rate is found by dividing the volume of the fluid channel with
the focusing time. For candidate Ctop the critical flow rate becomes

V̇ ≈ 270 µL min−1 or V̇ ≈ 450× 10−9 m3 s−1. (8.5)

Thus the operating flow rate, should be less than these critical flow rates.
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8.3 Uncertainty analysis of device candidates

Since that the eigenmodes presuppose a perfectly centered push-pull actuation with
the exact geometric configurations as seen in table G.3, it is adjacent to investigate
the uncertainties by fabrication of such devices. We have chosen to investigate
the uncertainties of fabrication for the Bbot configuration, assuming that the other
devices will follow the same tendency.

8.3.1 Transducer alignment

Doing the measurement on the acoustic device, one have to mount the piezoelectric
transducer by hand. Doing so, means that the alignment is not perfect, probably off
by approximately ±0.5 mm. To analyze this effect, the solid-transducer condition
Eq. (6.17) is modified as

d(y) = d0 tanh

(
20
y − y0

WS

)
, (8.6)

which is just equivalent to an off-center transducer. Computing a parametric sweep
in the parameter y0 from −0.5 mm to +0.5 mm and at the same time probing the
energy, then the effect of misalignment will be expressed in the acoustic energy
density. Doing this, the acoustic energy drops from its maximum value 5.36 Pa at
y0 = 0 to 3.71 Pa, almost a drop of 30 %, see Fig. 8.4. It is hard to say what
happens with the radiation force during this parametric sweep, however this can
be visualized with an animation1. During the sweep the force nodal plane moves
with the alignment of the transducer and gets narrower for y0 → 0, however the
directions of the forces are the same and that is why a possible misalignment of the
transducer does not play a role in the acoustophoresis, within an error of ±0.5 mm.

1https://media.giphy.com/media/3ohzdVtE3Xkk01qFcQ/giphy.gif - follow link to see anima-
tion.

https://media.giphy.com/media/3ohzdVtE3Xkk01qFcQ/giphy.gif
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Figure 8.4: Line plot of the acoustic energy density as a function of the misalignment
parameter y0, using configuration Bbot actuated at 1.63 MHz. With 50 steps in y0

equivalent to a step size of 0.02 mm.

8.3.2 Dimensional and mechanical parameters

The manufacturer of the devices stated an error of ±15 µm in the fluid channel
dimensions, again this will have an impact on the resonances, since altering the
dimensions of the device will yield a different resonating frequency.

Since there exists arbitrary many permutations of these error we only cover the
extremes:

(i) Both dimensions having +15 µm in error.

(ii) Both dimensions having −15 µm in error.

(iii) The height HF having +15 µm and the width WF having −15 µm.

(iv) The height HF having −15 µm and the width WF having +15 µm.

(v) And also in between the four scenarios.

By introducing a parameter ∆ = 15 µm a parametric sweep can be computed. To
analyze scenario (i) and (ii) the error is introduced as HF + ∆ and WF + ∆, in this
way the sweep can be computed in the interval ∆ = −15 µm to ∆ = +15 µm covering
both (i) and (ii) and also in between. For each step in ∆ a solution is stored, and
by choosing 50 steps corresponding to a step size of 0.6 µm, we get fifty solutions
constructing an animation2. Evidently the effect is minute and the radiation force
is almost the same during the sweep.

2https://media.giphy.com/media/xUPGcskDQiirYCz2uI/giphy.gif - follow link to see anima-
tion.

https://media.giphy.com/media/xUPGcskDQiirYCz2uI/giphy.gif
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For the scenarios given in (iii) and (iv) we introduces the parameters as HF −∆
and WF + ∆. Doing the same sweep as above will cover both (iii) and (iv) and
also in between. Again the best way to illustrate the effects is to constitute an
animation3 and as it shows, almost nothing happens in the radiation force. Clearly
the manufacturers tolerance are of no relevance in regards to the radiation force at
resonance.

However the most influential parameters are Young’s modulus E and Poisson’s
ratio ν, since both parameters are related to both the transverse cT and longitudinal
cL speed of sound, actually both speeds are proportional to

√
E. As stated in table

G.1 Young’s modulus is given in the range from 2.4 GPa up to 3.3 GPa, where our
analysis are conducted assuming that the PMMA is an average sample yielding a
Young’s modulus of 2.85 GPa. Assuming that there exists a relation between the
eigenfrequencies f and the speed of sound like c = fλ, then

f ∝
√
E. (8.7)

Allowing us to predict a translation in the frequency spectrum i.e. if instead we
let E = 3.3 GPa then the frequency spectrum should be shifted by an amount√

3.3
2.85

= 1.076. This means that the eigenfrequency 1.63 MHz should be situated at

1.76 MHz when changing Young’s modulus to 3.3 GPa. If instead we change it to

E = 2.4 GPa the relative shift in frequency is
√

2.4
2.85

= 0.92 i.e. the eigenfrequency

should now be situated at 1.50 MHz. To compare this with the model, a frequency
sweep is computed for all three values of Young’s modulus. Fig. 8.5 shows that the
spectrum remains almost the same but translated, the dashed lines indicates the
theoretical predicted limits for the shifted frequencies and it seems to agree with the
model. Even though a high uncertainty in Young’s modulus yields a major effect in
the frequencies, the spectrum remains the same but shifted.

3https://media.giphy.com/media/3ohzdFMSepzXg7DyRG/giphy.gif - follow link to see anima-
tion.

https://media.giphy.com/media/3ohzdFMSepzXg7DyRG/giphy.gif


CHAPTER 8. PARAMETRIC STUDIES 55

1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2

0

1

2

3

4

5

6

Figure 8.5: Line plot of the acoustic energy density as a function of frequency for de-
vice B actuated at the bottom, for different values of Young’s modulus. The dashed
lines indicates the predicted limits for the shift in the eigenfrequency 1.63 MHz, due
to the change in Young’s modulus for PMMA.

Poisson’s ratio is also a major key in describing the solid, but the speed of sound is
not proportional to this parameter and the simple analysis, as for Young’s modulus,
can not be represented for Poisson’s ratio. To see the effect of the uncertainties in
Poisson’s ratio the model can be used to predict the upper and lower limit for which
the eigenfrequencies belongs. As seen in Fig. 8.6 the change in spectrum seems to
follow the same tendency as for the change in Young’s modulus, however not as
simple, but enough to give an upper and lower limit for which the eigenfrequency
shifts.
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Figure 8.6: Line plot of the acoustic energy density as a function of frequency for
device B actuated at the bottom, for different values of Poisson’s ratio. The dashed
line indicates the upper and lower limit for the shift in the eigenfrequency 1.63 MHz,
due to the change in Poisson’s ratio for PMMA. The lower limit is 1.499 MHz and
the upper is 1.747 MHz.
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8.4 Experimental results from AcouSort AB

We embarked on a field trip to Lund University in Sweden at 9th of July, to witness
how the lab-research is conducted and the results from the fabricated devices (with
dimensions specified in table G.3). The device we tested was corresponding to device
D, but with a dimensions of WS = 3.00 mm and HS + Hlid = 1.18 mm, where the
discrepancy probably comes from the ”hand-made” measurement with a vernier
caliper. This bottom actuated Device D was tested with different flow rates and
frequencies as seen in Fig. 8.7.

c) V̇ = 400 µL
min , f = 1.55 MHz

b) V̇ = 200 µL
min , f = 1.55 MHz

a) V̇ = 100 µL
min , f = 1.55 MHz

Figure 8.7: Top view of a particle focusing test in the laboratory bottom ac-
tuated Device D for different flow rates V̇ , with fluorescent particles of radius
a = 4.2 µm(±18%)[14] actuated asymmetrically (see fig. Fig. 7.1) at the same
frequency f = 1.55 MHz. a) shows the particle focusing effect at the lowest flow
rate V̇ = 100 µL min−1, where it is also seen how the micro beads accumulate in two
nodes (yellowish area). On picture b) the flow rate is increased to V̇ = 200 µL min−1,
but still showing that the acoustic radiation force is able to keep particles focused
mid-channel, whereas on c) the highest flow rate of V̇ = 400 µL min−1 is shown, and
the particles are no longer focused. Note that some of the particle accumulation on
the channel edges is originating from multiple use of same device.
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It is seen how the the focusing of particles is dependant on the flow rate or flow
velocity through the micro-channel. For the lowest flow rate V̇ the acoustic radiation
force Frad is dominating, such that the micro beads are focused in the mid-channel
(i.e. the zero pressure nodal plane) almost instantaneously. This effect is vanishing
as the flow rate is increased, which can be seen on Fig. 8.7 b), where the focusing is
happening a bit downstream. However, the effect of Frad is still of a magnitude great
enough to focus the particles, despite of the flow rate being twice as large compared
to Fig. 8.7 a). It is also seen on Fig. 8.7 c) that when the flow rate once again
is doubled to reach V̇ = 400 µL min−1 the radiation force is not strong enough to
focus the micro beads effectively on the given length scale of approximately 40 mm.
Nevertheless, if one looks very carefully, it can be seen that the beads begins to yield
to the radiation force down the channel, by the thin line indicating focusing towards
the end. Consequently, effectively focusing in such a device requires the radiation
force, to be dominant relative to the flow rate on the device characteristic length
scale. Therefore it is interesting to look at the time it takes for one particle to run
through the channel. The velocity can be computed as,

vx =
V̇

AF
=

V̇

HFWF

= 29.63 mm s−1 for V̇ = 200 µL min−1. (8.8)

Which can be converted into the time it takes for one particle to travel through
the entire channel of length LF = 40 mm (seen on the schematic drawing Fig. G.1
and Fig. G.2) as

t =
LF
vx

= 1.35 s for V̇ = 200 µL min−1. (8.9)

where the flow rate of V̇ = 200 µL min−1 is chosen, since it is the highest flow
rate still resulting in effective particle focusing which is desirable as it is less time
consuming. When comparing to the particle simulations of the model, it was found
that the critical flow rates for the two devices were 142 µL min−1 for configuration
Bbot and 270 µL min−1 for configuration Ctop, confirming that a higher force yields a
higher value for the critical flow rate. Unfortunately, we obtained no measurements
with steps small enough to precisely define an experimental value for the critical
flow rate. Furthermore, the particle radius of a = 4.2 µm(±18%) is also a significant
factor in comparison to our simulated results of particle focusing, as the radiation
force scales with a3 and the focusing times with a2. Furthermore, it noteworthy
that the critical radius of micro particles, making the radiation force dominant over
acoustic streaming, is ac = 2 µm [15], which fortuneately is a limit we are within.

It should also be noted that this experiment is one of several carried out on this
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device. This have lead to accumulation of particles on the channel walls, which is
partly obstructing the flow at certain points, thus given rise to unwanted effects.
Since the solid material PMMA is highly sensitive to usual cleaning agents used in
the laboratory as ethanol or similar of acidic nature, the only way to clean the device
is by flushing, which have proved insufficient to the purpose. It is seen on Fig. 8.7
a) how the accumulation of beads to the left form a lump, giving the impression of
poor focusing, which it not the case. This is also substantiated, as one can see stuck
particles in the first part of the channel on Fig. 8.7 c) despite of the high flow rate,
which may give rise to such uncertainties.

8.4.1 Experimental alignment

A video of the experimental results, also depicted in Fig. 8.7, was shot on our field-
trip to Lund University and from this we were able to compute the time it takes to
focus particles by video-analysis. The time it takes to focus particles of radius a =
4.2 µm, from starting points near the channel-wall to their position approximately
mid-channel of the candidateDbot

exp actuated at 1.55 MHz in the experiment was found
to be t = 1.2 s. By inserting this time, and assuming that all the same parameters
apply in Eq. (8.3), the resulting energy was found to be Eac ≈ 19 Pa.

Knowing that the experimental setup corresponds to a off-center transducer with
y0 = 85 µm, by considering picture Fig. H.1 and fluorescent polystyrene particles
with radius a = 4.2 µm, with scattering coefficients f1 = 0.48 and f2 = 0.052−0.003i
[16].

However a simple calibration to the measured values can be made by scaling
Young’s modulus. At f = 1.55 MHz the measured radiation force is strongest, where
the model yields f = 1.4960 MHz, then the effective scaling of Young’s modulus

becomes Ẽ =
(

1.55
1.4960

)2
= 1.073. Effectively Young’s modulus of the measured device

becomes 3.06 GPa and the new eigenfrequency for the model becomes 1.548 MHz
with the acoustics energy density 3.41 Pa.

Assuming that the acoustic energy density is proportional to the squared dis-
placement, then by means of Eq. (4.18) we assume that Eac ∝ d2

0, so

Eexp
ac

Eac
=

(
dexp0

d0

)2

=

(
19.4 Pa

3.4 Pa

)2

. (8.10)

Evidently the actuation amplitude should be scaled with 2.4 yielding an amplitude
of d0 = 0.24 nm.

The point of this analysis is to get a better feeling of what happens at the
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transducer-solid interface and by all means it is much more complex. However by
scaling the actuation amplitude with 2.4 yielding d0 = 2.4 nm we get results which
is in the same order of magnitude than that of the measured.



Chapter 9

Concluding discussion

In this thesis we have conducted research on polymer-based acoustophoretic devices,
coupling the elastic solid, fabricated in PMMA, with a micro channel containing
water. The issue addressed in this thesis is the coupling of PMMA, a low acoustic
impedance material, with water. Trying to find acoustic eigenmodes of such a sys-
tem. At the moment such microfluidic devices is made of high acoustic impedance
materials as silicon and glass and utilized for various purposes e.g. cell separation
[17, 18]. These materials are generally more expensive and thus it is indeed desirable
to produce such devices in polymers, since it is cost-efficient [19].

We have constructed a model from our theoretical studies, and implemented it
in COMSOL. Our model of PMMA based devices coupled with water, has shown to
be successful, when inducing a push-pull actuation at MHz frequencies. In section
6.3 we confirmed that the computed numerics and derived analytics are coherent
with our model, for both the pressure (seen in Fig. 6.3) and displacement (seen in
Fig. 6.5) and in Chapter 7 we showed that acoustofluidic PMMA-based devices are
very different from harder elastic solids as silicon or glass.

With COMSOL simulations we did a candidate screening of the different geomet-
rical devices proposed by AcouSort. The purpose of the screening was to find
the best devices in terms of acoustophoresis, where displacement, pressure, acous-
tic energy density and forces were to be calculated and evaluated. Evidently the
best acoustophoresis is obtained using the bottom-actuated device B and the top-
actuated device D.

Furthermore we conducted particle tracking simulations (Fig. 8.3), to visualize
and investigate the acoustophoretic effectiveness of the chosen candidates according
to our model. It is seen on Fig. 8.1, how the force field is of top-actuated device C
is less uniformly distributed in terms of force directions than the bottom-actuated
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device B. Thus when we simulated the particle trajectories, it was found that ∼22%
percent of the micro-beads escape due to this force field distribution. However, we
did chose to select this candidate as it yielded the highest magnitude of radiation
force of 315 pN resulting in particle focusing in just 0.5 s. For the bottom actuated
Device B, a particle loss of ∼7% with a focusing time on 0.95 s due to a radiation
force of 109 pN was shown.

Since high flow rates in such devices is wanted, these particle focusing times is
translated into a critical flow rate, where the shorter time span of particle focusing
of top actuated device C, results in a higher critical flow rate. Evidently, the two
devices perform well on different parameters. It can be argued that for applications
which need a high percentage of trapped particles, bottom actuated device B should
be used and on the other hand, for applications where time-consuming investigations
is a major issue, the top-actuated device C should be used. It comes down to the
trade-off between time-efficient focusing of particles with a greater loss or vice versa.
It should however be duly noted that the particle tracing simulations are carried out,
such that once a particle touches the wall, it will get stuck at that position, whereas
these particles in reality might be able to recover and afterwards get trapped.

Since the acoustic devices to be tested by AcouSort, will be actuated at the
bottom as seen in Fig. 6.2, our comparisons can only be of devices actuated at the
bottom. However, it is important to realize that the top-actuated devices in general
yielded better results, than bottom-actuated devices in terms of acoustic force and
energy magnitudes. Thus it is important to experimentally conduct research on
these top-actuated devices to confirm this tendency. Furthermore, the only received
experimental results was conducted on device D, which is not expected as being the
best device candidate according to our analysis. Therefore it is indeed desirable to
see how coherent the experimental results are compared to the predictions of our
model.

We went to Lund University in Sweden the 9th of July, where we received our
first experimental results, performed on bottom actuated device D, as depicted in
Fig. 8.7, where acoustophoresis of 4.2 µm radius micro beads actuated at 1.55 MHz
for different flow rates are shown. From video-analysis of this acoustophoresis, we
found that the effective focusing time was 1.2 s, corresponding to an energy of mag-
nitude 19 Pa. After receiving the experimental results, we were able to calibrate
our model to the experimental parameters by scaling Young’s modulus, such that
the eigenfrequency matched the experimental. Afterwards a scaling in the actuation
amplitude was made to match the estimated experimental energy, resulting in an
actuation displacement magnitude of d0 = 0.24 nm. In the parametric studies an
amplitude of d0 = 0.1 nm was used, which consequently suggests that our results
generally will underestimate the acoustic energy and thus also radiation force.
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9.1 Future perspectives

In the 2D model the flow is assumed to be invariant in the length direction, however
this is not the case, since that the acoustophoretic speed through the entire channel
length is non-homogeneously distributed [20]. Thus expanding our model to 3D is
indeed necessary to obtain a higher accuracy for the results by including such 3D
effects. This will however require much better hardware, if the error of the solutions
should be of acceptable magnitudes as in Fig. 6.6. Henceforth, an interesting result
appears from calibrating our model to experimental results, showing that the ampli-
tude of displacement d0 = 0.24 nm is yielding the experimentally estimated acoustic
energy. Consequently, to model the acoustofluidic devices treated in this thesis by
the analytic expression for the (push-pull) actuation, the displacement should be
chosen accordingly.

The piezoelectric transducer is important in the sense that the acoustophoresis
originates from the actuation induced by this. In this thesis the actuation is mod-
elled as displacement in the solid, but introducing more sophisticated physics e.g.
coupling electrodynamics with displacement will probably make the model more
exact.

One effect which is present, but not included in our model is the acoustic stream-
ing, which is a second-order effect. Including this would be preferable, however for
particles with radius larger than ∼2 µm the radiation force dominates and acoustic
streaming can be neglected [15].

For future investigations, it would also be very interesting to compare new mea-
surements on the acoustofluidic devices with our calibrated model, to see if this
calibration is general applicable for other candidates as well, since parameters like
Young’s modulus varies a lot for different samples. It have been shown how to ex-
perimentally determine Young’s modulus of polymers like PMMA by various meth-
ods [21, 22]. Thus experimental determination of the material parameters Young’s
modulus and/or Poisson’s ratio for every unique sample would be optimal, since this
would reduce the uncertainties in this parameter space and consequently yield more
accurate results from the model. However, we realize that this would be a tiresome
process, therefore we suggest to just perform determination of of Young’s modulus
and Poisson’s ratio on a collection of devices, thus statistically reduce the interval
of these material parameters. However, the uncertainties connected to these does
not change the fact that acoustophoresis for soft elastic materials like PMMA is
working.



Appendix A

Poisson distribution

The Poisson distribution

Pr(n|N) =
Nn

n!
exp(−N), n ∈ N0 (A.1)

describes the probability that an event happens n times in an interval with the
average N events per interval. In our case N is the average number of molecules
in V so the probability of finding n particles in V is given by Eq. (A.1). This
distribution assumes

• Events are occuring independently

• The probability of an event is independent of time

said in other words, the events are occurring randomly and independently.
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Mathematical formalism

B.1 Index notation

A neat way of formulating vectors and tensors is by index notation. A vector will
have one index, corresponding to the running through each element of the vector,
and a tensor will have to indices; first index corresponds to row and second to
column. Consider the vector

x = xi =


x1

x2

x3
...
xn

 (B.1)

for i = 1, 2, 3, . . . , n. That is, the i’th component of that vector.

and the matrix

A = Aij =


A11 A12 A13 . . . A1n

A21 A22 A23 . . . A2n
...

...
...

. . .
...

Ad1 Ad2 Ad3 . . . Adn

 (B.2)

for i = 1, 2, 3, . . . , d and j = 1, 2, 3, . . . , n.

Hence by means of the the above, the index notation of gradients and divergences
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vector calculus, becomes

∇ · x = ∂ixi, (B.3a)

∇x = ∂jxi, (B.3b)

∇ ·A = ∂jAij. (B.3c)

Using Einstein summation convention

x =


x1

x2

x3
...
xn

 =
n∑
i

xiêi = xiêi (B.4)

where the repeated index implies summation over the index. For cartesians vector
i = x, y, z. The unit tensor in indexnotation

1 = δij (B.5)

B.2 Derivatives

Derivatives in this thesis are denoted as follows:
For ordinary derivatives

dx

dt
= dtx (B.6)

and for partial derivatives
∂x

∂t
= ∂tx (B.7)

B.3 Identities and theorems

Gauss’ theorem

If J is a continuously differentiable vector field defined on a neighborhood of Ω,
then

∫
Ω

∇ · J dV =

∮
∂Ω

J · n dA (B.8)

where ∂Ω is the closure of Ω.
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Green’s first identity

∫
Ω

(g∇ · J + J · ∇g) =

∮
∂Ω

g(J · n)dA (B.9)

B.4 Reynold’s transport theorem

As in Eq. (1.6) where we considered the rate of change in local values (intrinsic) we
will now look at the rate of change in global values. Considering the time interval
t+∆t we can write the change in volume as Ω(t+∆t) = Ω(t)+∆Ω, leaving Eq. (1.8)
as

dG(t)

dt
=

d

dt

∫
Ω(t)

J(r, t) dV

= lim
∆t→0

[∫
Ω(t+∆t)

J(r, t+ ∆t) dV −
∫

Ω(t)
J(r, t) dV

∆t

]
,

(B.10)

where J(r, t) = g(r, t)ρ(r, t). Rewriting Eq. (B.10) knowing that Ω(t + ∆t) =
Ω(t) + ∆Ω,

dG(t)

dt
= lim

∆t→0

[∫
Ω(t)

J(r, t+ ∆t)− J(r, t) dV +
∫

∆Ω
J(r, t) dV

∆t

]

= lim
∆t→0

[∫
Ω(t)

J(r, t+ ∆t)− J(r, t)

∆t
dV

]
+ lim

∆t→0

[∫
∆Ω

J(r, t)

∆t
dV

]
.

(B.11)

In the time ∆t the surface element dA, with velocity vs, has swept out a volume
dV = ∆tvs · n dA, corresponding to a volume element in ∆Ω. Writing the volume
integral over ∆Ω as a surface integral over ∂Ω and letting ∆t → 0 Eq. (B.11)
becomes

dG(t)

dt
=

∫
Ω(t)

∂J(r, t)

∂t
dV +

∮
∂Ω

J(r, t)vs · n dA, (B.12)

also known as the Reynolds transport theorem. Again J(r, t) is a tensor field.



Appendix C

COMSOL syntax and implementation

To elaborate on the implementation of the model given in section 6.2, please appre-
ciate this appendix. COMSOL syntax

p = p (C.1a)

u = (uY,uZ) (C.1b)

Fs = (fsY,fsZ) (C.1c)

Ff = fF (C.1d)

(σ)ij = ssij (C.1e)

The governing equations are implemented under the weak-form PDE module

∇ ·∇p+ Ff = 0
{

-(test(py)*py+test(pz)*pz) + test(p)*fF (C.2a)

∇ · σ + Fs = 0

{
-(test(uYy)*smYY+test(uYz)*smYZ)+test(uY)*fsY

-(test(uZy)*smZY+test(uZz)*smZZ)+test(uZ)*fsZ:

(C.2b)

implemented as

The boundary conditions

solid-air : σs ·n = 0 No flux (C.3a)

solid-transducer : u = d(y)êz Constraint (C.3b)

solid-fluid : σs ·n = −pn Weak contribution (C.3c)

fluid-solid : n · ∇p = ρfω
2n · u Weak contribution (C.3d)

Implementation of Eq. (C.3c):

test(uY)*(-p*ny) + test(uZ)*(-p*nz); (C.4)
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and Eq. (C.3d)
test(p)*(rhof*omega2̂*(ny*uY+nz*uZ)) (C.5)



Appendix D

Lorentzian shaped function

Figure D.1: Energy density as a function of angular frequency around the resonance
ωn, illustrating the Lorentzian lineshape, where the damping coefficient Γ determines
the width.
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Appendix E

Diverging and change in volume

By utilizing the symmetric nature of the strain tensor Eq. (5.5) it can be diagonalized
in any local coordinate system, by the three vectors constituting an orthonormal
basis, described as

s = λ(1)ê1 ·êᵀ1 + λ(2)ê2 ·êᵀ2 + λ(3)ê3 ·êᵀ3 (E.1)

it can be shown from three linearly independent and infinitesimal needles span-
ning a parallelepiped, that the volume of this changes due to displacement as

∇ · u =
δ(dV )

dV
(E.2)

which consequently shows that the divergence of displacement is to be appreciated
as the local relative change of volume.
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Appendix F

Convergence analysis -
supplements

Figure F.1: Mesh consisting of a total 19194 elements in the fluid and solid domain.
The coarseness of this mesh corresponds to the value for the pressure field Cp ≈ 0.35
or an error of ≈ 35% and value of the displacement field Cu ≈ 0.21 or an error of
≈ 21%.
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Appendix G

Material and dimensional
parameters

All material parameters are given at 25 ◦C

Silicon PMMA Pyrex 7740 [23]

Density
ρ [kg/m3] 2329 1190 [24] 2230

Young’s modulus
E [GPa] 169 [25] 2.85 (2.4-3.3) [26] 62.75

Poisson’s ratio
ν 0.064 [25] 0.375 (0.35-0.40) [26] 0.20

Speed of sound
(transverse)
cT [m/s] 5845 [27] 933.2 3424

Speed of sound
(longitudinal)
cT [m/s] 8433 [27] 2086 5592

Effective damping [3]
Γ 0.0004 0.0004 0.0004

Table G.1: Parameters used to model both Silicon, PMMA and Pyrex.
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Material
Density
ρ [kg/m3]

Speed of sound
c [m/s]

Effective damping
Γ

Dynamic viscosity
η [mPa s]

β

Water [28] 997.05 1496.7 0.004 [3] 0.890 3

Table G.2: Parameters used to model water

Device HS [mm] Hlid [mm] WS [mm] WF [mm] HF [mm] LS [mm] LF [mm]

A 1.50 0.175 3.00 0.375 0.150 50 40
B 1.50 0.175 5.00 0.375 0.150 50 40
C 1.00 0.175 5.00 0.375 0.150 50 40
D 1.00 0.175 3.00 0.375 0.150 50 40

Table G.3: Dimensions of the different PMMA devices, used by AcouSort.
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G.1 Parameters used in COMSOL

Name Expression/Value Units Description

a 10 [um] particle radius
β 3 beta value for water
c0 1496.7 [m/s] Speed of sound (water)
cL Eq. (5.26) Longitudinal speed of sound (isotropic)
cSi
L 8433 [m/s] Si Speed of sound, (Silicon)
cT Eq. (5.26) Transverse speed of sound (isoptropic)
cSiT 5845 [m/s] PMMA Speed of sound, (Silicon)
d0 0.1 [nm] actuator amplitude
dy 0.05*WS Finite gap between push-pull transducer
EPMMA 2.85 [GPa] Youngs PMMA
ESi 169 [GPa] Youngs modulus of silicon (WIKI)
η 8.90E-04 [Pa*s] Dynamic viscosity (water)
f sweep [MHz] test freq.
f1 Eq. (4.24) inviscous monopole coefficiet
fps

1 0.48 monopole coef. polystyrene
f2 Eq. (4.24) inviscous dipole coefficient
fps

2 0.052-0.003*i dipole coef. polystyrene
g 9.815 [m/sˆ2] Gravitational acceleration
Γf 0.004 Damping coefficient (solid)
Γs 0.0004 Damping coefficient (water9
HF 0.15 [mm] Fluid channel width
hFluid 0.5*hSize Fluid mesh
HS 1.5 [mm] Solid height
Hlid 0.175 [mm] Layer height
hSize 0.05*HS Element scale
hSolid 1*hSize Solid mesh
κf 1/(rhoF*cFˆ2) Compressibility (water)
νPMMA 0.375 Poisson PMMA
νSi 0.064 Poissons ratio (WIKI)
ω 2*pi*f Ang. freq.
ρPMMA 1190 [kg/mˆ3] PMMA density
ρSi 2329 [kg/mˆ3] Mass density silicon (S denoting solid prop.)
ρf 997.05 [kg/mˆ3] Mass density (water)
ρP 1050 [kg/mˆ3] Particle density
WF 0.375[mm] Fluid channel height
WS 5 [mm] Solid width

Table G.4: Parameters used for COMSOL modelling, with given values/expressions,
units and description.
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Figure G.1: Top down view schematics of device A and B, units given in mm.

Figure G.2: 3D schematics of device A, units given in mm.
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Appendix H

Parametric studies

H.1 Experimental setup

Figure H.1: Picture of the PMMA device seen from above with the carved transducer
in the middle (black line with width y0).
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H.2 Bottom-actuation of devices

Figure H.2: The best eigenfrequencies and their associated displacement, pressure
and force fields. The actuated frequency and acoustic energy density is noted for
each device. The used scattering coefficients are f1 = 0.44386 and f2 = 0.034194
and particles with radius a = 10 µm.
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H.3 Top-actuation of devices

Figure H.3: The best eigenfrequencies and their associated displacement, pressure
and force fields. The actuated frequency and acoustic energy density is noted for
each device. The used scattering coefficients are f1 = 0.44386 and f2 = 0.034194
and particles with radius a = 10 µm.
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