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Abstract

Acoustofluidics is a topic that has received increased interest in last few decades due to
its potential biomedical applications such as particle detection, separation and focusing.

In this thesis we study how an inhomogeneity in the form of a 12-µm -radius so-called
seed particle affects the movement of sub-micron particles, such as sub-cellular organelles
and viruses, suspended in a fluid supporting a standing pressure wave. The work is
motivated by experimental findings that the presence of one ore more 12-µm -radius seed
particles in the microfluidic channels enables an otherwise difficult focusing of sub-micron
particles.

First- and second-order perturbation theory is employed to present the governing equa-
tions for small acoustic amplitudes, and to introduce the acoustic radiation force and
acoustic streaming.

We derive an analytical expression for the contribution to the radiation force from
the acoustic fields scattered on the seed particle. Comparing this expression to both the
standard expression for standing wave fields and the drag force that dominates the motion
of sub-micron particles, we conclude the contribution is negligible for particles of density
and compressibility similar to those of biological particles.

We use the method of matched asymptotic expansions to derive an analytical expres-
sion for the streaming generated by a rigid, spherical particle in the node of a standing
pressure wave. The expression is used to estimate the total streaming pattern due to the
seed particle and the channel boundaries in a microfluidic channel of rectangular cross
section. Numerical calculations of the total streaming pattern in a cylinder are compared
to the analytical estimation for a rectangular channel. Despite the consideration of differ-
ent geometries, we find in both the analytical and numerical studies that the main effect
of the seed particle on the streaming pattern is the generation of small circulating flows
close to its surface.

Simulations of the trajectories of sub-micron particles suspended in the cylindrical
geometry indicate that trapping of these might be enabled by the presence of a seed
particle inhomogeneity.

The findings are a step towards a more thorough understanding of the effects of large
seed particles in microfluidic systems.
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Chapter 1

Introduction

Acoustofluidics is the study of acoustics in fluids but often, as in this thesis, the term refers
to microscale acoustofluidics, which is the combined field of acoustics and microfluidics.
The interest in the field has increased as the ability to fabricate lab-on-a-chip systems has
gained ground due to the potential biomedical applications involving particle handling.
This could be detection or analysis of cells, bacteria, sub-cellular organelles and viral
particles for diagnostic, forensic or food control purposes [1]. Among numerous examples
are detection of tumour cells [2], automated enrichment of sperm cells [3] and quality
control of raw milk [4].

1.1 Lab-on-a-chip systems

A lab-on-a-chip system integrates various laboratory functions on a single sub-millimetre-
sized chip. Such chips can often be mass-produced for fast single-use analysis in the field
far from laboratories and, due to the sub-millimetre scale of the chips, the required sample
size can be reduced considerably. However, in order to manipulate particles in suspensions
at this scale, a thorough understanding of microfluidics is necessary.

There are many different ways to handle particle suspensions. For example, mag-
netophoresis [5] and dielectrophoresis [6] are particle manipulation techniques where the
particles move under the influence of a magnetic and an electric field, respectively. Such
techniques can be used only on particles with specific magnetic or electric properties and
flow rates of the order 0.01 L/h and 0.001 L/h, respectively [7]. It is therefore desirable
to have techniques for particle manipulation that work when these requirements are not
met. Acoustophoresis, where the particles move under the influence of a standing acoustic
wave, is one such technique. The basis for manipulation is differences in size, density and
compressibility between the medium and the particles, and between the different particles.
Moreover, it has potential flow rates of the order 1 L/h [7].

Figure 1.1 shows a top view of three cases of acoustophoresis in a microchannel. The
particles enter the channel through the inlets, flow through an acoustophoretic zone where
the manipulation takes place, and exit through outlets. The three cases illustrate three
different ways of manipulating particles by exploiting the acoustic radiation force which

1
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Figure 1.1 Top view of three different ways to manipulate particles by acoustophoresis,
adapted from Ref. [8]. The acoustophoretic zone is the area where the fluid supports
a standing pressure wave perpendicular to the particle flow. The wave is marked by
its node in the central channel plane (magenta) and has antinodes at the channel walls.
(a) Enrichment of the green particles as they are focused at the pressure node while some
of the particle-free medium exits through side outlets. (b) The acoustic contrast factor is
a material property that depends on the density and the compressibility. Here, the red
particles have a positive acoustic contrast factor and are therefore focused at the pressure
node, whereas the yellow particles, which have a negative contrast factor, are focused at
the pressure antinodes. (c) Both the orange and the purple particles move towards the
pressure node but because of the difference in particle size, the purple particles focus much
faster.

depends on the particle size, density and compressibility (the force will be introduced in
Section 4.2).

Figure 1.2 is a cross-sectional sketch the system in Figure 1.1 and show a typical
system setup for acoustophoresis. It consists of a silicon chip with an etched microchannel
of rectangular cross section and a glass lid on top, mounted on a piezoelectric actuator.
Water is used as the suspending medium. A horizontal, half-wavelength, 1D standing
pressure wave is induced perpendicular to the laminar water flow by vibrations of the
actuator. We shall consider this setup throughout most of this thesis.

The separation sketched in Figure 1.1(b) has been demonstrated for particles with
radii of several micrometres and a half-wavelength standing pressure wave at 2 Mhz in
a channel of width w = 350 µm and height h = 125 µm [10]. However, for sufficiently
small particle sizes another effect dominates their behaviour. This effect, called acoustic
streaming, arises from large velocity gradients near the channel boundaries that generates
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Figure 1.2 (a) Cross section of a typical system setup for acoustophoresis adapted from
Ref.[9]. A silicon chip with an etched channel is mounted on a piezoelectric actuator that
vibrates at MHz frequencies. (b) Sketch of the model system for an acoustophoretic zone
in the channel. Due to the piezoelectric vibrations, the side walls oscillate in phase as
indicated by the thick, grey arrows, and thereby create a horizontal standing pressure
wave (magenta). The top and bottom walls are assumed to be infinitely hard and the
width w and height h of the channel are of the order 100 µm .

rotational flow. For systems like the typical one sketched in Figure 1.2 operated at 2 MHz,
the acoustic streaming dominates the behaviour of particles smaller than aprroximately 1
µm [11], thus complicating the manipulations sketched in Figure 1.1. It has, however, been
demonstrated [1] that if 10-12 µm-sized seed particles are injected to the pressure node,
focusing can be accomplished even for particles smaller than the approximate transition
size of 1 µm .

In this thesis we investigate some of the effects of placing a single such seed parti-
cle at the pressure node. We estimate how the presence of the seed particle affects the
radiation force acting on sub-micron particles. Furthermore, we derive an analytical ex-
pression for the acoustic streaming that arises from the seed particle, to examine how
this affects the overall streaming pattern that influences sub-micron particles. To ease the
analytical treatment this derivation is for an unbounded fluid, as opposed to the more
realistic bounded geometry in Figure 1.2. Finally, we carry out numerical calculations of
the streaming in a bounded geometry like the one in Figure 1.2, and compare it to the
analytical result for an unbounded fluid.

1.2 Thesis outline

Chapter 2: Governing equations
We briefly go through the description of fluids and then present the relevant governing
equations. We employ perturbation theory to derive first- and second-order expressions
for these.

Chapter 3: Weak form modelling in COMSOL
This chapter is a brief introduction to the simulation software COMSOL, the finite ele-
ment method and the weak formulation of a boundary value problem.
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Chapter 4: Acoustofluidic theory
We derive the damped Helmholtz equation for the first-order fields and discuss viscosity in
the bulk fluid. The second-order effects known as the acoustic radiation force and acoustic
streaming are then introduced through well-known examples in rectangular channels. We
use this introduction to motivate the investigation of the influence of a seed particle on
these effects.

Chapter 5: Influence of a seed particle on the radiation force
We begin the investigation of a system containing a seed particle by examining how the
acoustic fields scattered on it affect the radiation force on a small probe particle.

Chapter 6: Acoustic streaming generated by a rigid sphere
In this chapter we derive an expression for the acoustic streaming generated by a rigid
spherical particle at the node of a standing pressure wave in an unbounded fluid.

Chapter 7: Influence of a seed particle on the streaming pattern
The analytical result from the previous chapter is used to estimate how the total streaming
pattern in a channel changes due to the presence of a seed particle. Moreover, numerical
calculations of the total streaming in both the absence and presence of the seed particle is
performed, and the results are compared to the analytical predictions. Simulations of the
trajectories of micron-sized and sub-micron-sized particles in the total streaming pattern
are examined to see whether the seed particle has a significant effect on the particle motion.

Chapter 8: Conclusion and outlook
This chapter provides a summary of our findings and suggestions for future theoretical
and numerical work.



Chapter 2

Governing equations

In this chapter we first define the basic continuum fields. The basic fluid mechanic theory
is then presented and perturbation methods is used to derive the zeroth-, first- and second-
order expressions for the governing equations. We shall use Einstein index notation unless
otherwise stated, and standard vector calculus. Further details about the mathematical
notation are provided in Section B.2 in Appendix B.

2.1 Definition of the continuum fields

In this thesis we shall use the Eulerian description of fluids, in which the spatial point r
and the time t are independent variables. Furthermore, as the smallest length scale that we
consider is of the order 100 nm, we shall assume the validity of the continuum hypothesis.
The reader unfamiliar with these concepts are referred to Section B.1 in Appendix B.

We define the value of any field F (r, t) at the spatial point r at time t as an average
value in some fluid particle of volume ∆V (r) around r,

F (r, t) =
〈
Fmol(r

′, t)
〉
r
′∈∆V (r)

. (2.1)

Let mi and vi denote the mass and velocity of the i ’th molecule and let i ∈ ∆V denote
all molecules contained in the volume ∆V (r) at time t. Then, we define the mass density
ρ(r, t) and the velocity field v(r, t) as

ρ(r, t) ≡ 1

∆V

∑
i∈∆V

mi, (2.2a)

v(r, t) ≡ 1

ρ(r, t)∆V

∑
i∈∆V

mivi. (2.2b)

Notice how the velocity field is defined by the momentum density and not simply as the
sum of the molecular velocities in the fluid particle.

5



6 CHAPTER 2. GOVERNING EQUATIONS

2.2 Conservation of mass and momentum

We shall use two governing equations for non-relativistic fluid mechanics in this thesis
and, for brevity, we omit explicitly writing the time and space dependencies of the fields.
The first one, called the continuity equation, expresses that mass is conserved,

∂tρ = −∇·(ρv). (2.3)

The second is the equation of motion, which states that momentum density of fluid inside
any region can change by advection, action of surface forces and action of body forces,

∂t(ρv) = −∇·(ρvv) + ∇· σ + fbody. (2.4)

Here, fbody is the sum of all body forces and σ is the total stress tensor of rank two,

σ = η
[
(∇v) + (∇v)T

]
+

[(
ηB −

2

3
η

)
(∇·v)− p

]
I, (2.5)

where η is the dynamic shear viscosity, ηB the bulk viscosity, p the pressure and Iij = δij .
In index notation σij expresses the ith component of the friction force per area acting on
a surface element oriented with its surface normal parallel to the j th unit vector ej . We
shall ignore the body forces gravity and buoyancy. Furthermore, we shall assume that
the coefficients η and ηB are constant in space and time at a given temperature. Then,
the dynamic equation reduces to the well-known Navier-Stokes equation for compressible
fluids,

ρ [∂tv + (v ·∇)v] = −∇p+ η∇2v + βη∇(∇·v). (2.6)

Here, we have introduced the viscosity ratio β = ηB/η + 1/3 for brevity. We shall work
with the equation of motion both on the form of Eq. (2.4) and on form of the Navier-Stokes
equation.

In addition to the two governing equations presented above, we shall also use the
thermodynamic equation of state which relates the pressure to the density and entropy s,

p = p(ρ, s), (2.7)

An isentropic (s constant) expansion to second order of the equation of state around some
constant value p0 yields

p(ρ) = p0 +
(
∂ρp
)
ρ0

(ρ− ρ0) +
1

2

(
∂ 2
ρ p
)
ρ0

(ρ− ρ0)2 (2.8a)

= p0 + c2
0(ρ− ρ0) +

1

2

(
∂ρ c

2
0

)
ρ0

(ρ− ρ0)2. (2.8b)

In the last expression we have introduced the speed of sound, c0, which from thermody-
namics is known to be defined as

c2
0 ≡

(
∂p

∂ρ

)
s

. (2.9)
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We shall not prove this directly but when we derive the acoustic wave equation we can
identify it as the speed of sound. Apart from the relations described above we shall not
consider thermal effects. Thus we have three equations to solve,

p = p(ρ), (2.10a)

∂tρ = −∇·(ρv), (2.10b)

∂t(ρv) = −∇·(ρvv) + ∇· σ. (2.10c)

2.3 Perturbation theory

Eqs. (2.10a)-(2.10c) form a set of three coupled, partial differential equations with three un-
known quantities and should thus be solvable. However, the non-linearities in Eq. (2.10c)
make the equations analytically insolvable in any but a few special cases. We therefore
have to settle for analytical approximations to treat other cases. These can be obtained
with perturbation theory which deals with small corrections, called perturbations, to exact
solutions.

We shall consider the exact solution to Eq. (2.10) for water where the three dependent
variables are all constants,

p = p0, ρ = ρ0, v = v0. (2.11)

Let v0 = 0 such that the fluid is quiescent. Furthermore, ρ0 is the density of water.

2.3.1 First-order perturbation theory

If the quiescent fluid is slightly perturbed by an acoustic wave we can write

p = p0 + p1, ρ = ρ0 + ρ1, v = v1, (2.12)

where

p0 � |p1|, ρ0 � |ρ1|, c0 � |v1|. (2.13)

The maximum pressure perturbation that we will consider is p1 = 1 MHz corresponding
to a maximum density of ρ1 ∼ 10−4ρ0 for water. The maximum velocity perturbation
that we will consider is v1 = 1 m/s, which is much less than the isentropic speed of sound
in water, c0 ≈ 1500 m/s. The pressure p0 that p1 should be compared to is related to the
cohesive energy of water and is of the order ρ0c

2
0 ≈ 1 GPa [12], which is much larger than

1 MHz. The perturbations that we consider are thus in the valid limits. Moreover, the
hydrostatic pressure in microfluidic channels of height h ∼ 1 mm is ρ0gh ∼ 10 Pa which
is negligible compared to the pressure perturbations.

If we insert Eq. (2.12) into Eqs. (2.10a)-(2.10c), the zeroth-order terms from the exact
solution cancel out. If we assume that products of first-order terms, i.e. terms with
subscript 1, are negligible compared to the first-order terms themselves, we are left with
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the first-order governing equations

p1 = c2
0ρ1, (2.14a)

∂tρ1 = −ρ0∇·v1, (2.14b)

ρ0∂tv1 = ∇· σ1. (2.14c)

We note that ρ0 is a constant that can be moved outside derivatives. Contrary to the
original equations, these are linear. We can thus assume harmonic time dependence of all
fields corresponding to a harmonic driving force without loss of generality,

ρ1(r, t) = ρ1(r) e− iωt, (2.15a)

p1(r, t) = c2
0 ρ1(r) e− iωt, (2.15b)

v1(r, t) = v1(r) e− iωt. (2.15c)

Here, we introduce a complex phase but the physical fields are the real part of the expres-
sions. It follows from the harmonic time dependence that a time derivative gives a factor
(− iω) and Eq. (2.14) can therefore be rewritten as

p1 = c2
0ρ1, (2.16a)

− iωρ1 = −ρ0∇·v1, (2.16b)

− iωρ0v1 = ∇· σ1. (2.16c)

In later chapters we shall use Eq. (2.16) both in the case of a viscid and an inviscid fluid.
In the latter we can see in Eq. (2.5) that the divergence of the first-order stress tensor
reduces to ∇ · σ1 = −∇p1 when the viscosity is set to zero, η = ηB = 0. Furthermore, in
the inviscid case the first-order velocity field has no vorticity, i.e. ∇ × v1 = 0. We can
therefore perform a Helmholtz decomposition to define a velocity potential,

v1 = ∇φ1. (2.17)

With the expression ∇ · σ1 = −∇p1 inserted in Eq. (2.16c), the first-order pressure and
density can be expressed in terms of φ1,

p1 = iωρ0 φ1, (2.18a)

ρ1 = i
ρ0ω

c2
0

φ1, (2.18b)

It also follows from the harmonic time dependence that to first order, there are no time-
averaged effects. By a time-average 〈X〉 of a quantity X(t) with period τ we understand

〈X〉 ≡ 1

τ

∫ τ

0
dtX(t), (2.19)

and it is clear that 〈Re[exp(− iωt)]〉 = 〈cos(ωt)〉 = 0.
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2.3.2 Second-order perturbation theory

To investigate time-averaged effects it is necessary to proceed to second order,

p = p0 + p1 + p2, (2.20a)

ρ = ρ0 + ρ1 + ρ2, (2.20b)

v = 0 + v1 + v2. (2.20c)

When Eqs. (2.20a)-(2.20c) are inserted into Eqs. (2.10a)-(2.10c) the zeroth-order terms
cancel out again but so do the first-order terms. Neglecting terms of higher order than
two yields

p2 = c2
0ρ2 +

1

2

(
∂ρc

2
0

)
ρ0
ρ2

1, (2.21a)

∂tρ2 = −ρ0∇·v2 −∇·(ρ1v1), (2.21b)

∂t(ρ0v2 + ρ1v1) = −ρ0∇·(v1v1) + ∇· σ2. (2.21c)

When the driving force is harmonic in time it follows that in steady state the second order
fields must be harmonic with the same period. Hence, according to Fourier analysis they
can be decomposed into a sum of different frequencies and a constant term. Since the
time-average of a non-zero constant term is also non-zero, we can not in general assume
that 〈p2〉 = 〈ρ2〉 = 〈v2〉 = 0. However, a time derivative eliminates the constant terms
so 〈∂tp2〉 = 〈∂tρ2〉 = 〈∂tv2〉 = 0. After we have taken the time average of Eqs. (2.21b)
and (2.21c), we obtain

0 = ρ0∇·〈v2〉+ ∇·〈ρ1v1〉 , (2.22a)

0 = ∇·(〈σ2〉 − ρ0 〈v1v1〉) , (2.22b)

We do not need Eq. (2.21a) nor its time average as we can solve Eq. (2.22) for v2 and p2

without the relation between p2 and ρ2.
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Chapter 3

Weak form modelling in COMSOL

In Chapter 7 we present simulation results obtained in the commercially available software
COMSOL Multiphysics. We shall use COMSOL as tool rather than as a subject in itself.
Therefore, the introduction to COMSOL given in this chapter is brief. It is based on the
notes of Nielsen [13] and Bruus [14].

3.1 The finite element method and boundary conditions

COMSOL is a simulation software in which the finite element method is applied. The core
of this method is to discretise the physical fields by approximating them with a superposi-
tion of basis functions or test functions, as they are called in COMSOL. The discretisation
is shown in Figure 3.1. It is established by placing a grid on the computational domain.
Each grid point is connected to other grid points to form triangular mesh elements. Mesh
elements that share a grid node make a mesh cell. For every physical field g(r), a test
function ĝn(r) is defined on the n’th mesh cell. Each test function is unity at the central
grid node in its associated mesh cell, and decreases continuously to zero at the mesh cell
boundary. The physical field g(r) is then approximated by

ĝn

Ω

lllllllllll MMMMMMMMMMMMMMMMMMMMMMM llllllllllllllllllllllllllllllllllllllllllll llll-
lll

Figure 3.1 Sketch of the discretisation of the computation domain Ω into grid points that
are connected to form triangular mesh elements, adapted from [13]. Th nth COMSOL
test function ĝn(r) is sketched as a linear function (out of the plane of the sketch) defined
on a the gray mesh cell. It attains the value 1 at the nth grid node and 0 on the boundary
of the cell.

11
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g(r) =
∑
n

Cgn ĝn(r), (3.1)

where the Cgn is the coefficient to the n’th test function associated with the physical field g.
COMSOL is set up to handle problems formulated as continuity equations

∇·J [g(r)]− F (r) = 0, (3.2)

where g is the physical field described by the equation, F a generalised driving force and
∇·J a Cartesian divergence of a generalised flux J that depends linearly on g. Both J
and F are tensors, but the the rank of J is one higher than that of F , which can be zero
(corresponding to a scalar) or higher. For simplicity, we consider a scalar F .

Insertion of the approximation in Eq. (3.1) into Eq. (3.2) yields a defect d(r),

∇·J
[∑

n

Cgn ĝn(r)

]
− F (r) = d(r). (3.3)

COMSOL seeks to make the projection of the defect d(r) on every test function vanish,
i.e. it tries to fulfil the equation〈

ĝm, d〉 ≡
∫

Ω
ĝm(r)d(r)dr =

∫
Ω
ĝm(r)

[
∇·J [g(r)]− F (r)

]
dr = 0, for all m. (3.4)

Eq. (3.4) is known as the weak form of the problem. The strong form in Eq. (3.2) is
approximately satisfied when the weak form is.

The problem is linear and can thus be written on matrix form or, equivalently, with
index notation. We suppress the spatial dependence and define fm =

〈
ĝm, F

〉
and Kmn =〈

ĝm,∇·J [ĝn]
〉
, such that Eq. (3.4) can be written as

KmnC
g
n = Fm. (3.5)

COMSOL determines the coefficients Cgn by matrix inversion.
To see how boundary conditions are implemented we apply the divergence theorem on

Eq. (3.4) to obtain∫
∂Ω
ĝmn · J da +

∫
Ω

[
(−∇ĝm) · J − ĝmF

]
dr = 0. for all m. (3.6)

A Neumann boundary condition n · J = N(r) for r ∈ ∂Ω is now straightforward to
impose. Any other boundary condition can be written as R(r) = 0 for r ∈ ∂Ω. It can
be imposed by introducing an extra degree of freedom, a so-called Lagrange multiplier
field λ(r) = n · J , which is defined only on the boundary. Associated with it is a set of
test functions λ̂m(r), such that the weak form of the general boundary condition becomes〈
λ̂m, R

〉
= 0 for all m. This is added to Eq. (3.6), which becomes∫

∂Ω

[
ĝmλ+ λ̂mR

]
da +

∫
Ω

[
(−∇ĝm) · J − ĝmF

]
dr = 0. for all m. (3.7)

As λ̂m is independent of ĝm this form still enforces
〈
λ̂m, R

〉
= 0 and at the same time

determines λ(r). A common boundary condition is the Dirichlet condition g(r) = D(r)
or R(r) = g(r)−D(r) on the general form.



Chapter 4

Acoustofluidic theory

In this chapter we use the perturbation theory developed in the previous chapter to derive
the linear wave equation for the first-order pressure. We also begin the investigation of
the two time-averaged second-order effects, the acoustic radiation force and the acoustic
streaming, by reviewing both in the typical setup in Figure 1.2.

4.1 The acoustic wave equation

The first-order governing equations derived in the previous chapter are

p1 = c2
0ρ1, (4.1a)

∂tρ1 = −ρ0∇·v1, (4.1b)

ρ0∂tv1 = −∇p1 + η∇2v1 + βη∇(∇·v1). (4.1c)

We note that ρ0 is a constant that commutes with derivatives, so when taking the time
derivative of Eq. (2.16b) we may write

∂ 2
t ρ1 = −∇·(ρ0∂tv1). (4.2)

An equation for ρ1 is obtained by insertion of Eq. (4.1c) into Eq. (4.2) followed by elimi-
nation of p1 and ∇·v1 by use of Eq. (4.1a) and Eq. (4.1b), respectively,

∂ 2
t ρ1 = ∇2p1 − (1 + β)η∇2(∇·v1) = c2

0

[
1 +

(1 + β)η

ρ0c
2
0

∂t

]
∇2ρ1. (4.3)

As argued previously, we can assume harmonic time dependence expressed in Eq. (2.15)
without loss of generality. Therefore, a time derivative corresponds to a factor (− iω).
Moreover, it is evident from Eq. (4.1a) that we can substitute p1/c0 for ρ1, and if we also
define a wavenumber k0 = ω/c0 we arrive at

∇2p1 = − 1

1− i2Γ
k2p1, Γ =

(1 + β)ηω

2ρ0c
2
0

. (4.4)

13
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If the frequency of the acoustic fields are in the Mhz range, which is the range relevant for
lab-on-a-chip systems, one finds Γ ≈ 10−5 � 1 using parameter values for water at 300 K
(see Table A.1 in Appendix A), and ω = 2πf where f = 2 MHz. Thus, we can to a good
approximation write Eq. (4.4) in the form of a Helmholtz equation for a damped wave,

∇2p1 = −k2p1, k = (1 + iΓ)k0 = (1 + iΓ)
ω

c0
. (4.5)

We are now able to identify Γ as a viscous damping factor and recognise c0 as the speed
of sound. Furthermore, since Γ� 1, we see that viscosity is negligible in the bulk part of
the acoustic wave which is a result we use in the discussion of the acoustic radiation force.

4.2 Acoustic radiation force

The acoustic radiation force is a second-order, time-averaged effect. It arises from the
scattering of acoustic waves on particles suspended in a fluid subjected to an acoustic
field. The acoustic radiation force on compressible and incompressible particles was first
analysed in 1934 by King [15] and in 1955 by Yosioka and Kawasima [16]. In both cases the
results were restricted to particles suspended in an incompressible, inviscid fluid, and they
were valid only in the limit where the particle radius a is much smaller than the acoustic
wavelength λ. In 1962 Gorkov [17] summarised and generalised their work. An extension
of his classic theory was provided in 2012 by Settnes and Bruus [18] who included viscosity
effects, and in 2015 by Karlsen and Bruus [19] who included both the effect of viscosity
and heat conduction.

In this section we shall not provide a thorough derivation of an analytical expression for
the acoustic radiation force. Instead, we shall merely outline the derivation by explaining
the main arguments and stating a few intermediate results.

As shown in the discussion of the acoustic wave equation, it is a good approximation to
neglect viscosity effects in the bulk of the fluid. Moreover, we shall ignore heat conduction,
since thermal effects are negligible far from thermal boundary layers [19]. The ideal theory
of Gorkov is thus sufficient in this thesis. We shall follow the derivation of Bruus [20] who
presents Gorkov’s theory, while filling in some details originally left out.

The starting point is first-order and time-averaged second-order perturbations on a
quiescent fluid as described in Section 2.3 by Eqs. (2.11)-(2.22). The acoustic radiation
force on a spherical particle suspended in the fluid is calculated as the surface integral of
the time-averaged second-order pressure 〈p2〉 and momentum flux tensor ρ0 〈v1v1〉 over a
fixed surface outside the sphere,

F rad = −
∫
∂Ω

da [〈p2〉n+ ρ0 〈(n · v1)v1〉] , (4.6a)

= −
∫
∂Ω

da

{[
1

2
κ0

〈
p2

1

〉
− 1

2
ρ0

〈
v2

1

〉]
+ ρ0 〈(n · v1)v1〉

}
, (4.6b)

where the last expression can be obtained by use of first- and second-order perturbed
governing equations. If no body forces influence the particle, the integral can be calculated
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using any fixed surface ∂Ω encompassing the particle [19]. Introducing a velocity potential
φ1 given by v1 = ∇φ1, we can for sufficiently weak incoming acoustic fields write the first-
order fields as a sum of the incoming and scattered fields,

φ1 = φin + φsc, v1 = vin + vsc, p1 = pin + psc, ρ1 = ρin + ρsc. (4.7)

As we assume that the particle radius is much smaller than the acoustic wavelength,
a � λ, the particle behaves as a point scatterer. This means that the scattered field can
be expressed as a time-retarded multipole expansion if the co-ordinate system is centred
at the scatterer. In the limit a� λ the monopole and dipole terms dominate, simplifying
the calculations. Through physical considerations one can arrive at the far-field expression

φsc(r, t) = −f0
a3

3ρ0

∂tρin(t− r/c0)

r
− f1

a3

2
∇·
(
vin(t− r/c0)

r

)
, (4.8)

where ρin and vin are the incoming fields and r is the position vector. For convenience, the
unknown factors are chosen as 1

3f0 and 1
2f1, where f0 and f1 are known as the monopole

and dipole coefficients. If we evaluate the integral over a surface outside the acoustic
boundary layer but close to the particle surface, e.g. r ≈ a + 5δ where δ � a, the
retardation time is negligible in comparison to the oscillation period of the field, r/c0 ≈
a/c0 � λ/c0. Therefore, we can replace the time-retarded argument t− r/c0 of the fields
with the instantaneous argument t.

Next, it is evident from Eq. (4.7) that the terms
〈
p2

1

〉
and

〈
v2

1

〉
in Eq. (4.6b) contain

squares of the incoming fields, squares of the scattered fields and mixed terms, e.g. φ2
in,

φ2
sc and φinφsc. If the particle is acoustically indistinguishable from the surrounding fluid

there would be no scattering and hence no radiation force. Thus, the terms corresponding
to φ2

in do not contribute to the radiation force. Moreover, the terms corresponding to
φ2

sc are negligible compared to the mixed terms since the former are proportional to the
particle small volume a3 and the latter to its even smaller square a6. Thus, it suffices to
keep only the mixed terms in the calculations. After several mathematical manipulations
of Eq. (4.6b), the following expression is obtained in index notation,

F rad
i = −

∫
∂Ω

dr ρ0

〈
vin
i

(
∂j∂jφsc −

1

c2
0

∂ 2
t φsc

)〉
= −

∫
∂Ω

dr ρ0

〈
vin
i �

2φsc

〉
(4.9)

The last expression in Eq. (4.9) is written because the final non-zero result for the radiation
force comes from the singularity in φsc that the d’Alembert operator �2 picks up at r = 0.
Then, insertion of Eq. (4.8) and several rewritings yield

F rad = −πa3

[
2κ0

3
Re[f∗1 p

∗
in∇pin]− ρ0Re[f∗2v

∗
in ·∇vin]

]
, (4.10)

where pin and vin are evaluated at r = 0, and an asterisk denotes complex conjugation. If
the spatial parts of the fields are real, this expression reduces to

F rad
rf = −4π

3
a3 ∇

[
1

2
Re[f0]κ0

〈
p2

in

〉
− 3

4
Re[f1] ρ0

〈
v2

in

〉]
. (4.11)



16 CHAPTER 4. ACOUSTOFLUIDIC THEORY

λ/2

−h

2

0y

h

2

0
w

2
z

w

MMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMM l llll
l l l l l l

Figure 4.1 Cross section of a channel with oscillating side walls indicated by the grey
arrows. The fluid (light blue) supports a horizontal standing pressure wave (magenta)
with an node at the central plane and antinodes at the side walls. The pressure field
and the other acoustic fields are scattered by the green particle which thus experience a
radiation force.

Considerations about the scattered fluid mass and particle velocity lead to the expressions
for the monopole coefficient f0 and dipole coefficient f1, respectively,

f0 = 1− κ̃, κ̃ =
κ′

κ0
, f1 =

2(ρ̃− 1)

2ρ̃+ 1
, ρ̃ =

ρ′

ρ0
. (4.12)

Here, the particle and medium parameters are denoted by a prime and a subscript 0. The
expression in Eq. (4.11) reduces further when the incident fields are standing waves. We
consider a 1D half-wavelength standing pressure wave, given by p1(z) = pa cos(kz) cos(ωt),
in the channel of rectangular cross section sketched in Figure 4.1. If k0 = 2π/λ = ω/c0 is
the wavenumber where λ = 2w, Eq. (4.11) reduces further to

F rad
sw = 4πΦ(κ̃, ρ̃) ka3Eac sin(2kz) ez ≈ 2 fN, (4.13)

where

Φ(κ̃, ρ̃) =
1

3
f0(κ̃) +

1

2
f1(ρ̃), Eac =

p2
a

4ρ0c
2
0

. (4.14)

Here, Φ is the acoustic contrast factor mentioned in Chapter 1 and Eac is the acoustic en-
ergy density. The value in Eq. (4.13) is evaluated at z = w

4 where the sine is unity, making
it a maximum. Moreover, it is evaluated for a polystyrene particle of radius a = 100 nm
in water and a pressure amplitude of pa = 1 MPa. The density and compressibility of
polystyrene contained in the contrast factor Φ are listed in Table A.1. The reason for using
polystyrene is that the material’s density and compressibility are similar to those of water
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Figure 4.2 Colour and vector plots of the radiation force F rad
sw for a half-wavelength (λ/2)

standing pressure wave (magenta) with a central node in a channel of height h and width
w. The colour and arrow size vary from dark red and no arrow (zero force magnitude)
to bright yellow and largest arrow (maximum force magnitude). The arrows point in
the direction of the force which is plotted for a negative acoustic contrast factor in the
upper half-plane (blue) and a positive in the lower half-plane (black). The force attains
its maximum at z = w

4 and z = 3w
4 . The minimum is attained at z = 0, z = w

2 and z = w.

(see the table), as is the case for many biological particles. As the force is proportional to
the particle radius cubed, it is approximately 2 pN for a particle of radius a = 1 µm .

As evident from Eqs. (4.12) and (4.14), the sign of the acoustic contrast factor depends
on the density and compressibility of the particle relative to the suspending medium. Par-
ticles with a positive acoustic contrast factor will experience a force towards the pressure
node, whereas particles with a negative contrast factor will experience a force towards the
nearest antinode at the walls.

We notice that the monopole coefficient tends towards 1 as the compressibility goes to
zero corresponding to an infinitely hard material. Moreover, the dipole coefficient f1 tends
towards the values -2 and 1 for particles much lighter and denser than the suspending
medium, respectively. We also notice that the force is zero at the pressure node (z =
w
2 ), which, as we will see in the next section, is the reason that the acoustic streaming
complicates the focusing and separation of particles.

The radiation force for a standing wave given in Eq. (4.13) is plotted in Figure 4.2
for a half-wavelength standing pressure wave with a node in the channel centre. The plot
includes both the case of a positive and negative acoustic contrast factor. As seen in the
argument of the sine in Eq. (4.13), the force has twice the wavelength of the fields that
induce it. We see this in the figure, where both the pressure wave and the force have
nodes in the channel centre, but the force has antinodes half-way between the centre and
the walls, whereas the pressure has antinodes at the walls.
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4.3 Acoustic streaming

Acoustic streaming is, like the radiation force, a second-order time-averaged effect gener-
ated by an oscillating acoustic field. It originates either from bulk attenuation of acoustic
momentum or from boundary interaction [21]. In this thesis, only the latter is studied.

The presence of a solid, hard wall boundary, that does not yield to the velocity of the
liquid, forces the amplitude of the acoustic velocity field to decay from its bulk value to zero
at the boundary. This transition takes place within a thin region, the so-called acoustic
boundary layer, thus generating large velocity gradients and, with that, large viscous
stresses. As a consequence of this and the non-linearity of the governing equations, a
steady (time-averaged) flow field parallel to the boundary is generated. This flow within
the boundary layer is known as inner boundary layer streaming or Schlichting streaming,
and it drives a steady flow in the entire fluid, referred to as outer boundary layer streaming
or Rayleigh streaming [22].

The amplitude of the streaming is usually much lower than the amplitude va of the
oscillating velocity field [23], which itself is much lower than the speed of sound c0 in order
for the perturbation theory to be valid. We stress these relations because fluid flows at
velocities much lower than the speed of light can be approximated as incompressible, and
because we shall use this approximation later in this section.

The boundary layer thickness δ depends on the angular frequency ω of the oscillating
field and on the kinematic viscosity ν = ρ

η of the fluid, where ρ is its density and η its
dynamic viscosity,

δ =

√
2ν

ω
≈ 0.5 µm. (4.15)

The value is calculated for water, for which parameter values are listed in Table A.1,
and the frequency f = 2 Mhz, which is typical for microparticle acoustophoresis. The
expression in Eq. (4.15) is justified in Chapter 6.

Figure 4.3 shows both the inner and the outer streaming generated by a half-wavelength
standing pressure wave. Figure 4.3(a) shows a sketch of the streaming in a shallow, infinite,
parallel-plate channels, whereas Figure 4.3(b) shows the numerically calculated streaming
in a water-channel of rectangular cross section. We shall not go into details about the
numerical calculation here as the result merely serves to show the effect of the side walls
on the streaming pattern.

A particle present in such steady streaming patterns will experience a force that drags
it with the flow. The drag force on a rigid spherical particle of radius a moving with the
velocity vp in the bulk of an incompressible fluid is [25, chap. 3]

F drag = 6πηa(v − vp), (4.16)

where v is the velocity of the fluid at the given position in the absence of the particle.
As argued earlier, the fluid is indeed incompressible on the streaming time scale. The
linear dependency on the fluid velocity relative to the particle velocity is only valid for low
Reynolds numbers, i.e. for

Re =
vpa

ν
� 1, (4.17)
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Figure 4.3 (a) Sketch of the acoustic streaming in shallow, infinite, parallel-plate channels
generated by a standing pressure wave (dashed, magenta lines) of wavelength λ parallel
to the plates, adapted from [24]. The inner streaming (yellow arrows) is confined to
the boundary layer (dark shade blue) of approximate thickness δ, but it drives the outer
streaming (black arrows) in the bulk liquid (light shade blue). (b) Numerically determined
streaming in a water-channel of rectangular cross section of width w = 380 µm and height
h = 160 µm supporting a half-wavelength, horizontal, standing pressure wave with a node
in the y = 0 plane. The dimensions correspond to a resonance frequency of 1.96 Mhz and
the viscosity was increased by a factor 300 in order to make the boundary layers visible.
The cyan arrows show the direction of the streaming while the normalised magnitude is
given by both the length of the arrows and the colour, ranging from the maximum (largest
arrows and white colour) to 0 (no arrow and black colour).

where ν is the kinematic viscosity of the fluid. As typical parameter values for the rect-
angular system with water as the medium, we use the experimental results reported in
Ref. [24]. The authors report maximum steady particle velocities of vp = 63 µm/s for
spherical polystyrene particles of radius 269 nm at the acoustic energy density Eac = 65
J/m3 corresponding to an amplitude of va = 0.51 m/s for the oscillating velocity field.
Using the value ν = 8.567 × 10−7 m2 s−1 from Table A.1 we arrive at Re ≈ 10−4 � 1.
Thus, Eq. (4.17) is valid for sub-micron particles under typical acoustophoretic conditions.
Setting vp = 0 and equating Eqs. (4.13) and (4.16) with the sine set to 1 leads to the
critical particle size

ac =

√
3ηv

2kΦEac
≈ 0.5 µm. (4.18)

The value is calculated for polystyrene in water, v = 50 µm/s, Eac = 50 J/m3, and a
wavelength λ = 190 µm corresponding to a channel width w = 380 µm . The values for
η and the relevant parameters in Φ are given in Table A.1 and Φ is given by Eqs. (4.12)
and (4.14). We use these values because they are typical for experiments [24] and therefore
yield a good estimate of the critical radius. We have set the sine to unity, which means
that we have used the maximum radiation force in the calculation. However, v = 50 µm /s
is a typical maximum streaming velocity, so we have also used the maximum drag force.
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The value ac = 0.5 µm expresses that the motion of particles with a radius larger than
0.5 µm is dominated by the radiation force, whereas the motion of particles a smaller
radius is dominated by the drag force. The motion of particles with a radius close to 0.5
µm will be influenced by both forces.

Sub-micron particles, for which the drag force dominates, will thus follow the streaming
sketched in Figure 4.3. At the pressure node, where the radiation force vanishes, they will
move towards either the top or bottom boundary layer, whichever is nearest. Then, they
will follow one of four the circulating flows. At z = w

4 and z = 3w
4 they are half-way between

the pressure node and the side walls. Here, the radiation force attains its maximum (see
Figure 4.2), which has direction inwards for particles with a positive contrast factor Φ.
Particles with Φ > 0 will thus slow down a little when they are half-way, but they will
continue following the streaming pattern, since the drag force magnitude is larger than
the radiation force magnitude. Particle focusing and separation thus becomes impossible.
In the next chapters we investigate whether some of the effects of a seed particle at the
channel centre make it possible to focus sub-micron particles even in the presence of these
circulating flows.



Chapter 5

Influence of a seed particle on the
radiation force

As mentioned in Chapter 1 it has been demonstrated that the presence of seed particles
with radii of as = 10 − 12 µm in the centre of a rectangular channel makes it possible
to focus sub-micron particles [1] despite the circulating flow. Our goal in this chapter is
to examine how the fields scattered by a seed particle in the centre change the acoustic
radiation force exerted on a sub-micron probe particle.

The system is sketched schematically in Figure 5.1, where we have moved the origin
to the seed particle centre. Except for the seed particle it is the same system as those
sketched in Figures 4.2 and 4.3. The side walls oscillate to sustain a half-wavelength
standing pressure wave and thereby generates a circulating streaming flow. The flow
drags a sub-micron probe particle towards the channel centre if it is close to z = 0, and
towards the channel top or bottom if it is near y = 0. The acoustic fields are scattered by
the seed particle and the scattered fields affect the radiation force on the probe particle.
As mentioned above, this influence is the subject of this chapter. A rigid seed particle
will, however, also generate a boundary layer around its surface which can create another
streaming pattern, thereby changing the overall streaming pattern. This effect is the
subject of Chapters 6 and 7.

One of two main results of this chapter is that the effect from the seed particle on the
radiation force exerted on particles with water-like acoustic properties is a contribution
that is at the maximum one order of magnitude lower than the original force (the force in
the absence of the seed particle).

The other main result is that the introduction of a seed particle brings a new length
scale into the problem: the seed particle radius as. As we consider an acoustic wavelength
λ that is almost of the order 1 mm, and a seed particle radius of the order 10 µm , the
latter will affect the spatial derivatives of the acoustic fields. In the absence of the seed
particle these would correspond to factors of the order λ−1, but in its presence some of
them will correspond to factors of the order a−1

s . For probe and seed particles with ideal
properties, this will cause the force contribution to be up to one order of magnitude higher
than the original force. However, as we will see, ideal properties are very different from
water-like properties relevant for biomedical applications of acoustophoresis.
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Figure 5.1 Seed particle system. The side walls (dark gray) oscillate in a channel of
rectangular cross section filled with water (light blue) to sustain a half-wavelength (λ/2)
standing pressure wave (magenta) with a node in the central channel plane z = 0. The
velocity field decays to zero within a thin boundary layer (blue) at the channel top and
bottom, thus giving rise to circulating flows (orange). A seed particle (red) of radius
as � λ is placed in the channel centre. It generates a boundary layer (blue) of thickness
δ � as around its surface and scatters the acoustic fields incident on it. The scattered
fields (red) will, like the fields generated externally (dark gray) by the oscillating walls,
affect a sub-micron probe particle (green) through the acoustic radiation force. A spherical
co-ordinate system is introduced, where the polar angle θ is measured relative to the z
axis. The unit vectors er and eθ indicate that the origin (r = 0) is defined as the seed
particle centre.

5.1 Calculation of the force contribution

We begin the investigation by going back to Eq. (4.11), which is the expression for the
acoustic radiation force. It is valid far from boundary layers for a spherical particle much
smaller than the acoustic wavelength and for real incident fields and multipole coefficients,

F rad
rf = −4π

3
a3 ∇

[
1

2
f0 κ0

〈
p2

in

〉
− 3

4
f1 ρ0

〈
v2

in

〉]
. (5.1)

There are no further restrictions on Eq. (5.1). It is thus valid for any real incident fields
but we will, however, still consider externally generated plane wave fields. Without the
seed particle, the incident fields are simply the plane wave fields from the standing wave.
We shall refer to the force that the probe particle would have experienced if the seed
particle had not been there as the standing wave force.
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In the presence of a seed particle, however, the probe particle will also be affected by
the fields scattered from the seed particle. Thus, the field incident on the probe particle
is the sum of the fields from the standing wave, which are induced externally and denoted
by a subscript ”ext”, and the fields scattered from the seed particle, which are denoted by
a subscript ”sc”,

φin = φext + φsc, pin = pext + psc, ρin = ρext + ρsc, vin = vext + vsc. (5.2)

Inserting this into Eq. (5.1) yields terms containing squares of the incident plane wave
fields, squares of the fields scattered on the seed particle, and the corresponding mixed
terms, e.g. v2

ext, v
2
sc and 2vext · vsc. The plane wave terms give rise to the standing wave

force that we discussed in Section 4.2. Since the mixed terms are proportional to a3
s and

the terms containing squares of the scattered fields are proportional to a6
s , we can neglect

the latter terms for a 10-micron seed particle. Thus, we include only the mixed terms and
the squares of the plane wave terms in the force expression. We split it into the two terms

F rad = F rad
sw + F rad

s , (5.3)

where the former is what we call the standing wave force and the latter is the radiation
force contribution that originates from the seed particle. We then have

F rad
sw = −4π

3
a3

p ∇
[

1

2
f0,p κ0

〈
p2

ext

〉
− 3

4
f1,p ρ0

〈
v2

ext

〉]
, (5.4a)

F rad
s = −4π

3
a3

p ∇
[

1

2
f0,p κ0

〈
2pext psc

〉
− 3

4
f1,p ρ0

〈
2vext · vsc

〉]
, (5.4b)

where we also in Eq. (5.4b) use the expression valid for real incident fields. The extra
subscripts ”p” and ”s” on the multipole coefficients f0 and f1 denote that it is a probe
and seed particle parameter, respectively. The term F rad

s is not a force exerted directly
by the seed particle on the probe particle, but for brevity we shall refer to it as the seed
particle force.

Consider a transverse standing pressure wave given by

pext(z, t) = pa sin(kz) sin(ωt) = pa sin[kr cos θ] sin(ωt). (5.5)

As in the first discussion of the radiation force in Section 4.2, the bulk fluid can be
considered inviscid, allowing us to introduce a velocity potential given by v = ∇φ. This
field and the other acoustic fields can be determined by use of the first-order relations in
Eqs. (2.17) and (2.18),

φext(z, t) =
pa

ρ0ω
sin(kz) cos(ωt) =

pa

ρ0ω
sin[kr cos θ] cos(ωt) (5.6a)

ρext(z, t) =
pa

c2
0

sin(kz) sin(ωt) =
pa

c2
0

sin[kr cos θ] sin(ωt) (5.6b)

vext(z, t) =
pa

ρ0c0
cos(kz) cos(ωt)ez =

pa

ρ0c0
cos[kr cos θ][cos θer − sin θeθ] cos(ωt) (5.6c)
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The expression for F rad
sw is given in Eq. (4.13) with the appropriate radius and multipole

coefficients,

F rad
sw = 4πΦ(κ̃, ρ̃) ka3

pEac sin(2kz − π) ey, (5.7a)

Φ(κ̃, ρ̃) =
1

3
f0,p(κ̃) +

1

2
f1,p(ρ̃), Eac =

p2
a

4ρ0c
2
0

(5.7b)

f0 = 1− κ̃, κ̃ =
κ′

κ0
, f1 =

2(ρ̃− 1)

2ρ̃+ 1
, ρ̃ =

ρ′

ρ0
, (5.7c)

Here, we have introduced a phase shift π in the sine because we changed the zero of the
z axis in Figure 5.1 compared to previous figures. In order to calculate F rad we have
to determine the fields psc and vsc scattered on the seed particle. As mentioned in the
beginning of this chapter, we consider seed particles with radii of the order 10 µm, like
those used in the experiments described in Ref. [1], and typical wavelengths of the order
1 mm � 10 µm. The seed particle will thus act as a point scatterer and so we can use
Eq. (4.8) for the scattered potential. If the distance to the seed particle is small compared
to the acoustic wavelength, we can neglect the time retardation,

φsc(r, t) = −f0,s
a3

3ρ0

∂tρext

r
− f1,s

a3

2
∇·
(vext

r

)
, (5.8)

where ρext and vext are evaluated at the centre of the seed particle (r = 0) at time t. The
seed particle is in the channel centre where the pressure and density waves have a node,
whereas the velocity have an antinode, so

∂tρext = 0, vext =
pa

ρ0c0
[cos θer − sin θeθ] cos(ωt). (5.9)

Thus, from the definition of the velocity potential we have

φsc(r, t) = −f1,s
a3

s

2

pa

ρ0c0
∇·
(

cos θer − sin θeθ
r

)
cos(ωt) = f1,s

a3
s

2

pa

ρ0c0

cos θ

r2 cos(ωt). (5.10)

A more detailed calculation of the last expression above can be found in Appendix C,
Section C.1. Notice that as the seed particle is situated at the pressure node, the monopole
term vanishes so that the scattered potential, and thus the seed particle force, do not
depend on the seed particle monopole coefficient f0,s. Again, the first-order relations in
Eqs. (2.17) and (2.18) allow us to calculate the relevant scattered fields,

psc = iωρ0 φsc = f1,s
a3

s

2

paω

c0

cos θ

r2 sin(ωt), (5.11a)

vsc = ∇φsc = − pa

ρ0c0
f1,s

a3
s

r3

(
cos θ er +

1

2
sin θ eθ

)
cos(ωt) (5.11b)

Since both the external pressure and velocity fields in Eqs. (5.5) and (5.6c) and the scat-
tered fields in Eqs. (5.11a) and (5.11b) are real, we were in Eq. (5.4b) allowed to use the
radiation force expression that is valid for real incident fields.
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When Eqs. (5.11a) and (5.11b) are inserted into Eq. (5.4b), the time averages
〈

sin2(ωt)
〉

and
〈

cos(ωt)2〉 both give a factor 1
2 , and we end up with

F rad
s = −4π

3
a3

p ∇
{

1

2
f0,p κ0

[
pa sin[kr cos θ]

][
f1,s

a3
s

2

paω

c0

cos θ

r2

]
(5.12a)

− 3

4
f1,p ρ0

[
pa

ρ0c0
cos[kr cos θ]

] [
− pa

ρ0c0
f1,s

a3
s

r3

(
cos2 θ − 1

2
sin2 θ

)]}
(5.12b)

= −4π

3
a3

pa
3
sf1,sEac ∇U(r, θ), (5.12c)

where the force is expressed as a gradient of the acoustic potential

U(r, θ) = kf0,p
sin[kr cos θ] cos θ

r2 + 3f1,p

cos[kr cos θ]
[
cos2 θ − 1

2 sin2 θ
]

r3 . (5.13)

In spherical co-ordinates we write the gradient as

∇U(r, θ) = er∂rU + eθ
1

r
∂θU = erR(r, θ) + eθΘ(r, θ), (5.14)

such that the force is

F rad
s (r, θ) = −4π

3
a3

pa
3
sf1,sEac

[
erR(r, θ) + eθΘ(r, θ)

]
. (5.15)

The component functions R(r, θ) and Θ(r, θ) are

R(r, θ) = +kf0,p cos θ

[
k cos(kr cos θ) cos θ

r2 − 2 sin(kr cos θ)

r3

]
(5.16a)

− 3f1,p(cos2 θ − 1
2 sin2 θ)

[
k sin(kr cos θ) cos θ

r3 +
3 cos(kr cos θ)

r4

]
(5.16b)

Θ(r, θ) = −kf0,p
sin θ

r3 [kr cos(kr cos θ) cos θ + sin(kr cos θ)] (5.16c)

+ 3f1,p
sin θ

r4

[
kr sin(kr cos θ)

(
cos2 θ− 1

2 sin2 θ
)
− 3 cos(kr cos θ) cos θ

]
. (5.16d)

It is of particular interest to evaluate the contribution F rad
s for θ = π

2 , which is at the

pressure node where F rad
sw = 0. We see in Eq. (5.16) that at the pressure node Θ = 0, and

in R only the last term in the second bracket is non-zero. Hence, the total radiation force
experienced by a probe particle at the pressure node is given by a one-term expression,

F rad
(
r,
π

2

)
= F rad

s

(
r,
π

2

)
= −6π a3

pa
3
sf1,pf1,sEac

1

r4 er. (5.17)

We see from the sign that for positive dipole coefficients f1,p and f1,s, the direction of the
radiation force is inwards. Along the z axis, corresponding to θ = 0, we see in Eqs. (5.15)
and (5.16) that the seed particle force is

F rad
s (r, 0) = kf0,p

[
k cos(kr)

r2 − 2 sin(kr)

r3

]
− 3f1,p

[
k sin(kr)

r3 +
3 cos(kr)

r4

]
. (5.18)
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Figure 5.2 Vector density plot of the seed particle force F rad
s experienced by a probe

particle. The arrow size and the colour express the force magnitude on a linear and
logarithmic scale, respectively. The scales go from the lowest magnitude of ' 2 aN (dark
red and no arrow) to the largest of ' 17 fN (yellow and largest arrow) where both particles
are of polystyrene and have the radii as = 12 µm and ap = 100 nm. The red quadrant is
the seed particle and the blue area is the boundary layer region where the expression for
F rad

s is invalid.

5.2 Discussion of the results

The general result for the seed particle force F rad
s on a probe particle is plotted in Figure 5.2

outside the blue boundary layer region for the case where both particles are of polystyrene.
We stress that the chosen extent of the boundary layer region is arbitrary. In Eq. (4.15),
the boundary layer thickness was determined to be δ ≈ 0.5 µm for ultrasound frequencies
in water and we have therefore chosen 6δ ≈ 3 µm as the extent in order to be sure that
we plot the force in a valid domain.

As the incident fields oscillate symmetrically around z = 0, a plot that includes the
negative z-axis is superfluous and, due to the symmetry around the same axis, so too is a
plot that includes the negative y-axis. The colour plot and arrow size indicate the force
magnitude and the arrows point in the direction of the force. It is evident that the force
is largest at the angle θ = 0 (relative to the z axis). Moreover, its direction close to y = 0
is opposite to its direction close to z = 0. In this case, its direction is outwards at y = 0
and inwards at z = 0, but which direction is outwards and inwards depends on the sign of
the seed particle dipole coefficient f1,s, as evident from Eq. (5.15). As given in Eq. (4.12),
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the general expressions for the monopole and dipole coefficients are

f0 = 1− κ̃, κ̃ =
κ′

κ0
, f1 =

2(ρ̃− 1)

2ρ̃+ 1
, ρ̃ =

ρ′

ρ0
, (5.19)

where a prime is used for the particle parameters and a subscript 0 for the parameters of
the medium. Polystyrene is denser than water and therefore its dipole coefficient f1,p in
water is positive. A probe particle that is less dense than water would have a negative
dipole coefficient and experience an outwards seed particle contribution force along the y
axis and inwards along the z axis, contrary to a polystyrene particle.

We recall that the reason for investigating the seed particle force is to see if it adds
one or more orders of magnitude to the force experienced by the probe particle, whereby
the latter gets larger than the drag force for sub-micron particles.

However, before we turn to that, we compare the seed particle force with the standing
wave force. As seen in Eqs. (5.7) and (5.15), both are proportional to the probe particle
volume a3

p, which means that the ratio of their magnitude is independent of this quantity.
In Figure 5.3 we plot the magnitude of the seed particle force relative to the magnitude
of the standing wave force. It is plotted as a function of the radial distance to the seed
particle centre at three different angles: θ = 0 (along the z axis), θ = π

5 , and θ = π
2

(along the y axis). We have included the boundary layer region as the dashed parts of
the plots but we do not know if they are a good approximation. Figure 5.3(a) is the most
relevant plot since it is for polystyrene particles, which, as mentioned earlier, have acoustic
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Figure 5.3 The seed particle contribution relative to the standing wave radiation force
plotted for as = 12 µm and ap = 100 nm versus the radial distance to the seed particle
centre at the angles θ = 0 (red) corresponding to the z axis, θ = π

5 (green) and θ = π
2 (blue)

corresponding to the y axis. The plots are for water and a wavelength of λ = 2w = 780 nm.
They are dashed in the boundary layer region as the expressions for F rad

s and F rad
sw are

invalid there. (a) Both the seed particle and the probe particle are of polystyrene. (b) The
probe particle is of polystyrene and the seed particle is infinitely dense and hard. (c) Both
the seed particle and the probe particle are infinitely dense and hard.
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properties similar to those of water and thereby also many organic particles relevant for
potential biomedical applications of acoustophoresis. The figure shows that such particles
will experience a seed particle force that at its maximum is one order of magnitude lower
than the standing wave force. The maximum is just outside the boundary layer region,
here 3 µm from the seed particle, corresponding to 15 µm from the channel centre. We
see that at approximately 25 µm , the seed particle force has dropped another order of
magnitude.

Figure 5.3(b) illustrates the same but for a an infinitely dense seed particle. It shows
the increase in orders of magnitude that is achieved if the seed particle is much denser
that the suspending medium. For seed particles that are a factor 3

2 and 5
2 denser than the

suspending medium, use of Eq. (5.19) gives the dipole coefficient f1,s = 1
4 and f1,s = 1

2 ,
respectively, compared with approximately 0.03 for polystyrene. For an infinitely dense
particle, the dipole coefficient is unity so these examples would, as evident from the figure,
yield a seed particle force of the same order of magnitude as the standing wave force.

Finally, Figure 5.3(c) shows the case in which both the seed and probe particle are
infinitely dense, and the latter also infinitely hard. The fact that the probe particle is
infinitely hard corresponding to a vanishing compressibility, κp = 0, results in a probe
particle monopole coefficient f0,p of unity compared with 0.47 for polystyrene. It is thus
the high density that increases the seed particle force another order of magnitude from
Figure 5.3(b) to Figure 5.3(c). The latter figure indicates that, in principle, one can
achieve a seed particle contribution to the radiation force that is an order of magnitude
larger than the force would have been, had the seed particle not been present. It is possible
because the seed particle introduces a new length scale that enters the problem through
the gradient ∇U . For each of the seed particle force component functions R and Θ in
Eq. (5.16), we see that the last term is proportional to r−4 and that the other terms are
proportional to k2r−2 ∼ λ−2r−2 or kr−3 ∼ λ−1r−3. Close to the seed particle r ≈ as.
Since we consider as ∼ 10 µm and λ ∼ 1 mm, the r−4 term will thus dominate near the
seed particle. As it does not include any factor of k or λ it must be a consequence of the
introduction of the seed particle length scale.

The above discussion of the seed particle force relative to the standing wave force gives
an indication of the ratio of their sum to the drag force since, for particles of the critical
radius ac defined in Eq. (4.18), the standing wave force is of the same order of magnitude
as the drag force. Nevertheless, we will make the direct comparison in the following, as
we our focus is not particles of radius ac. We wish to compare the total radiation force
with the drag force for particles smaller than the critical radius, determined to be ac ≈ 0.5
µm in Eq. (4.18) under typical experimental conditions. In Figure 5.4, the total radiation

force magnitude F rad = |F rad
sw + F rad

s |, given by Eqs. (5.7), (5.15) and (5.16), is plotted
relative to the magnitude of the drag force given by Eq. (4.16). As in previous examples,
we use the streaming velocity v = 50 µm /s and the values given in Table A.1.

As the drag force is constant for a given streaming velocity and a given probe particle
radius, the radial variations in Figure 5.4 are due to the radiation force. Figure 5.3(a)
showed that the radiation force is dominated by the standing wave force for polystyrene
particles and this is in agreement with what we see in Figure 5.4(a), which is also for
polystyrene. In this figure we see the sinusoidal radial dependence of the standing wave
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Figure 5.4 Plot of the total radiation force magnitude F rad = |F rad

sw +F rad
s | relative to the

drag force magnitude F drag for polystyrene particles of radii as = 12 µm and ap = 100 nm,
the channel width w = 380 µm, the channel height h = 160 µm, and a streaming velocity
v = 50 µm /s in water, as a function of the distance r to the seed particle centre at the
angles θ = 0 (red), θ = π

5 (green) and θ = π
2 (blue). The plots are dashed in the boundary

layer region 12 µm ≤ r / 15 µm , since we do not know if the plotted expression is valid
there. As evident from Figure 5.1, going in the radial direction at angle θ = 0 corresponds
to going horizontally along the z axis. In this direction the channel wall is reached at
r = w

2 and the maximum radiation force at r = w
4 (see Figure 4.2). We therefore stop

the red plots at r = w
4 as the radiation force decreases afterwards. The angle θ = π

2
corresponds to the y axis and the blue plots therefore stop when they reach the channel
wall at r = h

2 . For the green plots at θ = π
5 , the maximum radiation force is reached at

r ≈ 117 µm . (a) Both the seed particle and the probe particle are of polystyrene. (b) The
probe particle is of polystyrene and the seed particle is infinitely dense and hard. (c) Both
the seed particle and the probe particle are infinitely dense and hard.
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force in most of the plot, whereas the inverse proportionality on r2, r3 and r4 from the seed
particle force is visually confined to a few micrometres just outside the boundary layer.
Most importantly, we see that for particles with water-like properties and radius ap = 100
nm, the drag force is at least one order of magnitude higher than the total radiation force.

The plots in Figure 5.4(b) are for an infinitely dense and hard seed particle that,
as we saw in Figure 5.3(b), has the best properties if we want a high radiation force
on the probe particle. In agreement with Figure 5.3(b) we see that the seed particle
force (inverse r tendency) is of the same order of magnitude as the standing wave force
(sinusoidal dependence). Furthermore, we see that even if a very dense seed particle could
be implemented in an acoustophoretic setup, the total radiation force would still be one
order of magnitude lower than the drag force.

Finally, in Figure 5.4(c) we see the force ratio for particles with ideal properties: an
infinitely dense and hard seed particle and an infinitely dense probe particle. For these
imaginary particles, we saw in Figure 5.3 that the introduction of the seed particle length
scale increases the radiation force by an order of magnitude. In Figure 5.4(c), we see that
this makes it of the same order of magnitude as the drag force for 100 nm particles. It
should be stressed that we have used a typical maximum (50 µm /s) for the drag force
which means that we underestimate the ratio in some parts of the rectangular channel
where the streaming is not at its maximum (see Figure 4.3).

Summing up the effect on the radiation force of placing a seed particle in the channel
centre, we can say that under circumstances realistic for biomedical applications (particles
with water-like acoustic properties), the seed particle force is at least an order of magnitude
less than the standing wave force for 100 nm probe particles. Moreover, the total radiation
force is at least one order of magnitude lower than the drag force, which means that the
latter will still dominate the particle trajectories.

If a seed particle material could be found, that is inert with respect to the probe
particles and much denser than water, it could yield a seed particle force that, within 10
µm of the seed particle surface, is almost of the same order of magnitude as the standing
wave force. For 100 nm particles, that is not enough to make the total radiation force as big
as the drag force. Even if one could find an application for the case of very dense seed and
probe particles, which would yield a total radiation force of the same order of magnitude
as the drag force for 100 nm particles, Figure 5.2 shows that this contribution would only
counteract the streaming close to the y axis. Close to the z axis, the contribution would
be outwards, thus making it impossible to focus particles in the channel centre.

Due to the negligible contribution to the acoustic radiation force under circumstances
realistic for biomedical applications, we shall not treat the seed particle force further in this
thesis. One could increase the seed particle radius as and see how this affects the results
but, for the systems considered here, there is a risk that it occupies most of the channel
centre, thus making it impossible for the probe particles to move there. We shall not
continue further with those considerations but instead turn our attention to the streaming
that the seed particle generates.



Chapter 6

Acoustic streaming generated by a
rigid sphere

The conclusion from the previous chapter is that for sub-micrometre-sized organic (water-
like) particles in milimetre-sized channels with transverse standing acoustic waves, the
channel streaming dominates the acoustic radiation force. It could be, however, that the
streaming generated by the velocity gradients at the seed particle surface is stronger than
the channel streaming. In this and the next chapter we therefore investigate the streaming
due to the seed particle.

The acoustic streaming from a sphere located in the pressure node of a standing acous-
tic wave has been calculated by Riley [26] in the incompressible flow approximation for an
unbounded fluid. In Ref. [27] Sadhal goes through Riley’s work in what is supposed to be
a tutorial article on the streaming from a sphere. However, Sadhal does not present any
calculations or derivations but only the employed method and the results. The problem
is non-trivial but, nevertheless, detailed calculations and derivations have not been found
in the literature. In this thesis we therefore include all the detailed calculations originally
left out by both Riley and Sadhal, as a considerable amount of time in the work done
preparing the thesis has been devoted to derive Riley’s result. All the calculations are
available but some are included only in appendices.

The system is sketched in Figure 6.1. It is different from the system sketched in Fig-
ure 5.1 as we now consider an unbounded fluid. Furthermore, we emphasise the seed
particle streaming (red) and not the scattered fields as previously. At this point, we do
not know what the streaming pattern is, hence the question marks. The fluid is still sup-
porting a standing pressure wave of wavelength λ along the z axis and the seed particle is
located at a pressure node. We think of the pressure wave as a field applied by an external
influence so far away that we can still consider the fluid unbounded. We shall drop the
term seed particle for now and refer to it as a sphere, due to the general character of
the problem. When we have solved the general problem, we resume the discussion of the
effects of the seed particle, applying the results.

31
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Figure 6.1 Unbounded fluid (light blue) supporting a standing pressure wave (magenta)
of wavelength λ. The fluid contains a rigid, spherical particle (red), on the surface of
which the velocity field has to decay to zero. The resulting velocity gradients create a
boundary layer (blue) and drive a streaming pattern (red arrows) to be determined. The
unit vectors er and eθ indicate that the origin (r = 0) of the spherical co-ordinate system
is the centre of the seed particle.

6.1 Characteristic numbers

Before we begin the mathematical treatment, it is instructive to discuss the characteristic
scales of the problem and relevant dimensionless numbers that we shall encounter. As
discussed in Section 4.3 the velocity field amplitude decays to zero at the sphere surface
within a boundary layer of thickness

δ =

√
2ν

ω
≈ 0.5 µm. (6.1)

This is the shortest length scale of the problem which has two more: the sphere radius a
and the acoustic wavelength λ. Moreover, the problem also involves three velocity scales:
the steady streaming velocity

〈
v2

〉
due to the sphere, the amplitude of the oscillating

velocity field va, and the isentropic speed of sound c0. Finally, the problem has only one
time scale given by the angular frequency ω of the oscillating fields.

It turns out that the qualitative structure of the sphere streaming depends on the ratio
of its radius a to the boundary layer thickness δ, inviting a definition of a dimensionless
number. We define

M2 ≡ iωa2

ν
, (6.2a)

|M2| = ωa2

ν
=

2ωa2

2ν
= 2

a2

δ2 , (6.2b)
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and refer to M as the boundary number. As evident from Eq. (6.2b), the square of its
magnitude is two times the ratio of the sphere’s radius to the boundary layer thickness.
We shall assume that it is much larger than unity, |M | � 1, which is the limit where the
boundary layer is thin compared to the size of the sphere.

Another dimensionless number that we will encounter is

ε =
va

ωa
≈ ∆a

a
. (6.3)

We shall refer to ε as the amplitude number since it depends on the velocity amplitude va

of the oscillating velocity field, which is the quantity that can be increased or decreased
experimentally. If we divide the velocity amplitude va by the angular frequency ω, we get
the spatial oscillation amplitude of the velocity field, i.e. the displacement of the fluid far
from the sphere. This is a good estimate of the displacement ∆a of the sphere when it
moves back and forth during the oscillations. In Eq. (6.3) we use this estimate to interpret
the amplitude number as the ratio of the sphere displacement relative to its size. We shall
assume that ε� 1 such that the sphere displacement is small compared to its size, as we
intent to use the amplitude number as a small perturbation parameter.

As r →∞, the first-order velocity field must approach the velocity field that is applied
far from the sphere by the external influence. This leads to a boundary condition that
is simplified if we assume that the sphere is much smaller than the acoustic wavelength,
i.e. that a � λ. In this limit, the velocity field far from the sphere (far in this case
being several radii) is a constant since the sphere is sufficiently small that the variation is
negligible. Summing up the length scales, we work in the limit

δ � a� λ. (6.4)

The externally applied oscillating velocity field is regarded as a first-order perturbation
of an otherwise quiescent fluid. Thus, its amplitude must be much lower than the speed
of sound in the fluid, i.e. va � c0. The streaming is the steady part of the second-order
velocity field and should therefore be smaller than the first-order velocity amplitude, i.e.〈
v2

〉
� va. This and the limit va � c0 ensure that both the streaming flow and the

first-order flow are incompressible, since density fluctuations travel at the much higher
speed of sound, c0. This allows us to use the incompressible flow approximation of the
governing equation. Summing up the velocity relations, we work in the limit〈

v2

〉
� va � c0. (6.5)

Finally, we have also introduced the two dimensionless numbers

|M | =
√

2
a

δ
� 1, (6.6a)

ε ≈ ∆a

a
� 1, (6.6b)

where the boundary number limit follows from Eq. (6.4), and the amplitude number limit
is an extra condition interpreted as a small displacement of the sphere relative to its size.
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6.2 Reformulation of the Navier-Stokes equation

Having discussed the different scales of the problem, we are now ready to begin the mathe-
matical treatment. We want to derive the streaming velocity for a rigid, spherical particle
in an unbounded fluid supporting a standing acoustic wave in the incompressible flow ap-
proximation. As we saw in Eqs. (5.5) and (5.6) for the external standing wave fields, the
velocity field has an antinode where the pressure field has a node. Thus, if we let the polar
axis coincide with the axis of oscillation, as in Figure 6.1, we can express the first-order
velocity field far from the particle as

v1 = v(z, t) = va cos(kz)e iωtez, r � a, (6.7)

where va is the amplitude, and the physical fields are obtained by taking the real part. As
all the fields involved have a time dependence that can be written on the complex form
e iωt, we shall henceforth omit writing it explicitly. We do, however, remember that we
assume harmonic time dependence of the externally applied fields, which means that a
time derivative gives a factor iω. In the incompressible flow approximation the velocity
field is divergenceless, ∇·v = 0, and the Navier-Stokes equation, Eq. (2.6), reduces to

ρ [∂tv + (v ·∇)v] = −∇p+ η∇2v. (6.8)

Using the identity (v ·∇)v = 1
2∇(v · v)− v × (∇× v) this can be rewritten as

ρ [∂tv − v × (∇× v)] = −∇
(
p+ 1

2v · v
)

+ η∇2v. (6.9)

Taking the curl eliminates the gradient terms and yields

∂tζ −∇× (v × ζ) = ν∇2ζ, (6.10)

where we have introduced the so-called vorticity ζ = ∇ × v, and where ν = η/ρ is
the kinematic viscosity. To ease the treatment, we non-dimensionalise the problem using
the sphere radius a as a length scale, the angular frequency ω as a time scale, and the
amplitude of the oscillating field as a velocity scale. Denoting the non-dimensionalised
quantities by a prime, we have

r′ =
r

a
, t′ = ωt, v′ =

v

va
, ∇ = a∇′, ζ′ =

a

va
ζ. (6.11)

Insertion of Eq. (6.11) into Eq. (6.10) and multiplication by a
ωva

yield

∂tζ
′ −∇× (v′ × ζ′) =

1

|M |2
∇′2ζ′, ε =

va

ωa
, |M | =

√
2
a

δ
. (6.12)

This is a rewritten, non-dimensionalised equation of motion for incompressible flows. We
stress that in the non-dimensionalised co-ordinates, a time derivative corresponds to a
factor of the imaginary unit i for fields with a harmonic time dependence, since exp( iωt) =
exp( it′). For convenience, we shall omit the primes in most of the following treatment,
and only write them explicitly when we also discuss the dimensionalised fields.

In the following section we exploit the axisymmetry and incompressibility to reformu-
late Eq. (6.12) as a scalar equation. This requires many tedious calculations, which is why
we describe the method and present only the result. The full calculation is included in
Appendix D, Section D.1.
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6.3 The scalar equation of motion

The symmetry around the z axis dictates that the physical fields can neither have an
azimuthal dependence nor an azimuthal component, thus reducing the problem to a 2D
problem. Since the velocity field is divergenceless, we can write the two components in
terms of the curl of a scalar function ψ(r, θ), which we shall refer to as the streaming
function,

v = ∇× ξ = ∇×
[
ψ(r, θ)

r sin θ
eφ

]
. (6.13)

Taking the curl of a vector that has only a azimuthal component ensures that the velocity
field has only a radial and a polar component. The division by r sin θ turns out to be
convenient. We now wish to calculate the vorticity ζ, its Laplacian ∇2ζ and the term
∇ × (v × ζ) contained in Eq. (6.12) in terms of the streaming function. This is a very
tedious process that ends with a scalar equation, which we shall refer to as the streaming
equation,

∂t(D
2ψ) + ε

[
1

r2

∂(ψ,D2ψ)

∂(r, µ)
+

2

r2 (D2ψ)(Lψ)

]
=

1

|M |2
D4ψ. (6.14)

The operators are

D2 = ∂ 2
r +

1− µ2

r2 ∂ 2
µ , D4 = D2D2, L =

µ

1− µ2 ∂r +
1

r
∂µ, (6.15)

and
∂
(
P,Q

)
∂(x, y)

= (∂xP )(∂yQ)− (∂yP )(∂xQ). (6.16)

When deriving this equation in Section D.1 in Appendix D, we also determine the rela-
tion between the streaming function and the velocity components. These are found in
Eq. (D.10) by calculation of the cross product in Eq. (6.13) and the result is

v = −er
1

r2 ∂µψ − eθ
(1− µ2)−

1
2

r
∂rψ. (6.17)

These relations are necessary when we in the next section convert the boundary conditions
given in terms of the velocity field to conditions in terms of the streaming function.

6.4 Boundary conditions

One boundary condition for Eq. (6.14) is given by the first-order velocity field far from
the sphere, which must be equal to the applied oscillating field,

v1(z, t) = va cos(kz)ez = va

(
1− 1

2
(kz)2 +

1

24
(kz)4 − ...

)
ez, r � a. (6.18)

In the last expression we have written the series expansion of the cosine function to il-
lustrate that for kz � 1 or equivalently z � λ, the first term is a good approximation.
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Physically, this means that the sphere is situated at the velocity antinode and is sufficiently
small compared to the acoustic wavelength that the field does not vary considerably over
the extent of the sphere and its immediate surroundings. The condition states that the
first-order velocity field v1 must approach the external field far from the sphere. As there
is no external second-order field, the second-order velocity fields must decay to zero far
from the sphere. Finally, the velocity field has to decay from its bulk amplitude to zero at
the surface of the sphere due to its rigidity. We shall refer to this requirement as a no-slip
boundary condition. As it is a consequence of a particle property it applies to all orders.
Hence, the boundary conditions are

v1r = 0 and v1θ = 0 at r = 1, (6.19a)

v2r = 0 and v2θ = 0 at r = 1, (6.19b)

v1 → va (cos θ er − sin θ eθ) as r →∞, (6.19c)

v2 → 0 as r →∞, (6.19d)

where the unit vector ez is expressed in spherical co-ordinates and subscripts r and θ
denote the vector components in spherical co-ordinates. Remember that these conditions
are for the non-dimensionalised variables, so r = 1 corresponds to the surface of the sphere.

We work with the streaming function and consequently the boundary conditions have
to be formulated in terms of that. The relations between v and ψ are given in Eq. (6.17)
and lead to the conditions

vir = − 1

r2∂µ ψi = 0 at r = 1 for i = 1, 2 (6.20a)

viθ = −
(
1− µ2)− 1

2

r
∂rψi = 0 at r = 1 for i = 1, 2 (6.20b)

ψ1 →
1

2
var

2(1− µ2) as r →∞, (6.20c)

ψ2 . r as r →∞, (6.20d)

where the symbol . denotes that the order of magnitude is equal to or less than the
subsequent expression. The equivalence of Eqs. (6.19c) and (6.20c) and of Eqs. (6.19c)
and (6.20d) can be recognised by computation of the components in Eqs. (6.20a) and (6.20b).
Inspection of Eqs. (6.20a) and (6.20b) reveals that the no-slip condition is fulfilled for
ψi = ∂rψi = 0 on the surface of the sphere. This allows a simplification of the boundary
conditions,

ψ1 = ψ2 = 0 at r = 1, (6.21a)

∂rψ1 = ∂rψ2 = 0 at r = 1, (6.21b)

ψ1 → 1
2var

2(1− µ2) as r →∞, (6.21c)

ψ2 . r as r →∞. (6.21d)

We now return to a discussion of the equation itself.
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6.5 Singular perturbation theory and the method of matched
asymptotic expansions

Due to the nonlinear terms in the square bracket, it is difficult to solve the equation of
motion, even after transforming it to the scalar equation

∂t(D
2ψ) + ε

[
1

r2

∂(ψ,D2ψ)

∂(r, µ)
+

2

r2 (D2ψ)(Lψ)

]
=

1

|M |2
D4ψ. (6.22)

The usual way to overcome this is to employ perturbation theory, but it turns out that a
straightforward perturbation expansion,

ψ = ψ1 + εψ2 + ε2ψ3 + ..., (6.23)

in the parameter ε, which contains the oscillation amplitude, works only to first order.
The reason for this is the presence of three disparate length scales in the problem: the
boundary layer thickness δ, the particle radius a� δ and the acoustic wavelength λ� a.
Inside the boundary layer, the length scale is given by its thickness δ, whereas the acoustic
wavelength λ is the appropriate length scale outside. Consequently, the acoustic fields vary
over distances of the order δ and λ within and outside the boundary layer, respectively.
This means that for an order of magnitude calculation inside the boundary layer, we
can approximate the radial derivatives by a factor δ−1. Likewise we can replace radial
derivatives outside by the factor λ−1. As we have non-dimensionalised the length scale by
dividing by the sphere radius a, this parameter enters the non-dimensionalised derivatives
in the numerator. Thus, we can make an order of magnitude comparison of the different
terms by substituting either aδ−1 or aλ−1 for each radial derivative, and remember that
|M |2 ∼ a2δ−2. The radial derivatives are of the order unity and can therefore be ignored.
For the orders of magnitude inside (r ∼ δ) and outside (r ' 5δ), we obtain

∂t(D
2ψ) + ε

[
− 1

r2

∂(ψ,D2ψ)

∂(r, µ)
+

2

r2 (D2ψ)(Lψ)

]
=

1

|M |2
D4ψ, (6.24a)

r ∼ δ : ∼ a2

δ2 ≈ 103 ∼ ε
a3

δ3 ≈ 102 ∼ a2

δ2 ≈ 103, (6.24b)

r ' 5δ : ∼ a2

λ2 ≈ 10−4 . ε
a3

λ3 ≈ 10−8 ∼ a2δ2

λ4 ≈ 10−11. (6.24c)

The order of magnitude of each term within and outside the boundary layer is determined
using the values va ≈ 0.5 m/s and λ = 760 µm (reported in Ref. [24]) for experiments
resembling the usual rectangular channel, and a = 12 µm , which was the seed particle
radius used in the experiments reported in Ref. [1]. The angular frequency ω is calculated
using the isentropic speed of sound in Table A.1. Notice that we do not include the time
derivative in the order of magnitude calculation, since we consider only harmonic time
dependence, and in the non-dimensionalised co-ordinates this would merely give a factor
of the imaginary unit i. Furthermore, notice the use of . in Eq. (6.24c). It means that
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the order of magnitude is less than or equal to the subsequent expression, and we use it
because the factors r−2 decrease as r increases.

We see clearly in Eq. (6.24c) that the term on the right hand side is negligible outside
the boundary layer. Moreover, to first order (zeroth order in ε) we can also neglect the
square bracket so Eq. (6.24a) reduces to ∂t(D

2ψ1) = 0. The solution to this equation
will, however, fulfil only the boundary condition in Eq. (6.21c). It breaks down near the
boundary layer, revealing that the problem is singular in the term on the right hand side.
By singular, we mean that the problem and its solutions change qualitatively if the term
is neglected even though it is negligible in most of the problem domain. The reason is
that the very small factor |M |−2 multiplies the highest derivative, which is huge within
the boundary layer, where the velocity, the streaming function and its radial derivative
transition from their bulk amplitude to zero over a very short distance. Thus, as evident
from Eq. (6.24b), in this small part of the problem domain the right hand side term is of
the same order of magnitude as ∂t(D

2ψ1), and should therefore not be neglected.

We could be tempted to solve the first order problem without neglecting the singular
term in any region. This is done in Section D.2 in Appendix D, but has the downside
that the second-order solution can not be determined by going to second order with the
found solution. As we are interested in acoustic streaming, a second-order effect, we have
to solve the problem using the method of matched asymptotic expansions. It dates back
to the seminal work of Prandtl [28] and is described thoroughly by Van Dyke in Ref.
[29]. The idea is to separate the problem into an inner and an outer part that satisfy the
boundary conditions inside and outside the boundary layer, respectively. The co-ordinates
and dependent variables of the inner part are stretched in order be formulated using the
length scale δ that is appropriate within the boundary layer. These two solutions are
then matched asymptotically. By this we mean that as the relevant inner co-ordinates go
to infinity, corresponding to just outside the boundary layer, it should match the outer
solution for the outer co-ordinates approaching the boundary layer.

Since we want to introduce the boundary layer thickness in the non-dimensionalisation
of the problem, we introduce the stretched radial co-ordinate η′ and the inner streaming
function Ψ′,

η′ =
|M |√

2
(r′ − 1) =

a

δ
(r′ − 1) =

a

δ

(r
a
− 1
)

=
(r − a)

δ
, (6.25a)

Ψ′ =
|M |√

2
ψ′ =

a

δ
ψ′ =

a

δ

ψ

vaa
2 =

ψ

vaaδ
. (6.25b)

Here, we have briefly reintroduced the prime notation for the non-dimensionalised ra-
dial co-ordinate and the streaming function. This shows that the stretched radial non-
dimensionalised co-ordinate η′ is the radial distance to the surface of the sphere in units
of the boundary layer thickness. It can be considered a normalisation such that, in the
boundary layer region, the radial derivatives are of the order unity like the polar ones. For
the streaming function, it shows that the appropriate scale is vaaδ and not vaa

2.

If we once again omit the prime notation, we can transform Eq. (6.24a) into the
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appropriate inner equation of motion,

∂t
(
∂ 2
η ψ
)

+ ε

[
∂
(
Ψ, ∂ 2

η Ψ
)

∂(η, µ)
+

2µ

1− µ2

(
∂ηΨ

)
(∂ 2
η Ψ)

]
=

1

2
∂ 4
η Ψ, (6.26)

where the details are provided in Appendix D, Section D.3. Inspection of Eq. (6.25a)
shows that the no-slip boundary conditions in the inner co-ordinates take the form

Ψ1 = Ψ2 = 0 at η = 0, (6.27a)

∂ηΨ1 = ∂ηΨ2 = 0 at η = 0. (6.27b)

We recall that the reason for going to second order is that we wish to investigate the
steady streaming pattern, a time-averaged effect. Therefore, we take the time average of
the second-order conditions in Eq. (6.27). As the time average of zero is zero, we obtain

Ψ1 =
〈
Ψ2

〉
= 0 at η = 0, (6.28a)

∂ηΨ1 = ∂η
〈
Ψ2

〉
= 0 at η = 0. (6.28b)

The conditions in Eqs. (6.21c) and (6.21d) remain unchanged as they apply outside the
boundary layer.

6.6 Problem summary

Before we begin solving the problem, we provide a short summary of the preceding sec-
tions. The problem we seek to solve is a rigid sphere situated at a pressure node of an
acoustic standing plane wave supported by an unbounded fluid. We want to solve it the
incompressible flow approximation and in the limit ε � 1, where the amplitude of the
acoustic wave is sufficiently small that the oscillation amplitude of the sphere is much
smaller than its radius. Furthermore, we require that |M | � 1, such that the acoustic
boundary layer is much thinner than the radius of the sphere, and finally, we require that
λ� a meaning that the acoustic wavelength is much larger than the extent of the sphere,
so that its amplitude is approximately constant the sphere’s vicinity.

We started out discussing the above-mentioned characteristic length scales and num-
bers in anticipation of the importance of those when the problem should be solved. We
then rewrote the vector equation of motion in the form of the Navier-Stokes equation to a
non-dimensionalised scalar equation in the streaming function, exploiting the axisymmetry
and the incompressibility. Finally, we discussed the singular term in the scalar equation
and separated the problem into an inner problem,

∂t(∂
2
η Ψ) + ε

[
∂
(
Ψ, ∂ 2

η Ψ
)

∂(η, µ)
+

2µ

1− µ2 (∂ 2
η Ψ)

(
∂ηΨ

)]
=

1

2
∂ 4
η Ψ, (6.29a)

Ψ1 = Ψ2 = 0 at η = 0, (6.29b)

∂ηΨ1 = ∂ηΨ2 = 0 at η = 0. (6.29c)
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and an outer problem

∂t(D
2ψ) + ε

[
− 1

r2

∂(ψ,D2ψ)

∂(r, µ)
+

2

r2 (D2ψ)(Lψ)

]
=

1

|M |2
D4ψ, (6.30a)

ψ1 → 1
2var

2(1− µ2) as r →∞, (6.30b)

ψ2 . r as r →∞. (6.30c)

6.7 Outer first-order solution

We shall now solve the problem and find an expression for the sphere streaming. We begin
by solving the outer first-order equation where the first step is to make a perturbation
expansion in the oscillation parameter,

ψ = ψ1 + εψ2 + ε2ψ3 + ... (6.31)

Insertion of Eq. (6.31) into Eq. (6.14) yields to first order

∂t(D
2ψ1) =

1

|M |2
D4ψ1, (6.32)

As discussed, it is possible to solve this equation and find the exact first-order solution
for an arbitrary value of M . However, it is more instructive to find the inner and outer
solutions directly, as they are needed to solve the second-order equation for |M | � 1.
The exact solution to first order is derived in Section D.2 in Appendix D, where it is also
shown that for |M | � 1, it tends towards the inner and outer solution close to and far
from the boundary layer, respectively. Here, we derive the outer solution to first order,
meaning that we neglect the right hand side term. As we consider acoustic fields that have a
harmonic time dependence, the time derivative gives a factor i (in the non-dimensionalised
co-ordinates), and the equation reduces to

D2ψ1 = ∂ 2
r ψ1 +

1− µ2

r2 ∂ 2
µψ1 = 0. (6.33)

The asymptotic boundary condition in Eq. (6.30b) calls for a separation of variables,

ψ1(r, µ) = R1(r)
(
1− µ2 ). (6.34)

Insertion of Eq. (6.34) into Eq. (6.33) yields

R′′1(r) =
2

r2R1(r), (6.35)

which has the solution R1(r) = cIr
2 + cIIr

−1. The asymptotic condition in Eq. (6.30b)
leads to cI = 1

2 , but as expected the solution can not fulfil both the inner conditions
ψ = ∂rψ = 0 at r = 1, as they were expressed before we transformed them to the inner
co-ordinates. Thus, one coefficient remains undetermined for now,

ψ1(r, µ) =

(
1

2
r2 +

cII

r

)(
1− µ2

)
. (6.36)
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6.8 Inner first-order solution

We proceed to make a perturbation expansion of the inner streaming function,

Ψ = Ψ1 + εΨ2 + ε2Ψ3 + ... (6.37)

Substitution into Eq. (6.29a) yields the first-order equation

i∂ 2
η Ψ1 =

1

2
∂ 4
η Ψ1, (6.38)

where the factor i is from the time derivative. We know that the inner and outer solution
should tend asymptotically towards each other for η → ∞ and r → 1. From this and
Eq. (6.36) we infer that

Ψ1(η, µ) = Φ1(η)
(
1− µ2). (6.39)

Eq. (6.38) can be solved in two steps if we set ζ(η) = ∂ 2
η Φ1(η) and thereby ∂ 2

η ζ = 2 iζ.

The latter equation has the solution ζ(η) = CI e(1+ i)η + CII e−(1+ i)η, which we integrate
twice to obtain

Φ1(η) = CI e(1+ i)η + CII e−(1+ i)η + CIIIη + CIV, (6.40)

where the coefficients CI and CII have been redefined. The no-slip conditions Ψ1(0) = 0
and ∂ηΨ1(0) = 0 leads to CIV = −

(
CI +CII

)
and CIII = (1 + i)

(
CII −CI

)
, and so we end

up with

Ψ1(η, µ) =
[
CI e(1+ i)η + CII e−(1+ i)η + (1 + i)

(
CII − CI

)
η −

(
CI + CII

)] (
1− µ2). (6.41)

We determine the remaining constants in the matching process in the next section.

6.9 First-order asymptotic matching

We have derived the inner and outer solutions to first order,

Ψ1(η, µ) =
[
CI e(1+ i)η + CII e−(1+ i)η + (1 + i)

(
CII − CI

)
η −

(
CI + CII

)] (
1− µ2), (6.42a)

ψ1(r, µ) =

(
1

2
r2 +

cII

r

)(
1− µ2

)
, (6.42b)

and are ready to match them. Substitution of r = 1 +
√

2η
|M | into the inner solution and a

subsequent Taylor expansion to first order in
√

2η
|M | � 1 yields

ψ1(η, µ) =

[
1
2

(
1 +

√
2η
|M |

)2
+ cII

(
1 +

√
2η
|M |

)−1
] (

1− µ2) (6.43a)

≈
[

1
2

(
1 + 2

√
2η
|M |

)
+ cII

(
1−

√
2η
|M |

)] (
1− µ2) (6.43b)

=
[(

1
2 + cII

)
+
√

2
|M |
(
1− cII

)
η
] (

1− µ2) (6.43c)
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The Taylor expansion is justified since
√

2η
|M | = r−1� 1 when r approaches 1 (corresponding

to a in dimensionalised co-ordinates). As Ψ = |M |√
2
ψ, the matching condition is

lim
η→∞

Ψ1 = lim
r→1

|M |√
2
ψ1. (6.44)

Comparing Eqs. (6.42a) and (6.43), we see that Ψ(η, µ) can not increase faster than
proportionally to η as we let η → ∞. Consequently, CI must be zero. This leaves the

conditions (1+ i)CII = 1−cII and CII = − |M |√
2

(
cII+

1
2

)
, which in Section D.4 in Appendix D

are shown to be fulfilled for

cII = −1

2

|M |(1 + i) + 2
√

2

|M |(1 + i) −
√

2
≈ −1

2
, (6.45a)

CII =
3

2

|M |
|M |(1 + i)−

√
2
≈ 3

2

1

1 + i
=

3

4
(1− i), (6.45b)

where we exploit that |M | � 1 to reduce the coefficients. Insertion of CI = 0 and Eq. (6.45)
into Eq. (6.42) yields the first-order solutions

Ψ1(η, µ) =
3

2

[
η − 1

2
(1− i)

(
1− e−(1+ i)η

)] (
1− µ2), (6.46a)

ψ1(r, µ) =
1

2

(
r2 − 1

r

)(
1− µ2

)
. (6.46b)

Having determined these, we can proceed to second order.

6.10 Inner second-order solution

To second order the inner streaming equation, Eq. (6.29a), reduces to

∂t(∂
2
η Ψ2) +

∂
(
Ψ1, ∂

2
η Ψ1

)
∂(η, µ)

+
2µ

1− µ2 (∂ 2
η Ψ1)

(
∂ηΨ1

)
=

1

2
∂ 4
η Ψ2. (6.47)

We recall that the reason for going beyond first order is that the time averages of the
first-order fields are zero. Thus, we have to go to second order to determine time-averaged
effects. Taking the time average (denoted by

〈
•
〉
) eliminates the first term,〈

∂
(
Ψ1, ∂

2
η Ψ1

)
∂(η, µ)

〉
+

2µ

1− µ2

〈
(∂ 2
η Ψ1)

(
∂ηΨ1

)〉
=

1

2
∂ 4
η 〈Ψ2〉 . (6.48)

The terms that are comprised of products of the first-order solution are calculated thor-
oughly in Section ?? in Appendix D, after which we end up with

∂ 4
η

〈
Ψ2

〉
=

9

2

[
e−2η − e−η cos η + e−η sin η − 2η e−η sin η

]
µ
(
1− µ2). (6.49)
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After four consecutive integrations we obtain〈
Ψ2(η, µ)

〉
=

9

2

[
1

16
e−2η+

5

4
e−η cos η+

3

4
e−η sin η+

1

2
η e−η sin η+CIη

3+CIIη
2+CIIIη+CIV

]
µ(1−µ2).

(6.50)
Notice that the second-order dependence on the transformed polar co-ordinate µ differs

from the first-order dependence. From the condition
〈
Ψ2(0, µ)

〉
= 0 we determine CIV =

−21
16 , and then CIII = 5

8 follows from the condition
〈
∂ηΨ2(0, µ)

〉
. We thus have two

coefficients that have yet to be determined,〈
Ψ2(η, µ)

〉
=

9

2

[
1

16
e−2η+

5

4
e−η cos η+

3

4
e−η sin η+

1

2
η e−η sin η+CIη

3+CIIη
2+

5

8
η− 21

16

]
µ(1−µ2).

(6.51)

6.11 Outer second-order solution

Finally, we are ready to calculate the streaming outside the boundary layer which was the
reason for going through the previous inner and outer first-order and inner second-order
calculations. As for the inner second-order equation, we take the time average to eliminate
the time derivative term, after which the outer streaming equation, Eq. (6.30a), reduces
to

1

r2

〈
∂(ψ1, D

2ψ1)

∂(r, µ)

〉
+

2

r2

〈
(D2ψ1)(Lψ1)

〉
=

1

|M |2
D4〈ψ2

〉
. (6.52)

From the first order equation D2ψ1 = 0, we see that the two first terms are zero so the
equation reduces to

D4〈ψ2

〉
= 0. (6.53)

Eq. (6.53) is solved in Section D.6 in Appendix D where the angular dependence is inferred
from the inner second-order solution. The result is〈

ψ2(r, µ)
〉

=
[
cIr

5 + cIIr
3 + cIII + cIVr

−2]µ(1− µ2). (6.54)

The condition in Eq. (6.30c) that the second-order streaming function can not increase
faster than proportionally to r (so that the second-order velocity field dies out far from
the sphere) rules out the two first terms,〈

ψ2(r, µ)
〉

=
[
cIII + cIVr

−2]µ(1− µ2). (6.55)

The two other coefficients are determined by the asymptotic matching condition.

6.12 Second-order asymptotic matching

The inner and outer streaming functions to be matched are〈
ψ2

〉
=
[
cIII + cIVr

−2]µ(1− µ2), (6.56a)〈
Ψ2

〉
=

9

2

[
1

16
e−2η +

5

4
e−η cos η +

3

4
e−η sin η +

1

2
η e−η sin η + CIη

3 + CIIη
2 +

5

8
η − 21

16

]
µ(1− µ2).

(6.56b)
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As for the first-order case, we perform the matching by first rewriting the outer solution
in terms of the inner variable η and then Taylor expanding the result for r � 1,〈

ψ2(r, µ)
〉

=
[
cIII + cIVr

−2]µ(1− µ2) (6.57a)

=

[
cIII + cIV

(
1 +

√
2η
|M |

)−2
]
µ
(
1− µ2) (6.57b)

≈
[
cIII + cIV

(
1− 2

√
2η
|M |

)]
µ
(
1− µ2) (6.57c)

=
√

2
|M |

[
|M |√

2

(
cIII + cIV

)
− 2 cIVη

]
µ
(
1− µ2). (6.57d)

Finally we multiply by |M |√
2

to obtain the same scale as the inner solution, and match,

lim
η→∞

Ψ2 = lim
r→1

|M |√
2
ψ2. (6.58)

We see in Eq. (6.57d) that the outer solution is proportional to the inner radial co-ordinate
η in the vicinity of the boundary layer. Hence, the inner solution must also be proportional
to η when η →∞ which leads to CI = CII = 0. Furthermore, we see that cIV = −45

32 and
that cIII = −cIV. Thus, the final result is

〈
ψ2(r, µ)

〉
=

45

32

(
1− 1

r2

)
µ
(

1− µ2
)
, (6.59a)

〈
Ψ2(η, µ)

〉
=

9

2

[
1

16
e−2η +

5

4
e−η cos η +

3

4
e−η sin η +

1

2
η e−η sin η − 21

16
+

5

8
η

]
µ(1− µ2).

(6.59b)

In the next section we calculate the outer streaming from Eq. (6.59a).

6.13 Streaming outside the boundary layer

In this final section of the chapter, we calculate the streaming and visualise it. The outer
second-order streaming function is given in Eq. (6.59a) and its relation to the second-order
velocity field is inferred from Eq. (6.17),

〈
v2

〉
= −er

1

r2 ∂µψ2 − eθ
(1− µ2)−

1
2

r
∂rψ2. (6.60)

Insertion of Eq. (6.59a) into Eq. (6.60) yields

〈
v2

〉
= er

45

32

(
1

r4 −
1

r2

)(
1− 3µ2

)
− eθ

45

16

1

r4 µ
(

1− µ2
) 1

2
. (6.61)

The spherical co-ordinates can be transformed back to the regular ones by insertion of
µ = cos θ. Furthermore, we recall that the variable r is measured in units of the sphere
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MMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMl lllllllllllllllFigure 6.2 Colour plot of the sphere streaming magnitude going from minimum of 0.002
(dark red) to maximum of 0.97 (yellow) on a logarithmic scale, in units of εva = v2

a(ωa)−1 ≈
0.6 mm/s. The value is for water, va ≈ 0.3 m/s, α = 12 µm , and f ≈ 2 MHz corresponding
to λ ≈ 750 µm . The red quadrant is sphere and the blue area its boundary layer region
where the outer streaming expression is invalid. The distances are normalised with the
radius a.

radius a, and the streaming amplitude in units of εva = v2
a(ωa)−1. After the transformation

to the variable θ and the substitution of the dimensionalised quantities, we obtain

〈
v2

〉
=
v2

a

ωa

45

32

[
er

(
a4

r4 −
a2

r2

)(
1− 3 cos2 θ

)
− eθ 2

a4

r4 cos θ sin θ

]
. (6.62)

Eq. (6.62) is the final result of our analytical calculations. It is an expression for the
streaming velocity outside the boundary layer region, for a rigid sphere in the incompress-
ible flow approximation and in the limits where δ � a � λ, ε � 1 � |M | and va � c0.

We have plotted the streaming in Figure 6.2, and we see in Figure 6.1 that the axis of
oscillation is the z axis. Thus, the direction of the streaming is outwards along the axis of
oscillation, which is also the axis of azimuthal symmetry. Along the axis perpendicular to
the axis of oscillation (in this case the y axis), the streaming is inwards. The streaming
is strongest at the sphere surface at the angle θ ≈ π

4 = 45◦, and lowest in the direction
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given by the angle θ ≈ 5π
16 ≈ 56◦. The first angle is found numerically for r fixed at the

edge of the boundary layer, which we have chosen as r = 1.1a, and the second angle is
where the angular part 1 − 3 cos2 θ in

〈
v2

〉
r

is close to zero. We recall that for water at
MHz frequencies, the boundary layer thickness is δ ≈ 0.5 µm , and from the discussion of
the radiation force, we recall that our choice of the boundary layer region edge is several
times δ from the surface, but otherwise arbitrary. The choice r = 1.1a corresponds to 3δ
for a = 15 µm .

The purpose of the analytical calculations in this chapter was to determine the stream-
ing expression in Figure 6.2 in order to compare this with the streaming generated by
channel walls, and see if it drags sub-micron particles towards the pressure node. This
comparison is the subject of Chapter 7.



Chapter 7

Influence of a seed particle on the
streaming pattern

In this chapter we compare the sphere streaming determined in Chapter 6 with the channel
streaming. The channel streaming is generated by channel walls, and we intent to compare
it to the sphere streaming, which we calculated for an unbounded fluid (no surrounding
walls). We thus combine results that are invalid in each other’s domain. Nevertheless,
we shall make the combination, while we understand that the results are rough estimates.
Afterwards, we supplement this comparison with numerical calculations carried out in
COMSOL.

We begin with the comparison based on analytical expressions. The system is shown
in Figure 7.1. The simultaneous bounded- and unboundedness is illustrated by the dashed
channel walls and the dashed boundary layers generated at them. The illustration of the
sphere streaming (red) is based on Figure 6.2 and indicates that there may be areas along
the two axes, where the streaming patterns cancel each other out.

For the channel streaming we use the analytical expression derived in Ref. [24]

〈
v2

〉
ch
≈ vstr

[
sin(πz̃)

(
3

2
ỹ2 − 1

2

)
ez + cos(πz̃)

πα

2

(
ỹ − ỹ3

)
ey

]
, (7.1)

where a tilde denotes a normalisation with respect to the relevant channel dimension,

z̃ =
2z

w
with − 1 < z̃ < 1, ỹ =

2y

h
with − 1 < ỹ < 1, (7.2)

and where vstr and α are the amplitude and channel aspect ratio,

vstr ≈
1

2

v2
a

c0
, α ≡ h

w
� 1. (7.3)

The expression is a good approximation for shallow channels which have low aspect ratios
α. We make a compromise between the approximation in Eq. (7.1) valid for shallow
channels, and the expression in Eq. (6.62) valid in unbounded fluids. For a seed particle
radius as of the order 10 µm , channel width w = 380 µm and channel height h = 180 µm,

47
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Figure 7.1 System for comparison of the streaming (red arrows) generated by a spherical
seed particle (red) at a pressure node, and streaming (orange) generated by boundary
walls. For the former we use an expression valid in a an unbounded fluid (no surrounding
walls), and latter exists only in the presence of surrounding walls. Hence, the dashed
channel walls (grey) and wall boundary layers (blue). The fluid (light blue) supports
a half-wavelength standing pressure wave (magenta), and a small probe particle (green)
experiences a drag force due to the sum of the streaming patterns.

the aspect ratio is α = 0.47 < 1, and the walls are far from the sphere compared to its
size (as � h,w). The channel is thus semi-shallow, while the walls are many radii from
the sphere. The streaming velocity fields in Eqs. (6.62) and (7.1) are added using that
er = sin θ ey + cos θ ez and eθ = cos θ ey − sin θ ez in the yz-plane. The drag force on a
probe particle of radius ap that is initially at rest, is given by Eq. (4.16) for vp = 0 and v
equal to the sum of the streaming velocity fields. If

〈
v2

〉
s

denotes the streaming velocity
field due to the seed particle, the drag force expression becomes

F drag = 6πηap

(〈
v2

〉
s

+
〈
v2

〉
ch

)
. (7.4)

In Figure 7.2 the drag force magnitude F drag on a probe particle is illustrated for the upper
right part of the channel in Figure 7.1. As the drag force is proportional to the streaming
velocity, the plot (without the caption) could just as well illustrate the streaming and we
shall therefore mention the force and the streaming interchangeably.

The plot in Figure 7.1(a) is for as = 0 and it is thus a reference plot, showing only
the drag force due to the channel streaming. The figure shows the upper right of the four
circulating streams that we also plotted in Figure 4.3. It is strongest at the top walls,
where the velocity has to decay to zero, and weakest in its centre at (z, y) = (90, 40) µm
and four corners at (z, y) = (0, 0), (180, 0), (180, 80) and (0, 80) µm . We recall that this
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Figure 7.2 Colour plots of the drag force magnitude F drag due to the sum of the sphere
streaming and channel streaming, and vector plots of the force direction (no scaling) for

different seed particle radii as. The colour varies from dark red (lowest magnitude F drag
min )

to yellow (highest magnitude F drag
max ) on a (a) linear scale and (b)-(d) logarithmic scale.

The red quadrant at the origin is the seed particle, and the plots show only the upper right
quarter of the channel in Figure 7.1 for h = 180 µm and w = 380 µm . We use parameters
for water and va = 1 m/s. The seed particle radius as, minimum force magnitude F drag

min ,

and maximum force magnitude F drag
max are (a) 0 µm , 0 N and 5 pN, (b) 4 µm , 5 fN and

0.2 nN, (c) 8 µm , 8 fN and 0.2 nN, and (d) 12 µm , 0.2 pN and 0.5 nN.

channel streaming is the motivation for this thesis, since it complicates focusing of sub-
micron particles at the channel centre (z, y) = (0, 0) µm . As evident from the figure, the
channel streaming drags sub-micron particles near y = 0 towards the channel centre (and
the pressure node). However, when the particles reach the area close the centre (z = 0),
they are dragged upwards to the top wall and then towards the upper right corner. The
sub-micron particles, for which the streaming-induced drag force dominates the motion,
will thus not focus.

Figure 7.2(b) shows the drag force in the presence of a seed particle of radius as = 4 µm .
According to the figure, even such a small seed particle will turn the direction of the drag
force along the y axis from upwards to downwards. It also creates what looks like a force
corresponding to a small circulating flow close to the particle, at an angle of roughly
θ ≈ 60◦. The direction of the force also changes along the first part of the z axis, from
inwards to outwards. Finally, the centre of the original circulating flow has moved a little
down and to the right. The plot in Figure 7.2(b) is for as = 4 µm and the boundary layer
at the sphere surface has the thickness δ ≈ 0.5 µm . The sphere radius is thus barely in
the limit δ � as where the expression for the sphere streaming is valid. This adds to the
roughness of the estimation.

The plot shown in Figure 7.2(c) is for as = 8 µm which too is barely in the limit
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δ � as. The drag force due to the seed particle streaming dominates in the left part of
the plot, close to the seed particle. This left part closely resembles the sphere streaming
shown in Figure 6.2. In the right part of the plot, for z > 100 µm , the channel drag
force pattern from Figure 7.2(a) is still recognisable, but the original centre of the channel
pattern has moved further down and to the right.

Finally, Figure 7.2(d) shows a plot for a seed particle radius of as = 12 µm , which is in
the limit δ � as. The plot is qualitatively different from the two previously discussed. The
small circulation in the force close to the seed particle is still visible, but what corresponded
to the centre of the channel streaming is not. The direction of the force is outwards along
the z axis all the way to the wall. This indicates that the streaming due to the seed
particle might not make it easier to trap sub-micron particles at the pressure node. As
seen in Figure 7.2(a), the streaming in the absence of a seed particle assists the trapping
along the z axis and counteracts it along the y axis,. In Figure 7.2(d), we see the opposite
its presence. The streaming counteracts the trapping along the z axis and assists it along
the y axis. However, in Figure 7.2(d) we still see an indication of what could be a small
circulating flow close to the seed particle. Sub-micron particles would perhaps stay in the
flow but it is difficult say from looking at the figure.

It is obvious to consider varying other quantities than the seed particle radius and
examine how the total drag force changes. However, the channel streaming and seed
particle streaming are same phenomenon and therefore, they have the same dependence
on the amplitude va of the applied oscillating first-order velocity field. We see that in
Eqs. (6.62) and (7.1). Increasing the channel width w is an option, however, since the
dependence of the two streaming patterns on the width differ from each other. If we
substitute ω = c0λ

−1 into Eq. (6.62), we see that the seed particle streaming is proportional
to the wavelength λ, which is twice the channel width. In Eq. (7.1), which gives the channel
streaming, the dependence on the channel width is implicit in the variables ỹ and z̃ which
are normalised with respect to the width and height. We shall not consider this width
dependence further, as the purpose of the section was to make a rough estimation of the
total streaming pattern in the presence of the seed particle.

We conclude from the investigation in this section that the presence of a seed particle
alters the total streaming pattern in the channel. However, the altered streaming pattern
does not seem to allow focusing of sub-micron particles, due to the direction of the drag
force being outwards along the axis of oscillation. The only indication of the opposite is
what looks like a small circulating flow close to the seed particle.

Once again, we stress that the investigation is based on two analytical results that are
incompatible with each other’s domain. We used the expression for the streaming from
a sphere in a fluid that is not surrounded by any wall boundaries, and added it to the
channel streaming which is a consequence of such boundaries. Furthermore, the channel
we considered was not very shall but nevertheless, we used an expression for streaming in
a very shallow channel. The point is that the results of this section are merely indicative
and of high uncertainty. In the next section we supplement the results with numerical
calculations.
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Figure 7.3 Axially symmetric geometry consisting of a cylinder of height w and radius h
2

with a central seed particle of radius as (red surface) used in the COMSOL simulations.
As usual, we use water as the suspending medium. The cylinder is shown with its axis
horizontally oriented, and due to the axial symmetry indicated by the circulating arrows,
only half of its cross section is shown. The cylinder top and bottom oscillates as indicated
by the thick horizontal arrows.

7.1 Simulations of acoustic streaming

In this section we present results from numerical calculations of streaming in the presence
of a seed particle. A full 3D simulation of a rectangular channel and a spherical seed
particle is too demanding for the computers available in the work with this thesis. We
can partly overcome this limitation by instead simulating the axially symmetric problem
consisting of a cylinder with oscillating top and bottom, which contains a spherical seed
particle at its centre. Due to the axisymmetry, we can solve this 3D problem as if it was
a 2D one. The system is sketched in Figure 7.3 with the cylinder rotated so its axis of
symmetry is horizontal.

7.1.1 Setting up COMSOL

We are not restricted by the limit α � 1 as in the previous section, so we consider the
cylinder dimensions h = 240 µm and w = 380 µm . The reason for choosing a cylinder
radius h

2 larger than 160 µm , which is the width of all the previously considered rectangular
channels, is that we also want to see how the streaming is far from the seed particle in
the r direction. We choose a polystyrene seed particle of radius as = 12, similar to those
in the experiments reported in Ref. [1].

COMSOL takes care of the axis of symmetry such that the pressure and velocity fields
and there first-order derivatives a continuous on it. On the hard wall and on the surface of
the rigid seed particle, we impose no-slip conditions on both the first-and second order the
velocity field: v1 = v2 = 0. The oscillating top and bottom of the cylinder is implemented
by demanding the first order velocity field to be v1 = vbc e− iωt on those walls. Here, the
amplitude is vbc = dω, where d = 0.22 nm is the displacement and ω = 2π× 1.97 MHz
the angular frequency corresponding to a half-wavelength resonance in the cylinder. The
value or d is of an order typical for experiments [30].

The second-order condition on the top and bottom is that there must be no mass flux



52 CHAPTER 7. SEED PARTICLE INFLUENCE ON STREAMING

through them: n · [ρ0

〈
v2

〉
+
〈
ρ1v1

〉
] = 0 on the top and bottom boundaries. For the

pressure we keep on all boundaries the weak form condition n · J = 0, which COMSOL
has as the default, for the currents J given by the first-order and second-order time-
averaged continuity equation. We shall not go into details about the generalised currents
J and driving forces F , since they can be found by rewriting the first-order and time-
averaged second-order governing equations, Eqs. (2.16) and (2.22), on the form of the
generic Cartesian continuity equation in Eq. (3.2). In doing so, one has to remember that
the volume measure in Eq. (3.4) is dr = r dr dz dφ in cylindrical co-ordinates but we shall
not go into further details here, as we merely use COMSOL as a tool.

A final aspect to touch upon when setting up COMSOL is the size of the mesh elements
discussed in Chapter 3. The size has to be decreased until the solutions converge. We refer
to Ref. [31] in which the authors present simulations of acoustic streaming in a rectangular
channel of dimensions similar to the cylinder that we consider. For a given solution g to
one of the physical fields, the authors define a convergence parameter C(g) with respect
to a reference solution,

C(g) =

√∫
(g − gref) da∫

(gref)
2 da

. (7.5)

The reference solution is for a maximum boundary mesh length dmesh = 0.3δ, a third of
the boundary layer thickness. In the light of an analysis of the mesh convergence, the
authors conclude that dmesh = 0.5δ gives a relative convergence of C ≤ 0.002, sufficient
for their streaming analysis. As an analysis of mesh convergence is outside the scope of
this thesis, we use their maximum boundary mesh size of dmesh = 0.5δ ≈ 0.2 µm . In the
bulk, we allow the side length of the mesh elements to increase up to 50δ ≈ 19 µm .

7.1.2 The simulated acoustic fields

The result of the simulation is a first-order velocity field amplitude va = 0.28 m/s, a
first-order pressure field amplitude pa = 0.27 MPa and a second-order time-averaged
maximum pressure field of

〈
p2

〉
max

= 8.5 Pa. Notice that we used a wall displacement of
the same order of magnitude as seen in the experiments referred to above, and that we
get amplitudes va and pa of the same order of magnitude as those used throughout the
thesis for a number of estimations.

As our primary interest is the streaming (the second-order time-averaged velocity field),
we turn out attention to that. The other fields are shown in Figure E.1 in Appendix E.
Figure 7.4 shows two plots of the streaming: one without the seed particle (for reference),
and one with a central seed particle of radius as = 12 µm . The axis of symmetry corre-
sponding to that in the schematic Figure 7.3 is given by r = 0. In Figure 7.4(a) we see
that in the absence of the seed particle, the streaming is zero at the cylinder centre. Its
direction is outwards along z = 0 and inwards along the symmetry axis (r = 0). Two
circulating flows are generated close to the cylinder wall. We see that particles following
these would move towards z = 0, and then away from the centre of the cylinder towards
its side wall. Next, they would move along the side wall back towards the top or bottom.

In Figure 7.4(b) we see on the colour plot that the streaming generated close the seed
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Figure 7.4 Colour plots varying linearly from zero (black) to the maximum (white) mag-
nitude of the second-order velocity field, i.e. the streaming flow, induced by a horizontal
half-wavelength resonance by the oscillations of the vertical walls (cylinder top and bot-
tom). The axis of rotational symmetry is given by r = 0. The vector plot shows both
the direction and magnitude of the streaming flow. (a) Reference plots without the seed
particle. The maximum streaming velocity is 7.4 µm /s and the vector size varies linearly
from zero streaming magnitude (no arrow) to the maximum magnitude (largest arrow).
(b) The channel contains a spherical seed particle of radius as = 12 µm in its centre. The
maximum streaming velocity is 169 µm /s which is at the surface of the seed particle. The
vector size varies on a logarithmic scale from zero streaming magnitude (no arrow) to the
maximum magnitude (largest arrow).

particle is much stronger than the big circulating flows, which we recognise as the wall-
generated streaming from Figure 7.4(a). The streaming close to the sphere consists of
two circulating flows which, starting at (r, z) = (0,±as), have direction outwards along
the z axis until z ≈ ±60 µm , after which the streaming changes direction towards the
side wall at (r, z) ≈ (40,±60) µm . Then its direction changes to be towards z = 0, from
where it ends the circulation by having direction towards the surface of the seed particle.
These circulating flows close to the seed particle qualitatively resemble those indicated in
Figure 7.2 which is based on analytical treatment. This resemblance suggests that the seed
particle does indeed generate small circulating flows. However, we can not see from either
of the figures, to what degree sub-micron particles will be trapped in these. In order to get
a better idea of the particle movement in these flows, we employ the COMSOL module
“Particle Tracing for Fluid Flows”.

7.1.3 Particle tracing

The particle tracing module of COMSOL computes the trajectories of particles by solving
Newton’s second law numerically for one or more forces acting on those particles. We
specify the general expressions for the drag force and the acoustic radiation force, given in
Eqs. (4.10) and (4.16). We also give as inputs the particle radius, the initial positions and
material properties affecting the two forces. As usual, we treat the case of polystyrene
particles in water, for which parameter values are listed in Table A.1. We study the
motion of 144 particles which are initially distributed evenly, and the results are shown
in Figure 7.5. Figures 7.5(a)-(e) and Figures 7.5(f)-(j) are results for the reference system



54 CHAPTER 7. SEED PARTICLE INFLUENCE ON STREAMING

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

−150

0

z
[µ

m
]

150

−150

0

z
[µ

m
]

150

0

r [µm]

60 120 0

r [µm]

60 120 0

r [µm]

60 120 0

r [µm]

60 120 0

r [µm]

60 120

MMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMM llllllllllllllllllllll-
lllllllllll

Figure 7.5 Simulations of polystyrene particle trajectories in a cylinder containing water.
The fluid supports a half-wavelength standing pressure wave with a node at z = 0 (not pic-
tured) excited by the oscillating top and bottom of the cylinder as sketched in Figure 7.3.
The 144 particles (blue dots) are initially distributed evenly in (a) the reference system and
(f) the seed particle system. The four subfigures following each of the above-mentioned
show the particle trajectories (coloured lines) and positions (dots) after 15 seconds of
motion for four different particle radii: 2.5 µm in (b) and (g), 1.5 µm in (c) and (h),
1.0 µm in (d) and (i), and 100 nm in (e) and (j). The particle speed varies from vp = 0
(darkest blue) to vp = 169 µm , but the maximum of the colour scale is 100 µm /s (darkest
red).
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(no seed particle) and the seed particle system, respectively. The initial distribution of
particles is shown in Figures 7.5(a) and 7.5(f), while the remaining subfigures show the
particle trajectories after 15 seconds of acoustophoretic motion. The particle size is the
same for all particles within each subfigure but decreases within each row of subfigures.
The micron-sized plots are included to illustrate the transition from the motion dominated
by the radiation force to the motion dominated by the streaming-induced drag force.

As expected, we see in Figures 7.5(b) and 7.5(g) that the motion of the 2.5 µm -
sized particles is dominated by the radiation force. By comparison with Figure 4.2 we
recognise the almost straight motion, with high velocities halfway between the cylinder
top or bottom and the pressure node z = 0, as the work of the radiation force. It is evident
that all the particles are trapped at the pressure node (z = 0), though the seed particle
streaming bends the trajectories of some of the particles, such that they also move to the
surface of the seed particle. This shows that that supra-micron-sized particles are easily
focused or trapped at the pressure node.

Figures 7.5(c) and 7.5(d) show a transition regime at particle radii in the approximate
interval 1.0 -1.5 µm . For these particle sizes, the drag force due to the channel streaming
becomes of almost the same order of magnitude as the radiation force. Consequently, the
particle motion is a mixture between the straight lines seen in Figures 7.5(b) and 7.5(g),
and the streaming pattern in Figure 7.4(a). All the 1.5 µm -sized particles in Figure 7.5(c)
has curved trajectories but stay at the pressure node when they reach, whereas some of
the 1.0 µm -sized particles in Figure 7.5(d) starts circulating.

For the corresponding figures of the seed particle system, Figures 7.5(h) and 7.5(i), we
see that the particles close to the cylinder wall (r ' 70 µm ) has approximately the same
trajectories as those described above for the reference system. However, the particles that
move close to the seed particle gets trapped in the small circulating generated by the seed
particle. These particles do not follow the channel streaming towards the side wall and
then towards the top or bottom, but stay close to the seed particle and thereby also the
pressure node.

Finally, we see in Figures 7.5(e) and 7.5(j) that the drag force dominates the trajectories
for particles with radii of 100 nm. The streaming patterns in Figure 7.4 are clearly
visualised by the trajectories. For the particles in the reference system, this means that
after reaching the pressure node, they flow to the wall r = 120 µm ) and then move back
towards the top or bottom of the cylinder. However, the particles in the seed particle
system do not all do that. Those close to the seed particle stay in its circulating flows
rather than circulate in the channel-generated ones. Thus, the seed particle traps some
of the particles in an area close to the pressure node. They are not completely focused,
though, since most move at least 30 µm away from the node during their circulation.

It seems that the seed particle has the best effect for particles of radii approximately
equal to the critical radius ac ≈ 0.5 µm calculated in Eq. (4.18). This is the approximate
particle size where the drag force begins to dominate while the radiation force still has
an impact on the particle motion. The latter thus brings the particles close to pressure
node where some of them are trapped by the sphere’s circulating flow, as indicated in
Figure 7.5(i).

We conclude that for 1-µm -particles and sub-micron-particles, the presence of a seed
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particle seem to generate small circulating flows that confine those particles to an area
around the seed particle. They are, however, not completely focused at the pressure node.



Chapter 8

Conclusion and outlook

In this thesis we have studied how the presence of a seed particle affects the acoustophoretic
motion of sub-micron particles suspended in microfluidic channels with transverse stand-
ing wave fields. The motivation is that in the absence of the seed particle, it is difficult
to trap sub-micron particles at the pressure node in the channel centre. However, the
experiments reported in Ref.[1] suggest that the presence of a seed particle inhomogeneity
enables trapping of sub-micron particles. Out aim with this thesis was to explain these
observations. Explanations are needed since a more profound theoretical understanding
of sub-micron particles undergoing acoustophoretic motion open the way for biomedical
applications involving particle detection, separation and enrichment of sub-cellular or-
ganelles, viral particles etc.

8.1 Conclusion

Our study began with Gorkov’s [17] expression for the acoustic radiation force, which is
valid for any incident acoustic fields. We used this to calculate how the acoustic radiation
force on a small probe particle changes, when an inhomogeneity in the form of a seed
particle is introduced to the pressure node at the channel centre. The goal was to see if
the latter could be of at least the same order of magnitude as the streaming-induced drag
force on particles of radius ∼ 100 nm.

The analytical treatment showed that for sub-micron particles with a density and
compressibility similar to water’s, the seed particle force is a least one order of magnitude
lower than the drag force. This was the most relevant result, since biological particles
contain much water and consequently have a density and compressibility close to those of
water. Another result was that an ideal seed particle of infinite density would make the
seed particle force almost, but not quite, of the same order of magnitude as the drag force.

After concluding that the seed particle force does not seem to enable trapping of sub-
micron particles, we moved on to study the streaming generated the seed particle. In
order to determine an analytical expression for this streaming, we wrote the Navier-Stokes
equation for incompressible flows on the form of a fourth-order scalar partial differential
equation. Due to its singularity arising from the disparate length scales of the bound-
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ary layer, the seed particle and the acoustic wavelength, the method of matched asymp-
totic expansions was employed to obtain an approximate expression for the time-averaged
second-order velocity field.

Next, we used this expression to make a graphical estimation of the effect of the seed
particle streaming on the total streaming pattern, which determines the drag force. The
examination indicated that the seed particle would generate a small circulating flow close
to its surface, that might enable trapping of sub-micron particles.

Finally, the indication from the analytical treatment was reinforced by numerical sim-
ulations of the streaming pattern and particle trajectories in a cylinder with oscillating
top and bottom walls. The simulations showed small circulating flows generated in the
vicinity of the sphere. Furthermore, the simulations indicated that particles just below
the size, where the radiation force and the drag force are of the same order of magnitude,
can be brought into these flows by the former force and then stay there due to the action
of the latter.

8.2 Outlook

The work of this thesis did not fully account for the seed particle-enabled acoustic trapping
of sub-micron particles that has been observed experimentally. Below some suggestions
are listed for future work that might improve the work of this thesis and perhaps explain
why the seed particle does enable the trapping.

8.2.1 Analytical treatment of the radiation force

We considered only the contribution to the radiation force due to fields scattered on a
seed single particle. The analytical treatment could be extended by considering a cluster
or some special configuration of seed particles.

8.2.2 Analytical treatment of the streaming

An obvious improvement to the analytical treatment of the streaming would be to somehow
include channel boundaries in the problem when deriving the sphere streaming. Another
improvement would be to use the exact expression given in Ref. [24] for the channel
streaming, instead of the shallow-channel expression, when comparing it with the seed
particle the sphere streaming.

8.2.3 Numerical simulations of the seed particle streaming

The effect of the seed particle on the overall streaming pattern was simulated in a closed
cylindrical structure because a full 3D simulation of a sphere in a channel of rectangular
cross section requires substantial computer power. It would, however be ideal to simulate
the streaming in a channel as opposed to close cylinder.

Furthermore, one could also implement the contribution to the radiation force from
the seed particle into the COMSOL simulations in order to compare the numerical result
with the analytical predictions for water-like and ideal particles.



Appendix A

Physical constants

Table A.1 Material parameter values at ambient pressure 0.1 MPa and at temperature
300 K for water [9, 32–34], air [35], and polystyrene [36–39].

Parameter Symbol Water Polystyrene Unit

Mass density ρ 9.966× 102 1.05× 103 kg m−3

Isentropic speed of sound c0 1.502× 103 2.40× 103 m s−1

Compressibility κ 4.451× 10−10 2.38× 10−10 Pa−1

Dynamic shear viscosity η 8.538× 10−4 Pa s

Bulk viscosity ζ 2.4× 10−3 Pa s

Kinematic viscosity ν 8.567× 10−7 m2 s−1

Viscosity ratio β 3.0× 100
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Appendix B

Appendix to Chapter 2

B.1 Fluid description

A fluid is either a liquid or a gas that deforms continuously and with little resistance under
the influence of external forces. It is composed of fluid elements, typically molecules, with
an interelement distance of the order 0.3 nm for liquids and 3 nm for gases [25, chap. 1].
The continuum hypothesis states that the macroscopic properties of a fluid consisting of
molecules are the same if this quantised structure is replaced by a completely continuous
structure. It is valid when the length scales of the investigated particles, structures etc.
are much bigger than the intermolecular distances. In this thesis we consider only fluids
in lab-on-a-chip systems, where the smallest length scales are of the order 100 nm . We
can thus assume the validity of the continuum hypothesis.

There are two ways to describe the continuum fields: the Eulerian field description and
the Lagrangian field description. In this thesis we use the Eulerian field description which
focuses on the motion of the fluid through fixed spatial locations. The continuum fields
are described at a fixed spatial position r at all times t and hence these two variables are
independent. We define the value of any field F (r, t) at the spatial point r at time t as
an average value in some fluid particle of volume ∆V (r) around r,

F (r, t) =
〈
Fmol(r

′, t)
〉
r
′∈∆V (r)

. (B.1)

The volume ∆V (r) is sufficiently large that it contains an enormous number of molecules,
which ensures that molecular fluctuations will not affect the observed average value. On
the other hand, ∆V (r) has to be sufficiently small that the value is indeed a local average.
If it is too big, external forces vary over the spatial distribution of the fluid particle and
the average becomes macroscopic.

Let mi and vi denote the mass and velocity of the i ’th molecule and let i ∈ ∆V denote
all molecules contained in ∆V (r) at time t. Then, we define the mass density ρ(r, t) and

61



62 APPENDIX B. APPENDIX TO CHAPTER 2

the velocity field v(r, t) as

ρ(r, t) ≡ 1

∆V

∑
i∈∆V

mi, (B.2a)

v(r, t) ≡ 1

ρ(r, t)∆V

∑
i∈∆V

mivi. (B.2b)

Notice how the velocity field is defined by the momentum density and not simply as the
sum of the molecular velocities in the fluid particle.

B.2 Mathematial notation

In order to simplify the mathematical treatment of the acoustofluidic subjects in the
following chapters we shall adopt the notation used by Bruus [40]. Although we shall also
use cylindrical and spherical co-ordinates, a Cartesian co-ordinate system is used here for
clarity. In a Cartesian co-ordinate system a vector v is written as

v = (vx, vy, vz) = vxex + vyey + vzez =
∑

i=x,y,z

viei ≡ viei. (B.3)

Here (vx, vy, vz) are the x, y and z co-ordinates of v, and ex, ey and ez are the correspond-
ing orthonormal basis vectors. In the last expression we have used Einstein’s summation
convention that repeated indices are implicitly summed over. In this simplifying notation
an index can appear at most twice in any term and non-repeated indices must be the same
in all terms. In Cartesian co-ordinates it is understood that the summation is over i = x,
y, z as in Eq. (B.3).

As a compact notation for partial derivatives we write

∂xv ≡
∂v

∂x
. (B.4)

With this notation we can write the vector differential operator ∇ in Cartesian co-ordinates
as

∇ ≡ ex∂x + ey∂y + ey∂y = ei∂i. (B.5)

Two other important quantities, the divergence ∇·v and the Laplacian ∇2v of a vector
v, can in Cartesian co-ordinates be written as

∇ · v ≡ ∂xvx + ∂yvy + ∂zvz = ∂ivi, (B.6a)

∇ ·∇v ≡ ∇2v ≡ ex∂2
xvx + ey∂

2
yvy + ez∂

2
zvz = ∂i∂ivj . (B.6b)

Another symbol we shall use with the index notation is the Kronecker delta δij ,

δij ≡
{

1, for i = j,

0, for i 6= j.
(B.7)
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When treating integrals we shall often apply the divergence theorem which states that
the volume integral of the divergence of any vector field v over a region Ω is equal to the
integral over the region’s surface ∂Ω of the flux v · n through it,∫

Ω
∇ · v dr =

∮
∂Ω
n · v da or

∫
Ω
∂jvj dr =

∮
∂Ω
njvj da (B.8)

Here, n is a vector of unit length that is perpendicular to the surface ∂Ω and points
outwards. The 2D and 3D integral measures are denoted da and dr, respectively.
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Appendix C

Appendix to Chapter 4

C.1 Detailed calculation of the scattered velocity potential

This is a more detailed calculation of the velocity potential scattered by the seed particle,
given in Eq. (5.10). The starting point is

φsc(r, t) = −f1,s
a3

s

2

pa

ρ0c0
∇·
(

cos θer − sin θeθ
r

)
cos(ωt). (C.1)

In spherical co-ordinates, the divergence ∇·v of an azimuthally symmetric vector field v
is

∇·v =
1

r2 ∂r

(
r2vr

)
+

1

r sin θ
∂θ (sin θ vθ) . (C.2)

Setting v =
cos θer − sin θeθ

r
yields

∇·v =
1

r2 ∂r

(
r2 cos θ

r

)
+

1

r sin θ
∂θ

(
− sin2 θ

r

)
(C.3a)

=
1

r2 cos θ +
1

r sin θ

(− sin θ cos θ

r

)
(C.3b)

=
cos θ

r2 − 2 cos θ

r2 = −cos θ

r2 . (C.3c)

Insertion of Eq. (C.3c) into Eq. (C.1) yields the result in Eq. (5.10),

φsc(r, t) = f1,s
a3

s

2

pa

ρ0c0

cos θ

r2 cos(ωt). (C.4)
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Appendix to Chapter 5

D.1 Derivation of the scalar equation of motion

The starting point is the rewritten and non-dimensionalised Navier-Stokes equation in
Eq. (6.12),

∂tζ
′ −∇× (v′ × ζ′) =

ε

R
∇′2ζ′, ε =

V0

ωa
, R =

aV0

ν
. (D.1)

To proceed further we exploit the symmetry around the z axis which dictates that the
physical fields can neither have an azimuthal dependence nor an azimuthal component,
thus reducing the problem to a 2D problem. Since the velocity field is divergenceless, we
can write the two components in terms of the curl of a scalar function ψ(r, θ), which we
shall refer to as the streaming function,

v = ∇× ξ = ∇×
[
ψ(r, θ)

r sin θ
eφ

]
. (D.2)

Taking the curl of a vector that has only an azimuthal component ensures that the velocity
field has only a radial and a polar component. The division by r sin θ turns out to be
convenient. We now wish to calculate the vorticity ζ, its Laplacian ∇2ζ and the term
∇×(v×ζ) contained in Eq. (D.1) in terms of the streaming function. In order to calculate
the vorticity ζ = ∇×v = ∇×∇×ξ we use the identity ∇×∇×ξ = ∇(∇·ξ)−∇2ξ
to obtain

ζ = ∇(∇·ξ)−∇2ξ. (D.3)

In spherical co-ordinates the divergence is

∇·ξ =
1

r2 ∂r

(
r2ξr

)
+

1

r sin θ
∂θ (sin θ ξθ) +

1

r sin θ
∂φ ξφ = 0, (D.4)

where the two first terms are zero since ξ has only an azimuthal component, and the last
term is zero due to the azimuthal symmetry. The vorticity ζ is then given by the Laplacian
of ξ

ζ = −∇2ξ = −∇2

(
ψ

r sin θ
eφ

)
(D.5)
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The three components of the Laplacian are

[∇2ξ]r =

(
∇2 − 2

r2

)
ξr − 2

(
cot θ + ∂θ

r2

)
ξθ −

2

r2 sin θ
∂φξφ, (D.6a)

[∇2ξ]θ =
2

r2 ∂θξr +

(
∇2 − 1

r2 sin2 θ

)
ξθ −

2 cos θ

r2 sin2 θ
∂φξφ, (D.6b)

[∇2ξ]φ =
2

r2 sin θ
∂φ ξr +

2 cos θ

r2 sin2 θ
∂φ ξθ +

(
∇2 − 1

r2 sin2 θ

)
ξφ, (D.6c)

where all terms but the last are zero either due to the components being zero or the
azimuthal symmetry.

[∇2ξ]φ =

(
∇2 − 1

r2 sin2 θ

)
ξφ (D.7a)

=
1

r2 ∂r

(
r2 ∂r ξφ

)
+

1

r2 sin θ
∂θ
(
sin θ ∂θξφ

)
+

1

r2 sin2 θ

= 0︷ ︸︸ ︷
∂ 2
φ ξφ−

1

r2 sin2 θ
ξφ (D.7b)

=
1

r2 sin θ
∂r

(
r2∂r

[
ψ

r

])
+

1

r3 sin θ
∂θ

(
sin θ ∂θ

[
ψ

sin θ

])
− ψ

r3 sin3 θ
(D.7c)

=
1

r2 sin θ
∂r (r∂rψ − ψ) +

1

r3 sin θ
∂θ

(
∂θψ −

cos θ

sin θ
ψ

)
− ψ

r3 sin3 θ
(D.7d)

=
1

r sin θ
∂ 2
r ψ +

1

r3 sin θ

(
∂ 2
θ ψ −

cos θ

sin θ
∂θψ +

1

sin2 θ
ψ

)
− ψ

r3 sin3 θ
(D.7e)

=
1

r sin θ

[
∂ 2
r ψ +

1

r2

(
∂ 2
θ ψ −

cos θ

sin θ
∂θψ

)]
(D.7f)

Finally, we insert Eq. (D.7f) in Eq. (D.3) and make the transformation µ = cos θ to obtain

ζ = − eφ
r sin θ

[
∂ 2
r ψ +

1

r2

(
(1− µ2)1/2 ∂µ

[
(1− µ2)1/2∂µψ

]
+ µ∂µψ

)]
(D.8a)

= − eφ
r sin θ

[
∂ 2
r ψ +

1

r2

(
(1− µ2) ∂ 2

µψ − µ∂µψ + µ∂µψ
)]

(D.8b)

= − eφ
r sin θ

D2ψ, (D.8c)

where we in the last expression have introduced the operator D2,

D2 = ∂ 2
r ψ +

1− µ2

r2 ∂ 2
µ . (D.9)

In order to calculate the term ∇× (v×ζ) we have to determine the velocity field in terms
of the streaming function. Using the definition of the curl in spherical co-ordinates we get
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v = ∇× ξ = ∇×
[

ψ

r sin θ
eφ

]
=

1

r2 sin θ

∣∣∣∣∣∣
er reθ r sin θeφ
∂r ∂θ ∂φ
ξr rξθ r sin θξφ

∣∣∣∣∣∣ (D.10a)

=
1

r2 sin θ

[
er

(
∂θ[sin θξφ]− ∂φξθ

)
+ reθ

(
∂r[r sin θξφ]− ∂φξr

)
(D.10b)

+ r sin θeφ

(
∂r[rξθ]− ∂θξr

)]
(D.10c)

= er
∂θ[sin θξφ]

r sin θ
− eθ

∂r[rξφ]

r
= er

1

r2 sin θ
∂θψ − eθ

1

r sin θ
∂rψ (D.10d)

= −er
∂µψ

r2 − eθ
∂rψ

r(1− µ2)
. (D.10e)

The next step is the calculation of the cross product v × ζ which we determine from
Eqs. (D.8c) and (D.10e) and the definition of a cross product in spherical co-ordinates,

v × ζ =

∣∣∣∣∣∣
er eθ eφ
vr vθ vφ
ζr ζθ ζφ

∣∣∣∣∣∣ = er(vθζφ − vφζθ) + eθ(vrζφ − vφζr) + eφ(vrζθ − vθζr) (D.11a)

= ervθζφ − eθvrζφ = er
(∂rψ)(D2ψ)

r2 sin2 θ
+ eθ

(∂θψ)(D2ψ)

r3 sin2 θ
. (D.11b)

Evidently, we drop the terms containing vφ, ζr and ζθ as these are zero. Finally, we
can calculate the entire term. Once again using the definition of the curl in spherical
co-ordinates, we get

∇× (v × ζ) =
1

r2 sin θ

∣∣∣∣∣∣
er reθ r sin θeφ
∂r ∂θ ∂φ

[v × ζ]r r[v × ζ]θ r sin θ[v × ζ]φ

∣∣∣∣∣∣ (D.12a)

=
1

r2 sin θ

{
er

[
∂θ

(
r sin θ[v × ζ]φ

)
− ∂φ

(
r[v × ζ]θ

)]
+ (D.12b)

reθ

[
∂r

(
r sin θ[v × ζ]φ

)
− ∂φ

(
[v × ζ]r

)]
+ (D.12c)

r sin θeφ

[
∂r

(
r[v × ζ]θ

)
− ∂θ

(
[v × ζ]r

)] }
. (D.12d)
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Only the radial and polar components of v × ζ are non-zero and they do not depend on
the azimuthal angle φ which leaves

∇× (v × ζ) =
1

r
eφ [∂r(r[v × ζ]θ)− ∂θ[v × ζ]] (D.13a)

=
1

r
eφ

[
∂r

(
(∂θψ)(D2ψ)

r2 sin2 θ

)
− ∂θ

(
(∂rψ)(D2ψ)

r2 sin2 θ

)]
(D.13b)

=
1

r
eφ

[
− 2(∂θψ)(D2ψ)

r3 sin2 θ
+
∂r
[
(∂θψ)(D2ψ)

]
r2 sin2 θ

(D.13c)

+
2 cos θ (∂rψ)(D2ψ)

r2 sin3 θ
− ∂θ

[
(∂rψ)(D2ψ)

]
r2 sin2 θ

]
(D.13d)

=
eφ

r3 sin θ

[
2

r
(∂µψ)(D2ψ)− ∂r

[
(∂µψ)(D2ψ)

]
(D.13e)

+
2µ

1− µ2 (∂rψ)(D2ψ) + ∂µ
[
(∂rψ)(D2ψ)

]]
(D.13f)

=
eφ

r3 sin θ

[
2

r
(∂µψ)(D2ψ)− (∂µψ) ∂r(D

2ψ) (D.13g)

+
2µ

1− µ2 (∂rψ)(D2ψ) + (∂rψ) ∂µ(D2ψ)

]
(D.13h)

In Eq. (D.13b) we insert the components from Eq. (D.11b) and in Eqs. (D.13e) and (D.13f)
we transform the angular co-ordinate µ = cos θ. Finally, we write the result more com-
pactly as

∇× (v × ζ) =
eφ

r sin θ

[
1

r2

∂
(
ψ,D2ψ

)
∂(r, µ)

+
2

r2 (D2ψ)(Lψ)

]
, (D.14)

where we have introduced the operators

∂
(
P,Q

)
∂(x, y)

= (∂xP )(∂yQ)− (∂yP )(∂xQ), L =
µ

1− µ2 ∂r +
1

r
∂µ. (D.15)

We saw in Eqs. (D.5) and (D.8) that the vorticity could be expressed as minus the Lapla-
cian of the function ξ,

ζ = −∇2ξ = −∇2

(
ψ

r sin θ
eφ

)
= − D2ψ

r sin θ
eφ, (D.16)

where the last expression was the result. When calculating the term ∇2ζ in Eq. (D.1) we
notice the similarity between ξ and ζ in Eq. (D.16) and immediately see that the result
must be

∇2ζ = −∇2

(
D2ψ

r sin θ
eφ

)
= −D

2(D2ψ)

r sin θ
eφ. (D.17)
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When the terms in Eqs. (D.14), (D.16) and (D.17) are inserted into the non-dimensionalised
Navier-Stokes equation, we obtain, after multiplication by −(r sin θ), a scalar equation for
the streaming function,

∂t(D
2ψ) + ε

[
1

r2

∂(ψ,D2ψ)

∂(r, µ)
+

2

r2 (D2ψ)(Lψ)

]
=

1

|M |2
D4ψ, (D.18)

where the operators are

D2 = ∂ 2
r +

1− µ2

r2 ∂ 2
µ , D4 = D2D2, L =

µ

1− µ2 ∂r +
1

r
∂µ, (D.19)

and
∂
(
P,Q

)
∂(x, y)

= (∂xP )(∂yQ)− (∂yP )(∂xQ). (D.20)

Eq. (D.43) is equation of motion formulated in terms of the streaming function in a scalar
equation. The price paid for reducing the vector equation to the scalar equation is the
latter’s higher order.

D.2 Exact first-order solution of streaming equation

To first order the streaming equation in non-dimensionalised co-ordinates is

∂t(D
2ψ1) =

1

|M |2
D4ψ1, (D.21)

and has the boundary conditions

ψ1 = 0 at r = 1, (D.22a)

∂rψ1 = 0 at r = 1, (D.22b)

ψ1 → 1
2var

2(1− µ2) as r →∞, (D.22c)

We recall that we assume a harmonic time dependence of the fields which means that
in dimensionalised co-ordinates, the time derivative yields a factor iω, corresponding to
a factor i in the non-dimensionalised ones. As we from the definition of the boundary
number, Eq. (6.2a), have that i|M |2 = M2, we can rewrite Eq. (D.21) as

M2D2ψ1 = D4ψ1. (D.23)

The far-field condition Eq. (D.22c) calls for a separation of variables,

ψ1(r, µ) = R1(r)
(
1− µ2). (D.24)

We then get

D2ψ1 = ∂ 2
r ψ1 +

1− µ2

r2 ∂ 2
µψ1 =

(
1− µ2) [∂ 2

r R1 −
2

r2R1

]
. (D.25)
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Next, we use this result for the higher-order derivative

D4ψ1 = D2(D2ψ1

)
=

[
∂ 2
r +

1− µ2

r2 ∂ 2
µ

] [(
1− µ2)∂ 2

r R1 −
2

r2

(
1− µ2)R1

]
(D.26a)

=
(
1− µ2) [∂ 4

r R1 −
4

r2 ∂
2
r R+

8

r3 ∂rR−
8

r4 R

]
. (D.26b)

Insertion of Eqs. (D.25) and (D.26b) into Eq. (D.23) yields an ordinary differential equa-
tion,

∂ 4
r R1 −

(
M2 +

4

r2

)
∂ 2
r R+

8

r3 ∂rR+

(
2M2

r2 − 8

r4

)
R. (D.27)

By direct insertion, it can be verified that Eq. (D.27) has the solution

R(r) =
kI

r
+ kII

r3 − 1

3r
+
kIII

M3

[
cosh(Mr)

Mr
− sinh(Mr)

]
+

ikIV

M3

[
cosh(Mr)− sinh(Mr)

Mr

]
.

(D.28)
As the terms in the square brackets explode for r →∞, the far-field condition in Eq. (D.22c)
leads to kIII = − ikIV and kII = 3

2 . Insertion of this into Eq. (D.28) and use of the identity
cosh(Mr)− sinh(Mr) = exp(−Mr) yields

R(r) =
1

2
r2 −

[
1

2
− kI

]
1

r
+

ikIV

M3

[
1 +

1

Mr

]
e−Mr. (D.29)

In order to apply the condition in Eq. (D.22b) we calculate the derivative of R(r),

∂rR = r +

[
1

2
− kI

]
1

r2 +
ikIV

M3

[
−M − 1

r
− 1

Mr2

]
e−Mr. (D.30)

The two remaining boundary conditions in Eqs. (D.22a) and (D.22b) are

kI +
ikIV

M3

[
1 +

1

M

]
e−M = 0, (D.31a)

3

2
− kI +

ikIV

M3

[
−M − 1− 1

M

]
e−M = 0. (D.31b)

(D.31c)

The conditions in Eq. (D.31) can be formulated as a matrix equation, 1 i

M
3

[
1 + 1

M

]
e−M

−1 i

M
3

[
− 1−M − 1

M

]
e−M


kI

kIV

 =

 0

−3

2

 . (D.32)

The determinant D of the coefficient matrix is

D =

∣∣∣∣∣∣∣
1 i

M
3

[
1 + 1

M

]
e−M

−1 i

M
3

[
− 1−M − 1

M

]
e−M

∣∣∣∣∣∣∣ (D.33a)

=
i

M3

[
−1−M − 1

M
+ 1 +

1

M

]
e−M = − i

M3 e−M . (D.33b)
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Then the coefficients are

kI =
1

D

∣∣∣∣∣∣∣
0 i

M
3

[
1 + 1

M

]
e−M

−3

2
i

M
3

[
− 1−M − 1

M

]
e−M

∣∣∣∣∣∣∣ (D.34a)

= iM2 eM

∣∣∣∣∣∣∣
0 i

M
3

[
1 + 1

M

]
e−M

−3

2
i

M
3

[
− 1−M − 1

M

]
e−M

∣∣∣∣∣∣∣ = −3M + 3

2M2 , (D.34b)

and

kIV =
1

D

∣∣∣∣∣∣
1 0

−1 −3

2

∣∣∣∣∣∣ = iM2 eM

∣∣∣∣∣∣
1 0

−1 −3

2

∣∣∣∣∣∣ = −3 iM2

2
eM . (D.35)

Insertion of Eqs. (D.34) and (D.35) into Eq. (D.29) and a subsequent insertion into
Eq. (D.24) yields the exact first-order solution to the streaming equation,

ψ1(r, µ) =

[
1

2
r2 −

(
M2 + 3M + 3

2M2

)
1

r
+

3

2M

(
1 +

1

Mr

)
eM(1−r)

] (
1− µ2). (D.36)

We recall that |M | � 1 and that r is measured in units of the sphere radius. Thus, the
real part of argument of the exponential function becomes a very high negative number at
the edge of the boundary layer region where r ≈ 1+5 δa (which is a+5δ in dimensionalised
co-ordinates). This means that the term containing the exponential function decays with
a characteristic length of δ which is why we call this length the boundary layer thickness.
For r � δ the term is virtually zero and if we also approximate the second term with
|M | � 1, we arrive at the outer first-order solution given in Eq. (6.46b),

ψ1(r, µ) ≈ 1

2

(
r2 − 1

r

)(
1− µ2), for |M | � 1 and r ' 1 + 5

δ

a
. (D.37)

The inner radial co-ordinate η = |M |√
2

(r − 1) can be rewritten as r = 1 +
√

2η
|M | which if

inserted into Eq. (D.36) yields

ψ1(r, µ) =

[
1

2

(
1 +

√
2η

|M |

)2

−
(
M2 + 3M + 3

2M2

)(
1 +

√
2η

|M |

)−1

(D.38a)

+
3

2M

(
1 +

1

M

[
1 +

√
2η

|M |

]−1
)

e
−
√

2 M
|M|η

](
1− µ2). (D.38b)

As
√

2η
|M | = r − 1 � 1 close to the sphere surface and the boundary layer, we can make

Taylor expansions to first order,

ψ1(r, µ) ≈
[

1

2

(
1 + 2

√
2η

|M |

)
−
(
M2 + 3M + 3

2M2

)(
1−
√

2η

|M |

)
(D.39a)

+
3

2M

(
1 +

1

M

[
1−
√

2η

|M |

])
e
−
√

2 M
|M|η

](
1− µ2). (D.39b)
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Neglecting terms of order |M |−2 or higher yields

ψ1(r, µ) ≈
[

1

2
+

√
2η

|M | −
1

2
− 3

2M
+

√
2η

2|M | +
3

2M
e
−
√

2 M
|M|η

](
1− µ2) (D.40a)

=

[
3
√

2η

2|M | −
3

2M
+

3

2M
e
−
√

2 M
|M|η

](
1− µ2) (D.40b)

=

√
2

|M |
3

2

[
η − |M |√

2M
+
|M |√
2M

e
−
√

2 M
|M|η

](
1− µ2). (D.40c)

From the definition of the boundary layer number, we have that i|M |2 = M2 or equiv-

alently M = 1+ i√
2
|M | which we can rewrite as |M |√

2M
= 1

2(1 − i). Insertion of the last

expression into Eq. (D.40c) yields

ψ1(r, µ) =

√
2

|M |
3

2

[
η − 1

2
(1− i)

(
1− e−(1+ i)η

)](
1− µ2). (D.41a)

Finally, multiplying by |M |√
2

to get

|M |√
2
ψ1(r, µ) =

3

2

[
η − 1

2
(1− i)

(
1− e−(1+ i)η

)](
1− µ2) (D.42a)

we recognise the inner first-order solution given in Eq. (6.46a).

D.3 Transformation of the streaming equation to inner co-
ordinates

In this section we transform the equation

∂t(D
2ψ) + ε

[
− 1

r2

∂(ψ,D2ψ)

∂(r, µ)
+

2

r2 (D2ψ)(Lψ)

]
=

1

|M |2
D4ψ, (D.43)

to be formulated in terms of the inner radial co-ordinate η and the inner streaming function
Ψ,

η =
|M |√

2
(r − 1), Ψ =

|M |√
2
ψ. (D.44)

As |M |√
2

is a constant, we see in Eq. (D.44) that

∂rψ =
∂ψ

∂r
=
∂η

∂r

∂ψ

∂η
=
|M |√

2

∂ψ

∂η
=
∂Ψ

∂η
= ∂ηΨ, (D.45a)

∂ 2
r ψ =

∂(∂ηΨ)

∂r
=
∂η

∂r

∂(∂ηΨ)

∂η
=
|M |√

2
∂ 2
η Ψ. (D.45b)
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With the results in Eq. (D.45) we can write

D2ψ = ∂ 2
r ψ +

1− µ2

r2 ∂ 2
µψ =

|M |√
2
∂ 2
η Ψ +

1− µ2

r2

√
2

|M |∂
2
µΨ. (D.46)

If we express r in terms of η we get

D2ψ =
|M |√

2
∂ 2
η Ψ +

(
1− µ2

)(
1 +

√
2η

|M |

)−2 √2

|M |∂
2
µΨ (D.47a)

≈ |M |√
2
∂ 2
η Ψ +

(
1− µ2

)(
1− 2

√
2η

|M |

) √
2

|M |∂
2
µΨ. (D.47b)

To obtain the last expression we have made a Taylor expansion of
(
1 +

√
2η
|M |
)−2

to first

order in
√

2η
|M | � 1. To see if the expansion is justified we express η in terms of r using

Eq. (D.44). The inequality then becomes
√

2η

|M | =

√
2

|M |
|M |√

2
(r − 1) = r − 1� 1, (D.48)

We know see that the Taylor expansion is justified for r � 2 where we recall that r is
measured in units of the sphere radius a. Thus, close to the sphere and thereby also the
boundary layer, the Taylor expansion is justified. Returning to Eq. (D.47b), we recall that
the transformation of the radial derivative can be considered a normalisation. By that we
mean that the derivatives are now of the same order of magnitude close to the boundary
layer, ∂ηΨ ∼ ∂µΨ. Thus, to leading order in |M | we obtain

D2ψ ≈ |M |√
2
∂ 2
η Ψ. (D.49)

The next derivative in Eq. (D.43) can be transformed using Eqs. (D.44), (D.45a) and
(D.49),

∂(ψ,D2ψ)

∂(r, µ)
=
(
∂rψ

)
∂µ
(
D2ψ

)
−
(
∂µψ

)
∂r
(
D2ψ

)
(D.50a)

=
(
∂ηΨ

)
∂µ

( |M |√
2
∂ 2
η Ψ

)
−
(
∂µ

√
2

|M |Ψ
) |M |√

2
∂η

( |M |√
2
∂ 2
η Ψ

)
(D.50b)

=
|M |√

2

∂(Ψ, ∂ 2
η Ψ)

∂(η, µ)
. (D.50c)

We move on to the transformation of the derivative Lψ where we Taylor expand as in
Eq. (D.47b) and subsequently keep only terms of leading order in |M |,

Lψ =
µ

1− µ2 ∂rψ +
1

r
∂µψ =

µ

1− µ2 ∂ηΨ +

(
1 +

√
2η

|M |

)−1

∂µ

( √
2

|M |Ψ
)

(D.51a)

≈ µ

1− µ2 ∂ηΨ +

(
1−
√

2η

|M |

)
∂µ

( √
2

|M |Ψ
)
≈ µ

1− µ2 ∂ηΨ. (D.51b)
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The transformed product term (D2ψ)(Lψ) is given by Eqs. (D.49) and (D.51),(
D2ψ

)(
Lψ
)

=
|M |√

2

µ

1− µ2

(
∂ 2
η Ψ
)(
∂ηΨ

)
. (D.52)

Finally, we can determine the derivative on the right hand side of Eq. (D.43). The easiest

way to do that is by inspection of Eq. (D.49) which states that D2ψ = |M |√
2
∂ 2
η Ψ. Going

back to the outer streaming function we then have D2ψ = |M |2
2 ∂ 2

η ψ which states that

D2 = |M |2
2 ∂ 2

η . For the fourth-order differential operator we thus obtain

D4ψ = D2(D2ψ
)

= D2

( |M |√
2
∂ 2
η Ψ

)
=
|M |2

2
∂ 2
η

( |M |√
2
∂ 2
η Ψ

)
=
|M |3

2
√

2
∂ 4
η Ψ. (D.53)

When inserting Eqs. (D.49), (D.50), (D.52) and (D.53) into Eq. (D.43), the factors |M |√
2

in

each term can be multiplied away to obtain

∂t
(
∂ 2
η ψ
)

+
ε

r2

[
∂
(
Ψ, ∂ 2

η Ψ
)

∂(η, µ)
+

2µ

1− µ2

(
∂ηΨ

)
(∂ 2
η Ψ)

]
=

1

2
∂ 4
η Ψ. (D.54)

As we have seen earlier, the factor r−2 can be Taylor expanded close to the boundary,

1

r2 =

(
1 +

√
2η

|M |

)−2

≈ 1− 2

√
2η

|M | . (D.55)

After insertion of Eq. (D.55) into Eq. (D.54), we have to leading order in |M | the inner,
non-dimensionalised equation of motion,

∂t
(
∂ 2
η ψ
)

+ ε

[
∂
(
Ψ, ∂ 2

η Ψ
)

∂(η, µ)
+

2µ

1− µ2

(
∂ηΨ

)
(∂ 2
η Ψ)

]
=

1

2
∂ 4
η Ψ. (D.56)

This is the equation that we present in Eq. (6.26).

D.4 Details in the first-order asymptotic matching

In this section we fill in the details in first-order asymptotic matching leading to the
determination of the coefficients cII and CII. Our starting point is the equations

(1 + i)CII = 1− cII, (D.57a)

CII = −|M |√
2

(
cII + 1

2

)
, (D.57b)

which we can write as the matrix equation 1 1 + i

|M |√
2

1

cII

CII

 =

 1

− |M |
2
√

2

 . (D.58)
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The determinant D of the coefficient matrix is

D =

∣∣∣∣∣∣
1 1 + i

|M |√
2

1

∣∣∣∣∣∣ = 1− |M |√
2

(1 + i). (D.59a)

Then the coefficients are

cII =
1

D

∣∣∣∣∣∣
1 1 + i

− |M |
2
√

2
1

∣∣∣∣∣∣ =
1

1− |M |√
2

(1 + i)

∣∣∣∣∣∣
1 1 + i

− |M |
2
√

2
1

∣∣∣∣∣∣ =
1 + |M |

2
√

2
(1 + i)

1− |M |√
2

(1 + i)
(D.60a)

=
− |M |

2
√

2
(1 + i)− 1

|M |√
2

(1 + i)− 1
= −1

2

|M |(1 + i) + 2
√

2

|M |(1 + i)−
√

2
≈ −1

2
for |M | � 1, (D.60b)

and

CII =
1

D

∣∣∣∣∣∣
1 1

|M |√
2
− |M |

2
√

2

∣∣∣∣∣∣ =
1

1− |M |√
2

(1 + i)

∣∣∣∣∣∣
1 1

|M |√
2
− |M |

2
√

2

∣∣∣∣∣∣ =
−3|M |

2
√

2

1− |M |√
2

(1 + i)
(D.61a)

=

3|M |
2
√

2

|M |√
2

(1 + i)− 1
=

3

2

|M |
√

2

|M |
√

2(1 + i)− 2
(D.61b)

≈ 3

2

1

1 + i
=

3

4
(1− i) for |M | � 1. (D.61c)

These are the coefficients given in Eq. (6.45).

D.5 Calculation of the product terms in the inner second-
order streaming equation

In this section we provide a detailed calculation of the product terms on the left hand side
of the inner, time-averaged second-order streaming equation, Eq. (6.48), which reduces it
to Eq. (6.49). Our starting point is Eq. (6.48),〈

∂
(
Ψ1, ∂

2
η Ψ1

)
∂(η, µ)

〉
+

2µ

1− µ2

〈
(∂ 2
η Ψ1)

(
∂ηΨ1

)〉
=

1

2
∂ 4
η 〈Ψ2〉 , (D.62)

and from Eq. (6.46a) we have the inner first-order solution,

Ψ1(η, µ) =
3

2

[
η − 1

2
(1− i)

(
1− e−(1+ i)η

)] (
1− µ2), (D.63)

which we remember has a time dependence given by e it in the non-dimensionalised co-
ordinates. Furthermore, the real part is understood. First, we calculate the three first
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radial derivatives of Ψ1,

∂ηΨ1 =
3

2

[
1− e−(1+ i)η

] (
1− µ2), (D.64a)

∂ 2
η Ψ1 =

3

2
(1 + i) e−(1+ i)η (1− µ2), (D.64b)

∂ 3
η Ψ1 = −3 i e−(1+ i)η (1− µ2). (D.64c)

Then, we calculate the remaining derivatives of Ψ1,

∂µΨ1 = −3

[
η − 1

2
(1− i)

(
1− e−(1+ i)η

)]
µ, (D.65a)

∂µ∂
2
η Ψ1 = −3(1 + i) e−(1+ i)η µ. (D.65b)

We are now ready to calculate the time averages of the product terms in Eq. (D.62). They
can all be written on the form

〈
Re
[
A(η, µ) e it

]
Re
[
B(η, µ) e it

]〉
, (D.66)

where the functions f and g are one of the derivatives in Eqs. (D.64) and (D.65). It can
be shown [25, p. 186] that

〈
Re
[
A(η, µ) e it

]
Re
[
B(η, µ) e it

]〉
,=

1

2
Re
[
A(η, µ)B∗(η, µ)

]
. (D.67)

Using this result, the first term in Eq. (D.62) is

〈
∂
(
Ψ1, ∂

2
η Ψ1

)
∂(η, µ)

〉
=
〈

Re
[
∂ηΨ1 e it

]
Re
[
∂µ∂

2
η Ψ1 e it

]〉
−
〈

Re
[
∂µΨ1 e it

]
Re
[
∂ 3
η Ψ1 e it

]〉
=

1

2
Re
[(
∂ηΨ1

) (
∂µ∂

2
η Ψ1

)∗ ]
− 1

2
Re
[(
∂µΨ1

) (
∂ 3
η Ψ1

)∗ ]
(D.68a)

=
1

2
Re

[(
3

2

[
1− e−(1+ i)η

] (
1− µ2))(−3(1 + i) e−(1+ i)η µ

)∗ ]
(D.68b)

− 1

2
Re

[(
−3

[
η − 1

2
(1− i)

(
1− e−(1+ i)η

)]
µ

)(
−3 i e−(1+ i)η (1− µ2))∗ ] . (D.68c)
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We collect common factors, perform the complex conjugation and take the real part,

〈
∂
(
Ψ1, ∂

2
η Ψ1

)
∂(η, µ)

〉
=
〈

Re
[
∂ηΨ1 e it

]
Re
[
∂µ∂

2
η Ψ1 e it

]〉
−
〈

Re
[
∂µΨ1 e it

]
Re
[
∂ 3
η Ψ1 e it

]〉

= −9

2
µ
(
1− µ2){1

2
Re
[(

1− e−(1+ i)η
)(

(1 + i) e−(1+ i)η
)∗ ]

(D.69a)

− Re

[(
η − 1

2
(1− i)

(
1− e−(1+ i)η

))(
i e−(1+ i)η

)∗ ]}
(D.69b)

= −9

2
µ
(
1− µ2){1

2
Re
[(

1− e−(1+ i)η
)(

(1− i) e−(1− i)η
) ]

(D.69c)

− Re

[(
η − 1

2
(1− i)

(
1− e−(1+ i)η

))(
− i e−(1− i)η

)]}
(D.69d)

= −9

2
µ
(
1− µ2)Re

{
1

2

(
1− e−(1+ i)η

)(
(1− i) e−(1− i)η

)
(D.69e)

−
(
η − 1

2
(1− i)

(
1− e−(1+ i)η

))(
− i e−(1− i)η

) }
(D.69f)

= −9

2
µ
(
1− µ2)Re

{
1

2

(
e−(1− i)η − i e−(1− i)η − e−2η + i e−2η

)
(D.69g)

−
(

iη e−(1− i)η − 1

2
i(1− i) e−(1− i)η +

1

2
i(1− i) e−2η

) }
(D.69h)

Using that e−(1− i)η = e−η (cos η + i sin η), we get

〈
∂
(
Ψ1, ∂

2
η Ψ1

)
∂(η, µ)

〉
(D.70a)

= −9

2
µ
(
1− µ2){1

2

(
e−η cos η + e−η sin η − e−2η

)
(D.70b)

−
(
−η e−η sin η +

1

2
e−η sin η − 1

2
e−η cos η +

1

2
e−2η

) }
(D.70c)

= −9

2
µ
(
1− µ2) ( e−η cos η + η e−η sin η − e−2η

)
. (D.70d)
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We proceed to use the result in Eq. (D.67) on the second product term in Eq. (D.62),〈
(∂ 2
η Ψ1)

(
∂ηΨ1

)〉
=
〈

Re
[
∂ 2
η Ψ1 e it

]
Re
[
∂ηΨ1 e it

]〉
=

1

2
Re
[(
∂ 2
η Ψ1

) (
∂ηΨ1

)∗ ]
(D.71a)

=
1

2
Re

[(
3

2
(1 + i) e−(1+ i)η (1− µ2))(3

2

[
1− e−(1+ i)η

] (
1− µ2))∗ ]

=
9

8

(
1− µ2)2 Re

[(
(1 + i) e−(1+ i)η

)(
1− e−(1+ i)η

)∗ ]
(D.71b)

=
9

8

(
1− µ2)2 Re

[(
(1 + i) e−(1+ i)η

)(
1− e−(1− i)η

)]
(D.71c)

=
9

8

(
1− µ2)2 Re

[
e−(1+ i)η + i e−(1+ i)η − e−2η − i e−2η

]
(D.71d)

=
9

8

(
1− µ2)2 ( e−η cos η + e−η sin η − e−2η

)
. (D.71e)

Insertion of the results in Eqs. (D.70) and (D.71) into Eq. (D.62) yields

∂ 4
η 〈Ψ2〉 = −2

9

2
µ
(
1− µ2) ( e−η cos η + η e−η sin η − e−2η

)
(D.72a)

+ 2
2µ

1− µ2

9

8

(
1− µ2) ( e−η cos η + e−η sin η − e−2η

)
(D.72b)

=
9

2
µ
(
1− µ2)(−2 e−η cos η − 2η e−η sin η+2 e−2η + e−η cos η + e−η sin η − e−2η

)
=

9

2

(
e−2η − e−η cos η + e−η sin η − 2η e−η sin η

)
µ
(
1− µ2). (D.72c)

The equality between the first and the last term in Eq. (D.72) is the expression given in
Eq. (6.49).

D.6 Outer second-order solution

In this section we provide the details used in solving the outer time-averaged, second-order
streaming equation given in Eq. (6.53),

D4〈ψ2

〉
= D2(D2〈ψ2

〉)
= 0. (D.73)

The outer second-order solution is given in Eq. (6.51),

〈
Ψ2(η, µ)

〉
=

9

2

[
1

16
e−2η+

5

4
e−η cos η+

3

4
e−η sin η+

1

2
η e−η sin η+CIη

3+CIIη
2+

5

8
η− 21

16

]
µ(1−µ2).

(D.74)

We know that the inner and outer solutions must match for r → 1 and η → ∞, from
which we infer that the solutions must all have the angular factor µ

(
1 − µ2). We thus

expect four solutions which we write as follows,〈
ψ2(r, µ)

〉
=
〈
ψ21(r, µ)

〉
+
〈
ψ22(r, µ)

〉
, D2〈ψ21

〉
= 0, D2〈ψ22

〉
=
〈
ψ21

〉
. (D.75)
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Assuming that ψ21(r, µ) = R21(r)µ
(
1− µ2), we get

D2〈ψ21

〉
= ∂ 2

r

〈
ψ21

〉
+

1− µ2

r2 ∂ 2
µ

〈
ψ21

〉
=

(
∂ 2
r

〈
R21

〉
− 6

r2

〈
R21

〉)
µ
(
1− µ2) = 0, (D.76)

which has the solution 〈
R21(r)

〉
= cIr

3 + cIIr
−2. (D.77)

We use Eq. (D.76) to proceed to the second equation in Eq. (D.75), assuming that
ψ22(r, µ) = R22(r)µ

(
1− µ2),

D2〈ψ22

〉
=

(
∂ 2
r

〈
R22

〉
− 6

r2

〈
R22

〉)
µ
(
1− µ2) =

(
cIr

3 + cIIr
−2
)
µ
(
1− µ2). (D.78)

By direct insertion, it can be shown that this equation has the solution〈
R22(r)

〉
= −cI

7

42
+ cII

3

42
r5 + cIIr

3 + cIVr
−2. (D.79)

We combine the solutions in Eqs. (D.77) and (D.79) and redefine the constants to obtain
the outer second-order solution〈

ψ2(r, µ)
〉

=
[
cIr

5 + cIIr
3 + cIII + cIVr

−2]µ(1− µ2). (D.80)

This is the solution given in Eq. (6.54).
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Appendix to Chapter 7
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MMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMM llllllllllllllllllllll-
lllllllllllFigure E.1 First-order and time-averaged second-order pressure and velocity fields. The

subfigures in the left column show the fields of the reference system, whereas those in the
right column show the fields of the seed particle system. All the colour plots have a linear
scale from black (lowest field magnitude) to white (highest field magnitude) and all the
vector plots except (h) have a linear scale from no arrow (zero magnitude) to the largest
arrow (maximum magnitude). The first-order pressure is shown in (a) and (b).The max-
imum and minimum pressure is (a) ±pa = ±0.25 Pa and (b) ±pa ± 0.27 Pa, and orange
corresponds to zero pressure. The colour plot thus shows a half-wavelength standing pres-
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sure wave with a node at z = 0 as expected. The first-order velocity field is shown in (c)
and (d). The maximum magnitude is (c) va = 0.18 m/s and (d) va = 0.28 m/s, while
the minimum is zero for both. The colour and vector plots thus show a half-wavelength
standing wave with an antinode at z = 0. The time-averaged second-order pressure is
shown in (e) and (f). The maximum and minimum are (e) ±

〈
p2

〉
max

= ±7.5 Pa and (f)

±
〈
p2

〉
max

= ±8.5. The colour plots thus show a full-wavelength standing pressure wave.
The time-averaged seconder order velocity field (the streaming) is shown in (g) and (h).
The maximum streaming is (g)

〈
v2

〉
max

= 7.4 µm /s and (h)
〈
v2

〉
max

= 169. The minimum
streaming is zero and in (h) the vector scale is logarithmic.
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