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Abstract

In this bachelor thesis we study electrokinetics coupled with advection in a binary elec-
trolytic solution close to perfect representation of a dendrite electrode, when an external
voltage is applied. We introduce the governing equations in hydrodynamics and electroki-
netics, and establish an understanding of the important concept of the Debye screening
layer, through analytical and numerical studies of a highly symmetric setup. The concept
of a diffusion limited current is introduced, along with a simple model of the reaction
kinetics on the dendrite electrode. A short introduction to the software COMSOL Multi-
physics and the finite elements method is carried out, and the implementation is explained
for each different setup.

We found that the presence of advection rolls contributed to an overlimiting current in
the system and that this contribution had a strong dependency on the physical dimensions
of the system. The ionic concentration was also found to play a role on the advection
contribution, where no contribution was seen at low concentrations.

The current distribution on the dendrite also changed with the advection rolls, where
large current densities were found locally on the tip of the dendrite. We suggest that this
effect could influence the dendrite growth and morphology. Ideas of future investigations
are presented.

The frontpage figure shows the magnitude of the velocity field (color plot) and direction
(arrows) near a Gaussian-shaped dendrite.
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Resumé

Vi studerer i dette bachelorprojekt elektrokinetik koblet til advektion i en binær elektrolyt-
opløsning i nærheden af en perfekt udgave af en dendritelektrode, n̊ar en ydre spænding
er p̊atrykt. Vi introducerer de konstituerende ligninger i hydrodynamik og elektrokinetik,
og etablerer en forst̊aelse af det betydningsfulde Debye skærmningslag, gennem analytiske
og numeriske studier, af et enkelt setup. Begrebet, diffusions begrænsende strøm bliver
introduceret, sammen med en simpel model for reaktionskinetikken p̊a dendritelektroden.
Programmet COMSOL Multiphysics og ”finite elements” metoden bliver introduceret og
implementeringen af hvert numeriske setup er forklaret.

Vi s̊a at tilstedeværelsen af advektionsruller bidrog til en overbegrænsende strøm i
systemet og at dette bidrag afhang kraftigt af systemets fysiske dimensioner. Vi s̊a ogs̊a
at ionkoncetrationen spillede en rolle i advektionsbidraget, og at intet bidrag var til stede
ved lave koncentrationer.

Strømfordelingen p̊a dendritelektroden ændrede sig ogs̊a med tilstædeværelsen af ad-
vektionsruller, hvor vi registrerede en stor strømtæthed localt ved spidsen. Vi indikerer
at dette kunne have en indflydelse p̊a dendritvæksten og -morfologien. Ideer til fremtidige
undersøgelse er ogs̊a præsenteret
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Chapter 1

Introduction

Development of effective electrical energy storage systems has become increasingly impor-
tant to society, in order to store the energy from renewable energy sources, and thereby
render fossil fuels superfluous as the primary power supply. Electrochemical energy stor-
age, like conventional batteries, is one way of addressing the problem. In order for batter-
ies to be a serious alternative they have to be reliable, safe and with high energy density.
Lead-acid batteries are the most common battery type, but lithium ion batteries show the
greatest potential with the increasing demand for power in portable devices [11]. A topic
of interest in battery research and development is the formation of dendrites on the elec-
trodes. This occurs when the ionic electrolytic species reduce to a solid on the electrode.
The dendrite formation lowers the capacity and over time it can pierce the separator in
the cell leading to a short circuit and potentially danger of explosion [12].

The research in dendrite morphology has been conducted since the early nineteen
nineties, but to be able to prevent the formation of dendrites or retard the growth, we
need to understand the underlying mechanisms more thoroughly, some of which will be
investigated in this thesis.

Outline of the thesis

Chapter 2: In this chapter we introduce the governing equation in electrokinetics, hy-
drodynamics and thermodynamics, that we will use in the rest of the thesis.

Chapter 3: We introduce the software COMSOL Multiphysics which is used to conduct
the numerical studies. We also give a brief introduction the the finite elements method.

Chapter 4: We present an analytical solution to a model of an electrolytic solution near a
charged surface and compare the results to an approximate solution and a numerical study.

Chapter 5: In this chapter we introduce the diffusion limited current, and present an
expression for the reaktion rate at the cathode. We also present the numerical setup used
to conduct the numerical experiments, and the governing equations are modified for better

1



2 CHAPTER 1. INTRODUCTION

Figure 1.1: Photograph of zinc dendrites formed on a copper electrode. Adopted from
Trigueros P. P. et al., Pattern morphologies in zinc electrodeposition [10]

results. A mesh convergence analysis is conducted to benchmark the results.

Chapter 6: We present the results obtained from the numerical experiments, and discuss
the different effects.

Chapter 7: We discuss the results in relation to other work and suggest what future
studies could be interesting to pursue. Along with this we give the concluding remarks.



Chapter 2

Governing equations

In this chapter we present the governing equations that will be used throughout the thesis.
This include equations from hydrodynamics, electrostatics, transport theory and thermo-
dynamics.

We work under the continuum hypothesis, where a small volume of the fluid, called
a fluid particle, is assigned the average properties of the individual molecules. The in-
troduction of the fluid particle allow us to describe the physical properties of the fluid
by fields, and we employ here an Eulerian description, where we consider the average of
a fields molecular components, taken over all the particles contained in a volume at a
specific position. Examples hereof are the mass density ρ(r, t) and velocity v(r, t),

ρ(r, t) ≡ 1

∆V
∑

i∈∆V
mi, (2.1a)

v(r, t) ≡ 1

ρ(r, t)∆V
∑

i∈∆V
mivi. (2.1b)

Here i ∈ ∆V denotes all the molecules present at time t inside the fixed volume ∆V centred
around r, and the velocity has been defined through the more fundamental quantity,
momentum.

In the following the explicit dependence on position and time has been suppressed to
make the equations more compact.

2.1 Hydrodynamics

In hydrodynamics we consider the rate of change of mass and momentum. If we consider
an arbitrary volume Ω, the total mass inside this volume can change only by a mass flux
through the surface of the volume ∂Ω, described by the mass current density J = ρv.
This gives rise to the continuity equation

∂tρ = −∇·(ρv), (2.2)

3



4 CHAPTER 2. GOVERNING EQUATIONS

i.e. the change of mass density in a point in space and time is caused by the convergence
of mass current density to that point. In the case where the density is constant, Eq. (2.2)
reduces to the continuity equation for incompressible fluids

∇·v = 0. (2.3)

When deriving the equation of motion for the fluid, we consider the rate of change ∂tP of
the momentum P inside an arbitrary volume Ω, ∂tP =

∫
Ω ρvdV . The total momentum

inside this volume can, in contrary to mass, change not only by convection, but also
through the action of forces given by Newtons second law. This gives rise to the general
form of the equation of motion for the Eulerian velocity field of a viscous fluid [1, p. 24],

ρ(∂t + v ·∇)v = ∇·σ + f , (2.4)

where f represents the body force densities and σ the full stress tensor combining pressure
and viscous force densities. The components of the full stress tensor σ are:

σij = −piδij + σ
′
ij = −piδij + η(∂jvi + ∂ivj) + (β − 1)η(∂kvk)δij , (2.5)

where the dynamic viscosity η, is the internal friction due to shear stress, β = ζ
η + 1

3 is
a dimensionless viscosity ratio, and ζ is the internal friction due to compression. When
working with Newtonian fluids, the viscosities vary only a little, and hence are taken to
be constant. In that case the equation of motion becomes the Navier–Stokes equation.

ρ(∂t + v ·∇)v = −∇p+ η∇2v + βη∇(∇·v) + ρg + ρelE, (2.6a)

ρ(∂t + v ·∇)v = −∇p+ η∇2v + ρg + ρelE, (incompressible fluid). (2.6b)

In this thesis we will be considering incompressible fluids described by Eq. (2.6b).

Introducing the dimensionless quantities r̃ = r/L0 and ṽ = v/V0, where the tilde
denotes a quantity without physical dimension, and L0 and V0 are characteristic length
and velocity, respectively, for the system. Ignoring body forces, the Navier–Stokes equation
can be rewritten on dimensionless form

Re[∂̃ t + ṽ ·∇̃]ṽ = −∇̃p̃ + ∇̃2ṽ, (2.7)

by introducing the dimensionless Reynolds number Re:

Re ≡ ρL0V0

η
. (2.8)

It can thus be determined which terms in Eq. (2.7) are the dominant for different Reynolds

numbers. For small Reynolds numbers Re� 1 the viscous term ∇̃2ṽ dominates, whereas
for large Reynolds numbers Re� 1 the inertial term (ṽ ·∇̃)ṽ is the dominant[1, p. 24f].
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2.2 Electrostatics

In this thesis we are concerning ourselves with a system consisting of an electrolyte sub-
jected to an electrical potential. It is therefore natural to couple the electrical forces to
the equation of motion, through the electrical body force density fel = ρelE.

As discussed in the beginning of this chapter, we are working under the continuum
hypothesis hence the governing equations are the Maxwell equations for continuous media,
with no magnetic fields since the problem is static.

∇×E = 0, (2.9a)

∇·D = ∇·(εE) = ρel, (2.9b)

D = ε0E + P = εE, (2.9c)

Jel = σelE. (2.9d)

Eq. (2.9c) is true for linear isotropic materials, and water solutions with low concentrations
of solute can be treated that way, with a dielectric constant of ε ≈ 78. Since there is no
rotation of the electric field, it can be written as the gradient of a scalar potential φ

E = −∇φ. (2.10)

Combing Eqs. (2.9b) and (2.10), we end up with the Poisson equation for the relation
between electric potential and charge,

∇2φ = −ρel

ε
. (2.11)

2.3 Thermodynamics

It is well known that the ions in a weak electrolytic solution can be modelled as non-
interacting particles [1]. The energy of the particles can thus be described by the chemical
potential µ± of an ideal gas of ions with concentration c±,

µ± = µ0,± + kBT log

(
c±
c0

)
, (2.12)

where µ0,± is some reference chemical potential of the solute, c± is the concentration of
the positive and negative ions respectively, and c0 is the reservoir concentration of both
ionic species. Since the electrolytic solution under consideration is subjected to an electric
potential another contribution to the chemical potential must be added. In the electric
field each ion gain the energy ±|Z|eφ. Adding the contribution to Eq. (2.12) we end up
with the electrochemical potential µ±,

µ± = µ0,± + kBT log

(
c±
c0

)
± |Z|eφ. (2.13)

In the absence of advection the electrochemical potential will reach a thermal equilibrium
where ∇µ± = 0.
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2.4 Ionic transport

In the absence of reactions, the number of particles is conserved, just like the mass and
momentum. We can thus write a conservation equation for the number of particles as
well:

∂tc± = −∇·J±, (2.14)

where c± denotes the concentration and J± the particle current density of the two ionic
species under consideration. The subscript ± denotes the sign of charge of the ions.

The contributions to the current density stems from diffusion, advection and electromi-
gration, and since we are working with weak solutions it is customary to use the particle
current density instead of the mass current density [1, p. 94]. In the following, tilde
denotes mass current densities and electric current density.

J± = Jadv
± + Jdiff

± + Jel
± . (2.15)

The advection contribution is just the mass current density of ionic species due to advection
divided by the mass of a single ion

Jadv
± =

J̃adv
±
m±

= c±v. (2.16)

The diffusion contribution is due to concentration gradients in the solution, and is de-
scribed here by Fick’s law for weak solutions,

Jdiff
± =

J̃diff
±
m±

= −D±∇c±, (2.17)

where D± denotes the diffusivity of the ionic species.

The electro migrative contribution stems from Eq. (2.9d), where the electric current
density is rewritten as a particle current density,

Jel
± =

J̃el
±
|Z|e = ∓ σel

±
|Z|e∇φ. (2.18)

Here |Z| denotes the valence number of the ions. We want to write the electromigrative
contribution in terms of concentration since this is the field variable of interest. We
therefore use that the electric conductivity is related to the concentration and mobility by
σ± = |Z|ec±µ±, and using the Einstein relation D± = µ±kBT we now write,

Jel
± = ∓c±

D±
VT

∇φ, (2.19)

where we have introduced a thermal velocity as VT =
kBT

|Z|e .

By combining the different contributions we end up with the so-called Nernst–Planck
equation for the particle current density [1, p. 157],
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J± = c±v −D±∇c± ∓ c±
D±
VT

∇φ. (2.20)

Recognising the contributions from the concentration gradients and the electrical potential
gradient we write the Nernst–Planck equation in terms of the electro-chemical potential,

J± = c±v −
c±D±
kBT

∇µ± (2.21)

In this thesis we only work in the steady state of Eq. (2.14) i.e.

0 = ∇·J± (2.22)

2.5 Non-linearities

This concludes the governing equations that will be used in the thesis, and even though
the equations are not inherently non-linear in the limits we will consider, (low Reynolds-
numbers), the coupling between them gives rise to non-linear effects. The number of
setups in which the coupled equations can be solved analytically are limited, and numerical
experiments are therefore a necessity.
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Chapter 3

COMSOL Multiphysics

All modelling in this thesis has been carried out using the software COMSOL Multiphysics,
which is a software used for solving partial differential equations, based on the finite
elements method. In this chapter we will briefly introduce the finite elements method,
and COMSOL multiphysics in general.

3.1 The finite elements method

The governing equations in this thesis, as in most problems, are coupled non-linear dif-
ferential equations. In most cases no analytical solutions exist to the problems, apart
from highly symmetric set-ups. To be able to find an approximate solution, we need to
discretize the problem and this is done be expanding it in a set of localized basis functions.
The basis functions, in COMSOL called test function, vary between 1 on their own node
and 0 on surrounding nodes in some polynomial way depending on the problem, and in
this way they form a grid computational domain covering the domain of interest.

We consider a general case of a boundary value problem, for the dependent variable
g(r) and the PDE,

L{g(r))} = F (r), (3.1)

where L is a differential operator and F (r) a forcing term. In the rest of the chapter,
as in the previous, we will suppress the explicit dependence on position. A solution g to
Eq. (3.1) is called a strong solution, but to solve the problem approximately, we relax the
demands on the solution by introducing the defect,

d ≡ L{g} − F. (3.2)

We expand now the dependent variable in a set of test functions {ĝn}, that forms a basis
on the function space,

g =
∑

n

cnĝn, (3.3)

9
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where cn are expansion coefficients. Instead of requiring d in Eq. (3.2) to be zero, and
ending up with Eq. (3.1), we require that the projection of the defect on to the test
functions is zero,

〈ĝm|d〉 = 0, (3.4)

giving a softer constraint on the solution. The inner product is defined as 〈a|b〉 =
∫

Ω abdV ,
and this formulation of the problem is called weak form. If we insert the defect into
Eq. (3.4), and exploit that L in this is linear we get,

〈
ĝm
∣∣L
∑

n

cnĝn
〉

= 〈ĝm|F 〉, (3.5a)

∑

n

cn〈ĝm|Lĝn〉 = 〈ĝm|F 〉. (3.5b)

This formulation of the weak form is seen to have the shape of a matrix problem,

Kc = f , (3.6)

where K is called the stiffness matrix and has the elements Kmn = 〈ĝm|Lĝn〉, and the
solution to the weak form problem, in the case where L is linear, is thus a matter of
solving the matrix equation Eq. (3.6) for the coefficient vector c.

ĝm

Ω

Figure 3.1: Sketch of the triangular mesh on a 2D domain Ω, showing the generalized test
function ĝm.

3.1.1 Implementing boundary conditions

When solving differential equations, the solution depend on the boundary or initial condi-
tions of the problem, it is therefore advantageous to implement the boundary conditions
explicitly in the formulation of the weak form. This is done by rewriting Eq. (3.1) in the
form of a continuity equation,

∇·Γ = F. (3.7)
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By inserting Eq. (3.7), formulated as the defect, into Eq. (3.4) we obtain,

〈ĝm|∇·Γ− F 〉 =

∫

Ω
[ĝm∇·Γ− ĝmF ] dV = 0, (3.8)

and applying the product rule for differentiation along with Gauss’ divergence theorem we
can split the integral into a bulk and a boundary part,

∫

Ω
[∇·{ĝmΓ} −∇ĝm ·Γ− ĝmF ] dV = 0, (3.9a)

∫

∂Ω
ĝmn·Γ dA+

∫

Ω
[−∇ĝm ·Γ− ĝmF ] dV = 0. (3.9b)

It is now possible to include the boundary conditions, and in the case of Neumann condi-
tions we simply substitute n·Γ with the condition. In the case where we want to implement
Dirichlet boundary conditions we have to impose a constraint on the system as a function
of the dependent variable and it takes the form,

R(g) = 0. (3.10)

This constraint enters into Eq. (3.7) as a constraint-force in COMSOL.

3.2 Mesh analysis

The solution to the problem in Eq. (3.4) depends on how well we can represent our
dependent variables in terms of the test functions. The test functions form a mesh on the
computational domain, and when choosing the mesh element size it is a tradeoff between
precision and computation time. A sketch of the mesh on a 2D-domain is shown in figure
Fig. 3.1. We will conduct a mesh convergence analysis, to verify that our results are not
merely numerical artefacts but indeed physical behaviour. For the different field variables
we calculate,

C(g) =

√∫
(g − gref)

2dxdy∫
(gref)2dxdy

, (3.11)

where g is a dependent variable of the problem, calculated for different mesh element sizes,
and gref is a reference solution calculated with an extremely fine mesh[3].

3.3 Working with COMSOL

COMSOL multiphysics is a GUI based FEM solver, that is often used as a black box for
solving a variety of problems. A lot of physics is implemented in the program in modules
that can be chosen for a specific problem. We have used the weak form PDE module, in
the mathematics category, instead of one of the predefined physics modules, to be able to
control the variables and equations.
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In the GUI we build the problem graphically, and this is an appealing approach in
terms of visualization. The equations governing the physics are then implemented, and
assigned to the parts of the system were they apply.

When all of the equations and boundary conditions are implemented, the problems
can be solved using one of the build in FEM solvers. The data is stored in datasets, and
the processing can be done internally in COMSOl or in another software. For most of the
data processing we used the software Matlab, which has an interpreter for COMSOL. A
lot of the challenges in the data handling was due to this interpreter, which was not able to
handle the different data structures that COMSOL could produce. For future numerical
experiments we recommend using the build in functions in COMSOL for data processing
and then export the evaluated data, as data files.



Chapter 4

Charged Wall

In this chapter we present an analytical solution to a simple set-up, comprised of an infinite
negatively charged wall occupying the yz-plane, and an electrolytic solution occupying the
positive half-plane in the x-direction, Fig. 4.1. The analytical solution will be compared
to the full numerical simulation, carried out with COMSOL as described in Chapter 3.

The actual problem we are interested in is much more complicated than this, but it
is important to study this simple example to gain insight in the nature of electrokinetics
and constitute some important concepts that will be used in the rest of the thesis. The

0 λD x

c± = c0

φ = 0

c+(x)

c−(x)

φ(x)

ζ

Figure 4.1: 1D-sketch of an electrolytic solution near a negatively charged wall at fixed
electric potential ζ < 0. In red the electric potential φ(x), reaching zero in the bulk.
In blue and green the concentrations of cations and anions respectively c±(x), reaching
charge neutrality in the bulk. Light grey circles represent cations and anions.

general problem will be formulated in 3D, but the possible solutions are in one dimension,

13
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as sketched in Fig. 4.1.
If a charged solid comes into contact with an electrolytic solution, the co-ions will

be repelled from the solid and the counter-ions attracted and form a layer that screens
the surface charges. The ions will rearrange until they reach thermal equilibrium where
the electrochemical potential, as introduced in Eq. (2.13), is constant µ± = const. The
gradient of the electrochemical potential is thus zero ∇µ± = 0, leading to the equation,

kBT∇ log

(
c±(r)

c0

)
= ∓|Z|e∇φ(r). (4.1)

The potential drops of from a fixed potential ζ on the wall, to zero in the bulk, and we
assume that the ionic concentrations reach a neutral concentration c0 in the bulk. This
leads to the conditions,

φ(0) = ζ, φ(∞) = 0, c±(∞) = c0. (4.2)

Subjected to these boundary conditions Eq. (4.1) can be integrated, leading to a Boltz-
mann distribution of the ions,

c±(r) = c0 exp

(
∓ φ(r)

VT

)
. (4.3)

Here VT is the thermal voltage as introduced in Eq. (2.19) which, for an electrolyte with
valence Z = 1, under normal conditions (T = 25◦C) takes the value VT = 25.7 mV. To
reduce the equation to one dependent variable, namely the potential, we insert the expres-
sion for c±(r) into the Poisson equation, Eq. (2.11), leading to the Poisson–Boltzmann
equation for the electical potential,

∇2φ(r) = −ρel

ε
=
|Z|e
ε

[c+(r)− c−(r)] = 2
|Z|ec0

ε
sinh

[
φ(r)

VT

]
=
VT
λ2

D

sinh

[
φ(r)

VT

]
. (4.4)

We have introduced the Debye-length λD =

√
εkBT

2(|Z|e)2c0
, which is a characteristic length

scale for this kind of system.
There are different approaches to solving the Poisson–Boltzmann equation, either nu-

merically or in some cases analytically. In the following we derive an analytical solution,
known as the Gouy–Chapman solution. This solution will be compared to numerical
results and an approximate solution in the case of low ζ-potentials.

4.1 The Gouy–Chapman solution

In the case where Eq. (4.4) applies to a system with a charged wall in the yz-plane and an
electrolyte occupying the positive half-space x > 0, as illustrated in Fig. 4.1, the problem
can be solved analytically. Due to the translational symmetry, the potential φ(x) only
vary in the x direction and the Poisson–Boltzmann equation reads,
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∂2
xφ(x) =

VT
λ2

D

sinh

[
φ(x)

VT

]
. (4.5)

It is easier to keep track of the problem in dimensionless form and by introducing the
dimensionless variables φ̃ = φ/VT and x̃ = x/λD, we can rewrite the equation on dimen-
sionless form,

∂2
x̃ φ̃(x̃) = sinh

[
φ̃(x̃)

]
. (4.6)

Multiplying both sides by ∂x̃ φ̃ and using the chain rule we may rewrite the equation as,

∂x̃

[
1

2
(∂x̃ φ̃(x̃))2

]
= ∂x̃

[
cosh

[
φ̃(x̃)

]]
. (4.7)

This equation can be integrated using the boundary conditions φ̃(∞) = ∂x̃ φ̃(∞) = 0,

∂x̃ φ̃(x̃) =
√

2 cosh
[
φ̃(x̃)

]
− 2 = −2 sinh

[
φ̃(x̃)

2

]
1. (4.8)

Substituting the a change of variable ṽ = φ̃/2, and separating the variables ṽ and x̃ we
get an expression that we can integrate2,

∫ ṽ(x̃)

ζ̃
2

dṽ

sinh[ṽ]
= −

∫ x̃

0
dx̃ ⇒ log

(
tanh

[ ṽ(x̃)
2

]

tanh
[ ζ̃

4

]
)

= −x̃, (4.9)

where the boundary condition ṽ(0) = φ̃(0)/2 = ζ̃/2 and the potential ζ̃ is normalized
by VT . Rearranging the terms and adding dimensions to the quantity we have found the
Gouy-Chapman solution for the potential,

φ(x) = 4VT arctanh

(
tanh

[
ζ

4VT

]
exp

[
− x

λD

])
. (4.10)

In many practical applications the ζ-potential stems from a surface charge density, e.g.
on a wall. The surface charge density σ relates to the ζ-potential through,

σ =
2εVT
λD

sinh

[
ζ

2VT

]
. (4.11)

4.2 Debye–Hückel Approximation

In the special case outlined in the previous section, we were able to solve the problem
analytically, but to gain some physical insight it is useful to find an approximative solution
to the Poission–Boltzmann equation. If the potential on the charged surface is sufficiently
small ζ � VT , we can expand the right hand side of Eq. (4.4),

1cosh[u] = 2 sinh2
[
u
2

]
2
∫

du
sinh[u]

= log
[
tanh[u/2]

]
+ const
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∇2φ(r) =
1

λ2
D

φ(r), (4.12)

and this equation has analytical solutions in more configurations than the original equa-
tion.

To be able to compare the approximate solution with the Gouy-Chapman solution we
solve Eq. (4.12), for the same system as in Section 4.1,

∂2
xφ(x) =

1

λ2
D

φ(x). (4.13)

Subjected to the boundary conditions given in Eq. (4.2) this has the solution,

φ(x) = ζ exp

[
− x

λD

]
. (4.14)

4.3 Numerical solution

The numerical set-up in COMSOL, follows the implementation mentioned in Section 3.1.1.
The numerical solution will be compared to the Gouy–Chapman solution and the Debye–
Hückel approximation.

4.3.1 Electrical potential

The Poisson equation can by written in terms of a continuity equation ∇(−ε∇φ(r)) =
ρel(r) = |Z|e(c+(r)− c−(r)), and it takes the weak form,

∫

∂Ω
φ̂mn·(−ε∇φ(r))dA+

∫

Ω

[
−∇φ̂m ·(−ε∇φ(r))− φ̂mρel(r)

]
dr = 0, (4.15)

where φ̂m is the electrical potential test function and n is the boundary normal vector,
which is defined as pointing away from the interior of the domain[13]. The weak boundary
term is implemented as,

n·(−ε∇φ(r)) = −σ, r ∈ {∂Ω1} (4.16)

where the boundaries correspond to the sketch in Fig. 4.2. The minus sign stems from the
direction of the normal vector. On the right, wall ∂Ω2 we set σ = 0 and on the left wall
∂Ω1, σ relates to ζ through Eq. (4.11).

4.3.2 Ionic current densities

As described in Section 2.4 we are interested in the steady state current densities 0 = ∇·J±,
and using the ionic concentrations as the field variable we can write the weak form of
Eq. (2.22),
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Figure 4.2: Sketch of geometry for the numerical simulations of electrolytic solution near
a charged surface in the absence of advection.

∫

∂Ω
ĉ±,mn·J±(r)dA+

∫

Ω
−∇ĉ±,m ·J±(r)dV. (4.17)

On the walls ∂Ω3 and ∂Ω4, no flux is allowed and we implement the weak contribution as,

n·J±(r) = 0, r ∈ {∂Ω3, ∂Ω4}. (4.18)

The same boundaries act as a reservoir of ions which is implemented as,

c±(r) = c0, r ∈ {∂Ω3, ∂Ω4}. (4.19)

We note that the constraint on the concentrations, forces the system to respond in an
non-physical way at the intersections between the boundaries ∂Ω1, ∂Ω3 and ∂Ω4, but the
numerical solution stabilizes over the characteristic length, defined by the Debye-length,
and the results shown in Fig. 4.3 are thus obtained from the middle of boundary ∂Ω1.

We see that the numerical results are in perfect agreement with the Gouy–Chapman
solution and that for ζ � VT the Debye–Hückel approximation breaks down. The param-
eter values used to obtain the results were c0 = 1mM, ε = 78εw and T = 300K.
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Figure 4.3: Results from numerical simulations compared to the Gouy–Chapman solu-
tion (GC) and the Debye–Hückel approximation (DH). The electric potential and the
ζ-potential are normalized by VT and the coordinate x is normalized by the Debye-length
λD



Chapter 5

Current density with advection
near dendrite electrode

We present here the setup of the model from which the results in the next chapter are
obtained. Inspired by existing work on metal dendrite morphology[5], the model setup
proposed here is thought of as an ideal representation of an early state in the growth of
dendrite structures, from an aqueous solution of copper-sulphate onto a copper electrode.
In Fig. 5.1, a SEM picture of the early growth state of a copper-dendrite is seen.

Figure 5.1: SEM photograph of dendrite
growth on a copper electrode. Adopted from
Devos et al. Growth of electrolytic copper
dendrites. I: Current transients and optical
observations[5].

Experiments shows that electrocenvec-
tive rolls form around the tip of dendrite
branches[6], but the theory proposed for
the velocity of these, does not agree with
experiments[7], which still makes the area
interesting to research. We will investigate
how the advection rolls around the dendrite
tips contribute to the ionic current density
in the system, both the maximum current
density as well as the current distribution
on the dendrite.

When studying electrokinetic phenom-
ena two views can be applied when describ-
ing the forces driving the ionic transport.
It can be viewed as a result of diffusive and
electric forces or as a result of gradients
in the electrochemical potential[4]. When
studying effects near an electrode the lat-
ter is useful, because the electrochemical
potential of the counterions is nearly constant across the screening layer. In the numer-
ical study it also proved useful to change the variable in the Nernst–Planck equation,
Eq. (2.20), from c± → log c̃±, because of the numerical problem of substracting large
numbers, which could result in negative concentrations.

19
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Figure 5.2: Sketch of a geometry with a flat electrode

In the Navier–Stokes equation, the bodyforce density, f , is here the electrostatic force
fel = −ρel∇φ = −|Z|e(c+ − c−)∇φ, but we can write this in terms of the gradient of the
electrochemical potential instead,

f = −c+∇µ+ − c−∇µ− + ∇(c+ + c−), (5.1)

where the last term stems from the electrochemical potential of water, and can be recog-
nized as the osmotic pressure. With this definition of the force density the Navier–Stokes
equation becomes,

ρ(∂t + v ·∇)v = −∇p′ + η∇2v − (c+∇µ+ + c−∇µ−), (5.2)

where p′ = p− (c+ + c−), now incorporates the osmotic pressure.

5.1 Limiting current

In an electrochemical system like the sketch Fig. 5.2 represents, we can describe the
current-voltage relationship in the system in the absence of advection. In the rest of
the thesis, current and current density will be used interchangeably.

The system in Fig. 5.2, consists of a binary electrolyte between two electrodes (∂Ω1 & ∂Ω2),
and with no surface charge on either side (∂Ω3 & ∂Ω4). Because of the symmetry, vari-
ations happens only the x-direction, which reduces the equations to one dimension. The
inlet of the system, ∂Ω1, acts as a reservoir of the ionic species and as an electrode held
at zero volt,

c±(0) = c0, φ(0) = 0. (5.3)

The electrode at boundary ∂Ω2, can be thought of as a membrane, impenetrable to one
species of ions, hence the current of that species, in this case the anions, is zero, Jx,− = 0.
The only current is thus that of the cations Jx,+ = R, where R is a reaction rate which
we account for later. The electrode is held at a fixed negative voltage and this concludes
the boundary conditions,

φ(L) = −V0. (5.4)
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In the absence of advection, the current is a function of the electrochemical potential,
and using the fixed concentration at the inlet we can describe the anions as a function of
the potential,

c−(x) = c0 exp

(
φ(x)

VT

)
. (5.5)

A widely used assumption is that of electro neutrality, because it is a more favourable
configuration in terms of energy. This can be seen, from the Poisson-equation, where the
dimensions has been collected in the Debye-length,

∇2φ̃ =
1

2λ2
D

[
c̃+ − c̃−

]
. (5.6)

Since the Debye-length has typical values λD ≈ 10 nm, even a small break of charge
neutrality will force the potential distribution to act to stabilize this difference.

We will at first assume that the system will try to stay electrically neutral in all of
the system hence c+ = c−, which allow us to write the equation for the cation current, by
insertion of equation Eq. (5.5) into Eq. (2.20) and ignoring advection,

J+ = −D+c0∂x

(
exp

[
− φ(x)

VT

])
− D+c0

VT
exp

[
− φ(x)

VT

]
∂xφ(x), (5.7a)

J+ = −2D+c0∂x exp

[
− φ(x)

VT

]
. (5.7b)

Integrating this expression subjected to the boundary condition for the potential at the
inlet, Eq. (5.3), we find an expression for the relationship between the current and the
electric potential,

φ(x) = VT log
(
1− J+

2D+c0
x
)
. (5.8)

Since we are interested in the maximum current, as a function of the applied voltage we
employ the boundary condition, φ(L) = −V0, which yields,

V0 = −VT log
(
1− J+

Jlim

)
, (5.9)

where we have introduced the diffusion limited current Jlim =
2D+c0

L
. This term will also

be presented as just the limiting current.

5.2 Electrode

Electrode kinetics is a complicated field of study, that we will not engage in here. A
phenomenological model for the electrode kinetics exist, known as the Butler–Volmer
equation. The full equation incorporate many properties of the specific electrode reaction,
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but we will work in a limit of the Butler-Volmer equation, where we assume negligible
overpotentials. In that case we can write a simple expression for the electrode reaction
rate,

R = k0

(
c+

c0
− 1

)
, (5.10)

where k0 is a reaction constant, having the dimensions of a current density [k0] = m−2 s−1.
At cation concentrations, at the interface larger than the bulk concentration, the reaction
occurs in forward direction and opposite for lower concentrations. This simple model is
inspired by the work of Bazant [2].

Having an expression for the current at the electrode boundary, allows us to make
a correction to Eq. (5.9). In this expression electroneutrality is assumed in all of the
system, but we know that this is not upheld in the Debye-layer. If we introduce a new
concentrationc∗+, defined as the concentration at the electrode boundary, we will assume
that the concentration immediately outside the Debye-layer is related to the electrode
concentration through a Boltzmann relation, with some potential drop across this layer,

c∗+ = c+ exp

[
− ∆V

VT

]
, (5.11)

where ∆V is this potential drop across the Debye-layer. We assume that the Debye-layer
is very thin compared to the length of the system, so the potential drop happens at the
same position x = L. Employing now the expression for the the electrode current defined
by the reaction rate R, in Eq. (5.10) we write,

J+ = k0

(
c∗+
c0
− 1

)
= k0

(
c+

c0
exp

[
− ∆V

VT

]
− 1

)
. (5.12)

From this expression we can determine the potential drop across the Debye-layer,

∆V = −VT log

[
c0

c+

(
J+

k0
+ 1

)]
= −VT log

[
1

1− J+/Jlim

(
J+

k0
+ 1

)]
. (5.13)

In the last equality we have combined Eq. (5.5) with Eq. (5.8), to write the cation concen-
tration in terms of the current. The total potential drop in the system is now determined
as the sum of the drops in the bulk electroneutral region and the Debye-layer.

− V0 = φbulk + ∆V = VT log

[
1− J+

Jlim

]
− VT log

[
1

1− J+/Jlim

(
J+

k0
+ 1

)]
, (5.14)

Which reduces to,

− V0 = VT log

[(
1− J+/Jlim

)2
(
1 + J+/k0

)
]
. (5.15)
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5.3 Numerical setup

We present here the numerical setup used to obtain the results shown in the nest chapter.
The model system is sketched in Fig. 5.3, and it shows the model representation of a
dendrite. Even though the dendrite morphology is much more complicated, this is thought
of as representing an early state of the dendrite. The Gaussian shape has been used because
of the smooth varation, which ease the numerical calculations. The function describing
the dendrite is,

D(y) = L− h exp

[
− 1

2

(
1/2− y/H

w

)2]
. (5.16)

This allow us to change the shape of the electrode, by varying w. The height of the
dendrite h, was held fixed in this study, to be able to compare the results, and the values
are shown in Table 5.1.

The boundaries ∂Ω3 and ∂Ω4 in Fig. 5.3 was modelled in a way as to extend the system
periodically at both boundaries. This was done because the early experiments suggested
that with boundary conditions representing walls was confining the advection rolls, and
we wanted to model a bulk system, and not a microchannel.

Furthermore, all modelling is in steady state, since incorporating the various growth
mechanisms and modelling the time evolutions of the fields is beyond the scope of this
work.
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Figure 5.3: Sketch of geometry with Gaussian dendrite electrode

5.3.1 Stokes equation

Since we want to implement the dynamics of the electrolyte into our model, which is
described by the Navier–Stokes equation introduced in Section 2.1. With the parameters
outlined in Table 5.1, and assuming velocities v ≤ 1 mm s−1 the Reynolds-number will
not exceed 10−2. We will therefore assume the limit of low Reynolds-numbers valid, and
reduce equation Eq. (2.6b) to the linear Stokes equation,

∇·σ + f = 0, (5.17)
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Table 5.1: Table of the range of values used in the dendrite model system. In the value of
the permittivity ε0 denotes the permittivity of vacuum.

Description Symbol Value

Length of system L [2-20] µm

Height of system H [2-10] µm

Bulk concentration of ions c0 [0.01-100] mM

Temperature T 300 K

Diffusivity of ions D± 2× 10−9 m2 s−1

Permittivity of electrolytic so-
lution

ε 78ε0

Density of solution ρ 1× 10−3 kg m−3

Viscosity of solution η 1.002× 10−3 Pa s

Amplitude of dendrite h 1 µm

Width of dendrite w [0.5-0.02]

Reaction constant k0 D+c0/L

where σ is the Cauchy stress-tensor for an incompressible fluid with components,

σij = −piδij + η(∂jvi + ∂ivj), (5.18)

and f is the body-force-density described by the electro-chemical potential,

f = −(c+∇µ+ + c−∇µ−). (5.19)

We have 2 dependent variables in the equation, the velocities, vi, where i denotes the y-
and x-direction, and we therefore have two weak Stokes-equations,

∫

∂Ω
v̂i,mn·σidA+

∫

Ω
[−∇v̂i,m ·σi + v̂i,mfidV = 0. (5.20)

Here the weak boundary expression is implemented on boundary ∂Ω1 along with a con-
straint

∂xvx = 0, vy = 0, r ∈ {∂Ω1}, (5.21)

coupling the velocity field to the weak contribution through σ and constrains the inflow
to be in the x-direction only, with no variations along the inlet. At the electrode, ∂Ω2 we
employ a no slip boundary condition for the velocity fields,

vx = 0, vy = 0, r ∈ {∂Ω2}. (5.22)

On the sides of the system, ∂Ω3 and ∂Ω4 we constrain the y component of the velocity,

vy = 0, r ∈ {∂Ω3, ∂Ω4}, (5.23)
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which introduces the periodic boundary condition on each side of the domain, where the
y component of the velocity cancels due to symmetry.

5.3.2 Continuity equation

The continuity equation, introduced in Eq. (2.3), is used as the equation for the pressure
field in the system. We multiply the continuity equation by the test function for the
pressure and integrate over the domain,

∫

Ω
p̂m∇·vdV = 0. (5.24)

Since we are already dealing with derivatives of v in the Stokes equation, no simplification
is obtained by splitting the integral in a boundary and a bulk part[8]. Due to the electrode
at boundary, ∂Ω2, the only constraint we impose on the pressure is at the inlet, ∂Ω1,

p = 0, r ∈ {∂Ω1}, (5.25)

hence no external pressure difference is applied.

5.3.3 Nernst–Planck equation

The implementation of the Nernst–Planck equation is altered slightly compared to Sec-
tion 4.3.2. With the change of variable c± → log c̃±, the weak form reads,

∫

∂Ω
log ĉ±,mn·J±dA+

∫

Ω
(−∇ log ĉ±,m ·J±)dV = 0. (5.26)

Because of the symmetry in the system we have no net flux through ∂Ω3 and ∂Ω4, so the
no flux boundary condition applies,

n·J± = 0, r ∈ {∂Ω3, ∂Ω4} (5.27)

On the electrode boundary, ∂Ω2, a weak contribution is applied corresponding to the
electrode reaction rate Eq. (5.10), so that the boundary current densities reads,

n·J+ = gk0

(
c+

c0
− 1

)
, n·J− = 0, r ∈ {∂Ω2}. (5.28)

Here g has been introduced, representing a conductivity of the electrode, and this is one
of the parameters we will consider in the study. The inlet, ∂Ω1, acts as a reservoir for the
system so the concentration is constraint here,

c± = c0, r ∈ {∂Ω1}. (5.29)
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5.3.4 Poisson equation

We implement the Poisson equation in the bulk as in Section 4.3.1,

∫

∂Ω
φ̂mn·(−ε∇φ)dA+

∫

Ω

[
−∇φ̂m ·(−ε∇φ)− φ̂mρel

]
dV = 0, (5.30)

but with the periodicity in boundaries ∂Ω3 and ∂Ω4 no surface charge is present and the
weak boundary contribution is,

n·(−ε∇φ) = 0, r ∈ {∂Ω3, ∂Ω4}. (5.31)

Instead we apply a potential difference between the electrode, ∂Ω1, and the inlet, ∂Ω2,
and this is implemented as a constraint on the potential,

φ = 0, r ∈ ∂Ω1 φ = −V0, r ∈ ∂Ω2. (5.32)

5.3.5 Mesh convergence analysis

As described in Section 3.2 it is important in numerical studies to make sure that the
mesh on the computational domain is good enough, to avoid numerical artefacts in the
solution. Especially the boundaries tend to be a problem because of the great variation in
the fields in the vicinity of a surface. In this study, we pay close attention to the electrode
boundary, because changes in the fields here happens typically in Debye-lengths, which
for the parameters shown in Table 5.1 takes the values λD = [0.5-100] nm.

There are different mesh types to choose between when meshing a boundary. One
option is to use the triangular mesh elements used in the bulk and refine the size, another
is to create rectangular boundary mesh elements. The latter was chosen for this problem
because of the possibility to make very thin stacks of elements. This is particularly good
here, since the strongest field gradients are in the normal direction.

The mesh element size, dblk
mesh, of the elements in the bulk, was chosen to dblk

mesh = 0.5 µm
and in the boundary layer the size of the smallest element was chosen to dblk

mesh = 1 nm
for a Debye-layer thickness of λD = 10 nm. The normal approach in mesh convergence
analysis is to sweep over the bulk, or the boundary layer, mesh size. But because of the
way the dendrite boundary was constructed, we chose the maximum element growth rate
αmesh as the parameter to refine the mesh in this study. This controls at what rate the
mesh size grows from the smallest to the biggest. Fig. 5.4 shows the mesh convergence
parameter C as introduced in Eq. (3.11), calculated for different αmesh in the interval
αmesh = [2 %-100 %] and the corresponding number of degrees of freedom, DoF, was used
for the plot. The reference solution gref was calculated for αmesh = 1 % corresponding to
1× 107 DoF.
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Figure 5.4: Mesh convergence analysis performed on the field variables vx, φ, log c̃+ and
µ+. The convergence parameter C(g) was calculated as in Eq. (3.11), with the reference
solution gref calculated with growth rate αmesh = 1 %. The convergence parameter is
plotted as a function of the number of degrees of freedom in the system, DoF. We chose
α = 1.1, corresponding to 0.5 × 106 DoF, and relative mesh convergence parameter C <
10−3, for the rest of the study.
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Chapter 6

Results

As presented in Section 5.1, the current in an electrochemical system, as a function of the
applied voltage will converge to the limiting current Jlim in the absence of advection contri-
butions. We have produced current-voltage characteristics for different system-parameters
and compared the results from the models with and without advection. Here the models
without advection involves only the Poisson-Nernst-Planck equations.

The current distribution on the dendrite and in the rest of the system has also been
investigated, in the presence of advection rolls.

6.1 Overlimiting current

w = 0.02

w = 0.5

Figure 6.1: Example of two
different dendrite widths
used in the numerical
study.

In the conducted studies we saw an effect of advection on the
current densities for large V0, except in some low concentra-
tion cases. We have investigated different values of the elec-
trode conductivity g, dendrite width w, bulk concentration
c0 and system height H, to see what parameters contribute
to the advection overlimiting current. In Fig. 6.2a the width
of the electrode has been varied from a sharp peak dendrite
w = 0.02 to an almost flat dendrite w = 0.5, as shown in
Fig. 6.1.

For all of the width we see that the advection rolls had
an effect on the current, but that the voltage at which the
effect begins, deviate. For the sharp protrusion w = 0.02
the effect is visible at Ṽ0 = 13 and for the flat protrusion
w = 0.5 the effect kicks in at Ṽ0 = 20. It is unclear what
this difference stems from, but may be because of a larger
tangential electric field component, which we discuss in the
next section. The limiting current for the different width vary slightly, but this might stem

from the definition of the limiting current Jlim =
2D+c0

L
, since it is dependent on system

length. The dendrite has a fixed amplitude h = 1 µm, but the wide dendrite occupy more
of the space near this height than the narrow one. This results in a larger limiting current
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for the flat dendrite than for the narrow, which agrees with what we see.

w. a. wo. a.

w. a. wo. a.

(a)

(b)

g = 1

w = 0.05

Figure 6.2: Both results were obtained with the system parameters H = 5 µm, L = 10 µm,
c0 = 1 mM. The full lines are results with advection (w. a.) and the dashed lines without
advection (wo. a.). The current is normalized by the limiting current J̃+ = J+/Jlim

and the voltage is normalized by the thermal voltage Ṽ0 = V0/VT . (a) IV-characteristic
for varying electrode width w with conductivity g = 1. (b) IV-characteristic for varying
conductivities g, with electrode width w = 0.05.

In Fig. 6.2b the electrode conductivity has been varied from a bad conductor g = 0.01
to a good conductor g = 2. As for the different dendrite widths, we see an overlimiting
current from advection rolls. The conductivity does not play an important role in this
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aspect. The variations in the current densities at low voltage can be explained, since it
takes a large voltage to drive a current, if the conductivity of the electrode is low. This
is also in agreement with the correction to the model of the limiting current Eq. (5.15),
where the variations in conductivity can be compared to varying the reaction constant
k0, and during the studies we could confirm that the corrected IV-expression was in good
agreement with the numerical results.

We have investigated if the bulk concentration influence the advection contribution to
the current density. A wide range of concentrations has been examined, and the resulting
IV-characteristic is shown in Fig. 6.3b. For low concentrations, the results with and
without advection coincide (blue line), hence bulk advection. in this concentration regime,
did not contribute to the current. The range of concentrations between c0 = 0.01 mM and
c0 = 1 mM was investigated further to see where the bulk advection begins to play role,
and we found that for c0 > 0.02 mM the effect of advection could be seen.

In the low concentration regime, we thus see an overlimiting current that stems from
something else. Since the Debye-length, scales inversely with the concentration squared
we have Debye-lengths λD ' 100nm in this regime. In the derivation of the limiting
current, we assume that the system will try to stay electroneautral, but this condition is
less strict for longer Debye-lengths, which can be seen in from the version of the Poisson-
equation presented in Eq. (5.6). In this case the electroneutrality condition is less strict
and the system might respond to the driving force by breaking neutrality resulting in an
overlimiting current.

It is very clear from Fig. 6.3a that the physical dimensions of the system have a
great impact on the advection contribution to the current density. The range of studied
voltages was expanded V0 = [1-50]VT when this effect was noticed. For the narrow system,
H = 2 µm, the current does not exceed the limiting current, even for large voltages. We
noticed that the maximum velocity of the fluid stays low, compared to the larger systems.
This might have an influence on the, lack of overlimiting current in this system. When we
increased the height no limit on the current was found, in the studied range of voltages.

6.2 Advection rolls near dendrite tip

As presented above the presence of advection rolls in the system contribute to the current
in such a way as to allow an overlimiting current. An example of the advection rolls near
the dendrite tip is shown in Fig. 6.4, showing that the largest velocities occur in the vicinity
of the dendrite tip. This behaviour of the fluid was apparent for all of the investigated
parameter combinations. The driving of the rolls stems from a tangential component of
the electric field exerting a body force on the charge density in the Debye-layer. Normally
in problems involving electro osmotic flows, an electro osmotic velocity is defined as,

veo =
εwV0

η
E‖ (6.1)

where E‖ in this definition is the electric field component tangential to the electrode. We
were not able to obtain the electric field component in the tangential direction, but to
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w. a. wo. a.

w. a. wo. a.

(a)

(b)

c0 = 1mM

H = 5µm

Figure 6.3: Both results were obtained with the system parameters L = 10 µm, g = 1 and
w = 0.05. The full lines are results with advection (w. a.) and the dashed lines without
advection (wo. a.). The current is normalized by the limiting current J̃+ = J+/Jlim and
the voltage is normalized by the thermal voltage Ṽ0 = V0/VT . (a) IV-characteristic for
varying system height H with bulk concentration c0 = 1 mM. Note the larger range of V0.
(b) IV-characteristic for varying bulk concentration c0, with system height H = 5 mM

get an idea of the field required, we calculated this using the velocity magnitude for the
different applied voltages. We found that for a system height H = 10 µm and an applied
voltage V0 = 20VT , the magnitude of the velocity was |v| = 5 mm s−1, as seen in Fig. 6.4a.
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(a)

x [m]

y [m]

|v| [mm s−1]

(b)

Figure 6.4: (a) Plot of the velocity magnitude |v| against the normalized applied voltage
Ṽ0 for different system heights H. (b) Contour of the magnitude of the velocity |v| (color
plot). The arrows in magenta indicates the velocity field components vx and vy. The
figure was obtained with the system parameters Ṽ0 = 40, c0 = 1mM, g = 1 and w = 0.05.

This results in an required tangential electric field component E‖ = 0.012 Vµm−1. The
normal electric field in the Debye-layer, from the tip of the dendrite was for the same
parameters calculated to E⊥ = 34 V µm−1, hence only a small fraction of the this field is
needed to drive the rolls. Due to time limitations, further investigations did not make it
into the report.

One important contribution that we encountered was distribution of the current on
the electrode, which is shown in Fig. 6.5. The boundary current distribution is shown for
two values of the applied voltage, V0 = 20VT , which compared to Fig. 6.3 is in the voltage
regime without advection effects and V0 = 40VT , which is in the regime with advection
effects. In the leftmost graph, Fig. 6.5a, the distrubution of current along the electrode is
the same for both of the applied voltages, and with and without advection. For H = 5 µm,
in Fig. 6.5b, we start to see an effect of advection at the large voltage, where the current
distribution increases near the dendrite tip. The same is the case in Fig. 6.5c, where for
H = 10 µm we see a peak current density of close to 20 Jlim. If this trend can be verified
in larger systems, and nonsymmetrical setups, it may have an impact on the growth of
the dendrites, since this is conditional on the current distribution.

The last subject under investigation is the current of the cations in the rest of the
system as well. In Fig. 6.6 a contour of the logarithm to the normalized current density
log
[
J̃+

]
is shown, in the presence of advection rolls, and the arrows shown in magenta

are the x- and y-components of the current. We chose the logarithm, to be able to see
the differences in the field. In Fig. 6.7 the same system is shown but in the absence of
advection rolls. In the absence of advection the only differences occur near the tip and
this is in agreement with Fig. 6.5b, showing the peak at the dendrite tip and the valleys
at the dendrite side. In the presence of advection it seems like the rolls confine the current



34 CHAPTER 6. RESULTS

w. a.
wo. a.

H = 2µm

(a)

H = 5µm

(b)

H = 10µm

(c)

Ṽ0 = 20 Ṽ0 = 40

Figure 6.5: Current density evaluated at the electrode for the system heights (a) H = 2 µm,
(b) H = 5 µm and (c) H = 10 µm. The current density is normalized by the limiting
current and the y-axis is normalized by the system height. The results were obtained with
the system parameters c0 = 1mM, g = 1, w = 0.05. Solid line denotes results obtained
with advection (w. a.), dashed line without advection (wo. a.). The results shown in blue
were obtained with an applied voltage Ṽ0 = 20, the results shown in red with an applied
voltage Ṽ0 = 40.

to the middle of the system, creating a passage for the current. This effect was even more
visible in larger system. We suspect that it is mostly due to the symmetry in the system,
because what the dendrite sees on either side is a mirror image of the system itself, and
that it has less to do with each roll itself. This would be interesting to pursue further for
different geometries and larger systems.
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x [m]

y [m]

log
(
J̃+

)

Figure 6.6: Contour showing the logarithm to the normalized cation current density
log
(
J̃+

)
(color plot) and the current density components (arrow plot), in the presence

of advection. The figure was obtained with the system parameters Ṽ0 = 40, c0 = 1mM,
g = 1 and w = 0.05.



36 CHAPTER 6. RESULTS

x [m]

y [m]

log
(
J̃+

)

Figure 6.7: Contour showing the logarithm to the normalized cation current density
log
(
J̃+

)
(color plot) and the current density components (arrow plot), in the absence

of advection. The figure was obtained with the system parameters Ṽ0 = 40, c0 = 1mM,
g = 1 and w = 0.05.



Chapter 7

Conclusion and outlook

We present here a brief outlook and discussion, of what further investigations could be
pursued, as well as the final concluding remarks on the thesis.

7.1 Outlook

The results presented in the previous chapter were obtained from simulations of a small
system, compared to the work of other authors. Experimentals setups with the dimensions
H = 1 mm and L = 25 mm has been carried out in the study of the convection rolls around
dendrites [7], and it would be interesting to carry out numerical simulations on such a
system, since the exiting theory fails in predicting the velocity of the rolls[9]. This was
however not possible since the increased size, was to heavy in computational time, if the
resolution of the problem was to be kept. We did carry out some simulations on larger
systems (H = 45 µm L = 100 µm) inspired by experiments on growth of dendrites [5], but
already for this size we had trouble with the mesh convergence. Further investigations
into larger systems would require that this problem was dealt with in some way, maybe
by a coupling between a model of the boundary layer and a model of the bulk system.

The expression used for the reaction kinetics at the electrode is a simple limit of the
Butler-Volmer equation. In future studies it could be relevant to extend the expression,
by incorporating more physics, either to verify the approximation used or to investigate
were it breaks down.

The mentioned experimental setup used by Huth. et. al. [7], measured velocities with
a magnitude of |v| = 10 µm s−1, for a system with the mentioned dimensions H = 1 mm
and L = 25 mm, a dendrite width of w ≈ 0.2 mm and a bulk concentration c0 = 10−2 mM
and it was driven by a constant electric current density of 4mA cm−1. In units of the
limiting current for that setup the current density is J̃exp = 105. This seemed a good
parameter to compare the systems on but we did not reach currents of this magnitude.
The maximum velocity for the same concentration in our numerical study was observed
to |v| = 100 µm s−1, already at J̃ = 1.4. Everything indicated that velocities rose with the
current, which suggest that other parameters, that we have not investigated, play a role
on the velocity of the advection rolls.
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7.2 Conclusion

We have in this thesis studied electrokinetics with advection near an ideal model of a
dendrite. We have explained the behaviour of an electrolytic solution near a charged
surface by introducing the idea of a Debye screening layer. An analytical solution was
found to the Poisson–Botzmann equation in a simple setup, and it was compared to a
numerical model.

A simple model of the diffusion limited current density was presented, and corrected
to take into account the breakdown of charge neutrality in the Debye-layer. We have
presented the implementation of the Poisson-Nernst-Planck-Stokes problem in COMSOL
multiphysics and carried out numerical experiments on a dendritic metal electrode.

We saw that advection rolls contributed to an overlimiting current, and that the phys-
ical dimensions of the model system played a role in the amount of overlimiting current.
The advection rolls were also found to increase the amount of current into the tip of the
dendrite, and that this effect scaled with the height of the system. The cation current
distribution in the system was investigated, and we found that the advection rolls created
a region from the reservoir to the tip of the dendrite with a large current density.
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