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Abstract

The aim of this bachelor’s thesis is a study of electrokinetics in microchannels with ion-selective
membranes. We present governing equations in electrokinetics and explain the important phe-
nomena of a Debye screening layer formed in an electrolyte near a charged surface. Then,
with applications for desalination in mind, we study an analytical and numerical model of
a microchannel with an ion-selective membrane exhibiting concentration polarization (ionic
depletion in front of the membrane) in an electrolyte when an electric field is applied. In
particular, we study how Debye screening gives rise to overlimiting current and thus an ex-
tended depletion region. After having achieved a physical understanding of the system, we
present a desalination device consisting of a cation-selective membrane and a glass ’frit’ in
which numerous microchannels are effectively formed. For a study of how electrokinetic ef-
fects contribute to desalination on the microscale view, we implement an outlet channel and
a leaky wall in the numerical model. The leaky wall provides a way of modelling the porous
structure of the glass frit.

Our study shows that electro-osmotic flow carries electrolyte of high ionic concentration
near charged walls towards the depleted region, thus yielding a transverse concentration gra-
dient in addition to the longitudinal concentration polarization. By studying a system with
asymmetrically charged walls, we find that the transverse concentration gradient provides a
considerable contribution to the concentration of the extracted electrolyte.

Furthermore, we find that charged walls do not contribute to extended depletion in the
first model suggested. The extend of the depletion is determined by a vortex formed in front
of the outlet channel due to the electro-osmotic flow. By applying a large transverse pressure-
driven flow, we can suppress the vortex, and thus exploit overlimiting current to provide
extended depletion.

Front page illustration: Sketch of a microchannel with an ion-selective membrane exhibiting
concentration polarization in response to an electric field.
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Resumé

Dette bachelorprojekt har til formål at studere elektrokinetik i mikrokanaler med ionselektive
membraner. Indledningsvis præsenteres styrende ligninger indenfor elektrokinetikken, og det
vigtige fænomen Debye afskærmning i en elektrolyt nær en ladet væg forklares. Dernæst stud-
eres en analytisk og numerisk model af en mikrokanal med en ionselektiv membran, der udviser
koncentrationspolarisation (lavkoncentrationsregion foran membranen) i en elektrolyt under
påvirkning af et elektrisk felt. Specielt undersøger vi, hvordan Debye afskærmning giver an-
ledning til ’overbegrænset’ ion-transport og derved en udvidet lavkoncentrationsregion. Efter
at have opnået en fysisk forståelse af systemet præsenterer vi et afsaltningsapparat bestående
af en kation-selektiv membran og en glas ’frit’, hvori mange mikrokanaler effektivt formes.
Til at undersøge hvordan elektrokinetiske effekter påvirker afsaltningen på mikroskala, im-
plementerer vi en afløbskanal og en utæt væg i den numeriske model. Den utætte væg er en
måde at modellere den porøse struktur af glas fritten.

Undersøgelsen viser, at elektroosmotisk flow bærer elektrolyt af høj koncentration nær
ladede vægge mod lavkoncentrationsregionen og derved bidrager til en transvers koncen-
trationsgradient foruden den longitudinale koncentrationspolarisation. Ved at undersøge en
mikrokanal med asymmetrisk vægladning finder vi, at den transverse koncentrationsgradient
bidrager væsentligt til koncentrationen af den udvundne elektrolyt.

Endvidere finder vi, at ladede vægge ikke bidrager til en udvidet lavkoncentrationsregion
i den første foreslåede model. Lavkoncentrationsregionen er domineret af en hvirvel fra det
elektroosmotiske flow foran afløbskanalen. Ved at påtrykke et kraftigt transvers trykdrevet
flow kan vi holde opbyggelsen af hvirvlen nede, og derved udnytte overbegrænset ion-transport
til at opbygge en udvidet lavkoncentrationsregion.
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1 | Introduction

The growth of population, economic development, and the effects of climate changes cause
an increasing demand for pure drinking water. Global estimates differ among studies and
range from 2.8 to 6.9 billions of people living in areas with high water stress around year 2050
[1, p. 194]. Desalination of seawater is a possible supply of drinking water and is becoming
more widely considered with costs as the biggest concern [1, p. 559]. This thesis is a study of
electrokinetics in microchannels with ion-selective membranes that has shown great potential
for desalination.

In the following, we introduce some general fluidic concepts and the field of electrokinetics.

1.1 Hydrodynamics and electrokinetics

We know about fluids from our everyday life: The water we drink, the air we breathe, and the
petrol we put in the car. A fluid is a substance that deforms continuously and easily when
an external force is applied. The building blocks of fluids, molecules with intermolecular
distances λ of approximately 0.3 nm for liquids and 3 nm for gases, appear continuous on a
sufficiently large length scale. Assuming that the fluid can be described by a noninteracting
classical gas, the number of molecules in a volume (λ∗)3 follows a Poisson distribution, hence
should contain N = 4× 104 molecules for the relative uncertainty to be

√
N/N = 0.5%. This

provides a typical length of a so-called continuous fluid-particle, λ∗ = λN1/3 = 10 nm (for
liquids) [2, ch. 1], [3, p. 363]. For length-scales larger than λ∗ we can describe the fluid as a
continuum. This is the so-called continuum hypothesis.

In the field of fluidics, physical quantities are described by fields, i.e. a value is assigned
to every point in space and time. We apply the Eulerian view, describing the time-evolution
of the value at fixed points in space rather than following particles as in the Lagrangian de-
scription. Fields can be scalar fields, vector fields, or tensor fields, and provide an average
description of physical quantities. Thus, an appropriate way to define the scalar density field
is

ρ(r, t) ≡ 1

(λ∗)
3

∑
i∈(λ

∗
)
3

mi, (1.1)

1



Chapter 1. Introduction

where mi is the mass of particle i in the volume (λ∗)
3 centred at r. We define the vector

velocity field by

v(r, t) ≡ 1

ρ(r, t)(λ∗)
3

∑
i∈(λ

∗
)
3

mivi, (1.2)

[2, p. 6-7].

An important class of fluids is collected under the term of electrolytes, i.e. aqueous solutions
of dissolved ionic species. The forces acting on charged particles provide some important
characteristics of electrolytes. The motion of electrolytes relative to charged surfaces is stud-
ied in the field of electrokinetics [2, p. 143]. Displacements of a charged particle in a fluid
is governed by advection due to a velocity field of the fluid, diffusion due to random thermal
motion of particles, and displacement by an electric field [4, ch. 4]. This thesis provides
a study of electrokinetics in microchannels with ion-selective membranes, in particular with
applications for desalination in mind.

In chapter 2, we present governing equations in the field of electrokinetics. In chapter 4,
we consider the behaviour of an electrolyte near a charged surface. In particular, we explain
the important phenomena of the Debye screening layer formed when counterions are attracted
to a charged surface and co-ions are repelled. In chapter 5, we present and analyse a model of
an electrokinetic system with an ion-selective membrane exhibiting concentration polarization
in an electrolyte in response to an electric field. As we will see, this effect has great potential
for desalination. In chapter 6, we present and discuss a desalination device.

Throughout the thesis, simulations are carried out using the finite-element method with
the commercial software COMSOL. Both for verification of the analytical results and for
further studies of the systems beyond analytical models. An introduction to the finite-element
method is given in chapter 3.

2



2 | Governing equations

The following sections introduce the governing equations applied in the study of the electroki-
netic systems presented in this thesis.

2.1 Hydrodynamics

Throughout the thesis, we apply the continuum hypothesis as discussed in the introduction.
As long as we consider the system on a length scale larger than the typical size of a fluid-
particle, the continuum hypothesis is a good approximation. In non-relativistic mechanics,
mass in a volume Ω can change only by a mass flux through the surface ∂Ω. This gives rise
to the continuity equation

∂tρ = −∇ · (ρv), (2.1)

i.e. the rate of change in density at a point in space and time is caused by a convergence of
mass-current density to that point. For an incompressible fluid where ρ is constant in space
and time

∇ · v = 0. (2.2)

The equation of motion of the fluid is found by applying the Eulerian description and con-
sidering the change of momentum of the fluid inside a fixed volume Ω caused by convection
through the surface ∂Ω and by Newton’s second law. This leads to

ρ(∂tv + (v ·∇)v) = ∇ · σ + f , (2.3)

where σ is the full stress tensor and f is the total body force density. We consider electrostatic
and gravitational body forces. However, the gravitational body force is cancelled by the
hydrostatic pressure, hence, we do not include the gravitational force explicit in f and let
p denote the external pressure. Note that the term on the left side of equation (2.3) is the
resulting force density where we have applied the material time derivative of the Eulerian
velocity field to correct from the Eulerian description to ordinary Newtonian mechanics.

The components of the full stress tensor σ are

σij = −pδij + σ′ij = −pδij + η(∂jvi + ∂ivj) + (β − 1)η(∂kvk)δij , (2.4)

governing the pressure p and viscosity. η is the dynamic viscosity (in units of Pa s) characteris-
ing internal friction due to shear stress, and β is the dimensionless viscosity ratio characterising
the ratio of internal friction due to compression (second viscosity ζ) and dynamic viscosity.
The dynamic viscosity for water has a high dependence on temperature, however at room

3



Chapter 2. Governing equations

temperature it is around 1 mPa s. The second viscosity is only relevant for compressible
fluids which is not considered in this thesis.

For constant viscosity coefficients, equation (2.3) leads to the Navier–Stokes equation

ρ[∂tv + (v ·∇)v] = −∇p+ η∇2v + βη∇(∇ · v) + f , (2.5)

ρ[∂tv + (v ·∇)v] = −∇p+ η∇2v + f , (incompressible fluid). (2.6)

Note that, intuitively, η∇2v arises from a difference in stress just as∇p arises from a difference
in pressure.

By introducing the dimensionless position r̃ = r−1
0 r, velocity ṽ = v−1

0 v, time t̃ = v0/r0t,
and pressure p̃ = r0/(ηv0)p, and setting f = 0, we write the incompressible Navier–Stokes
equation (2.6) in the dimensionless form

Re[∂t̃ṽ + (ṽ · ∇̃)ṽ] = −∇̃p̃+ ∇̃2ṽ, (2.7)

where
Re ≡ ρv0r0

η
(2.8)

is the Reynolds number that determines whether the non-linear left-hand side or the linear
right-hand side dominates in the system.
[2, ch. 2, 3].

2.2 Electrostatics

We assume sufficiently low velocities of the ionic species and consider the system in the
electrostatic approximation. Electrostatics couple with hydrodynamics through the body
force density in the Navier–Stokes equation. Charged particles exert Coulomb forces on each
other. The force on a test charge q is governed by the electric field E,

Fel = qE. (2.9)

When describing electric fields in matter, we introduce the electric displacement D defined
by

D ≡ ε0E + P = εE, (2.10)

where ε0 = 8.854×10−12 F m−1 is the vacuum permittivity, and P is the polarization induced
in the material, defined as dipole moments per unit volume. The last equality is valid for a
linear isotropic dielectric. We consider aqueous solutions which satisfy this approximation.
Thus, ε = 78ε0 here denotes the permittivity of water and governs the polarization response
of water to an electric field [2, p. 147].

According to Gauss’s law, the flux through a surface ∂Ω enclosing a free charge qfree is∮
∂Ω

da ·D = qfree. (2.11)

Since the integral of the electric field around a closed path is zero (for zero magnetic field
or sufficiently small time-variation of the magnetic field), the curl is zero, and thus in the

4



2.3 Electrokinetics

electrostatic regime, the electric field can be fully described by the gradient of the scalar
electric potential φ

E = −∇φ, (2.12)

where the electric potential is defined with respect to some reference point O

φ = −
∫ r

O
dl ·E. (2.13)

Combining the differential form of equation (2.11) with equation (2.12), we find the useful
Poisson’s equation for a linear isotropic dielectric

∇2φ = −ρel
ε
, (2.14)

where ρel is the electric charge density.
[2, ch. 8], [5].

2.3 Electrokinetics

As discussed in the introduction, transport of a charged particle i in a fluid is governed by
advection, diffusion, and displacement by an electric field. These phenomena contribute to
a particle current density Ji, i.e. a number of particles crossing a unit area per unit time,
coupled to the particle concentration ci by conservation of particles

∂tci = −∇ · Ji +Ri, (2.15)

where the rate of change in concentration at a point in space is either due to a convergence of
particle current density or to some chemical reactions producing ci with rate Ri. We give the
concentration in units of M (mole per litre). Note that in aqueous solutions 1 mM ≈ NA m−3,
whereNA is the Avogadro constant. The ionic particle current density is coupled to the electric
current density J̃i by J̃i = Ji|Zi|e, where Zi is the valence number of the ionic species i.

The advective current density is given as the concentration of the ionic species i times the
velocity of the fluid. Diffusion is governed by a concentration gradient since particles displace
from high to low concentration. A linear approximation is given by Fick’s law

Jdiff
i = −Di∇ci, (2.16)

where Di is the diffusivity in units of m2s−1. For typical small ions in an aqueous solution,
the diffusivity is of the order of 10−9 m2s−1. In particular relevance for desalination, we note
that the diffusivity for small concentrations of Na+ and Cl− in aqueous solutions at T = 25 ◦C
is 1.33× 10−9 m2 s−1 and 2.03× 10−9 m2 s−1, respectively [2, p. 145].

In the presence of an electric field, a particle of charge q initially at rest is accelerated due
to the Coulomb force (2.9). When the particle gains velocity, the viscous drag force eventually
balances the coulomb force and the particle reaches a steady-state velocity v = µE, where µ
is the mobility in units of m2s−1V−1. The mobility for small concentrations of Na+ and Cl−

in aqueous solutions at T = 25 ◦C is 5.19 × 10−8 m2s−1V−1 and −7.91 × 10−8 m2s−1V−1,
respectively [2, p. 145]. The contribution to the particle current density is

Jel
i = −ciµi∇φ. (2.17)

5



Chapter 2. Governing equations

For small concentrations, the particle concentration follows Boltzmann statistics in ther-
mal equilibrium, and the diffusivity and mobility is related through the Einstein relation
D± = ±VT|µ±|, where VT = kBT/(|Z|e) is the thermal voltage and plus and minus denote
a positively and a negatively charged particle, respectively [2, p. 242], [3, p. 210]. At room
temperature for Z = ±1, VT = 25.7 mV.

Adding up the contributions, we reach the Nernst–Planck equation

J± = c±v −D±∇c± ∓ c±D±V
−1
T ∇φ. (2.18)

[2, ch. 8, 9], [4, ch. 4].

2.4 Non-linearity

The Navier–Stokes equation contains the non-linear term (v · ∇)v which makes it difficult to
find analytical solutions. For the physical insight, we provide some important analytical flow
solutions in section 5.4. For the numerical study presented in chapter 5, we assume sufficiently
low Reynolds number and neglect this non-linear contribution. Even so, coupling between
the governing equations introduce a strong non-linearity in the system. Chapter 4 provides
an example of such a coupling. However in that case, an analytical solution can actually
be found for the very symmetric geometry considered. In general, when considering more
complex geometries, one have to apply numerical methods. The following chapter provides
an introduction to the numerical finite-element method.
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3 | Introduction to the
finite-element method

Simulations are carried out using the finite-element method with COMSOL. In the finite-
element method, the physical continuum is separated into a finite number of mesh-elements.
This chapter provides a brief overview of the basic ideas behind weak form modeling in the
finite-element method.

3.1 Weak form modeling

We consider inhomogeneous boundary value problems written in the form of continuity equa-
tions

∇ · Γ = F, (3.1)

where the flux Γ of the field variable g(r) is given by a differential operator D acting on g. F
is the source plus rate of change of g. This form is applicable for field problems treating flows
or conservation of quantities such as mass (2.1), momentum (2.3), electric field lines (2.14),
or particles (2.15) and is applicable for all governing equations in this thesis.

We assume that g can be represented in a finite basis of real functions {g1, g2, ..., gN} that
nearly spans the function space

g(r) ≈
N∑
n=1

Gngn(r), (3.2)

where the coefficients Gn are to be determined. In COMSOL, gn are denoted test-functions
and are constructed by some specific function associated with each node of the mesh, as
clarified below. From equation (3.1), we define the defect d as

d = ∇ · Γ− F. (3.3)

For a so-called strong solution satisfying equation (3.1), the defect is zero. We expand the
defect in basis of gn, and require the expansion coefficients to vanish for equation (3.1) to be
approximately satisfied

〈gn|d〉 = 〈gn|∇ · Γ− F 〉 =

∫
Ω
dr [gn∇ · Γ− gnF ] = 0. (3.4)

A solution that satisfies equation (3.4) is called a weak solution. Using that ∇ · {gnΓ} =
gn∇ · Γ + ∇gn · Γ, we find by Gauss’s theorem∫

∂Ω
da gnn · Γ +

∫
Ω
dr [−∇gn · Γ− gnF ] = 0. (3.5)
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Chapter 3. Introduction to the finite-element method

This is the weak form suitable for numerical simulations in COMSOL. By applying the ex-
pansion (3.2), this is turned into a matrix equation for Gn. Note that the governing equations
in chapter 2 contain only up to second-order derivatives (Γ contain up to first-order deriva-
tives), and g need only be continuous and piecewise differentiable for (3.5) to be well-defined
[6], [2, p. 325-327].

3.2 Mesh and mesh convergence

The mesh consists of triangular mesh-elements T . The dis-
crete set of triangles is denoted T . Note that a linear func-
tion of two variables

p ∈ P1 = {a0 + a1x1 + a2x2|a0, a1, a2 ∈ R}, (3.6)

is uniquely determined by its values on the vertices (nodes)
of a non-degenerate triangle. We define the solution space
of continuous piecewise linear functions of two variables

V =
{
g ∈ C(Ω)

∣∣∣ g|T ∈ P1, ∀ T ∈ T
}
. (3.7)

Functions in V are piecewise differentiable as needed in
equation (3.5). If we denote a node in the mesh by pm,
there exists a unique function such that gn(pm) = δmn.
These test-functions form a finite basis for V [7]. The test-
functions can also be (and typically are) of higher degree
than first order polynomials.

Ω

gn

T

Figure 3.1: Sketch of trian-
gular mesh-elements T in the
domain Ω, and a piecewise lin-
ear test-function gn [6].

Mesh convergence
In order for the test-functions to span the solution space properly, the mesh elements must
be sufficiently small. However, a decrease in mesh element size dmesh, where dmesh denotes a
characteristic length of the mesh elements, increases the computational time. A mesh con-
vergence analysis is performed by comparing solutions for decreasing mesh element size. We
define the relative convergence parameter C(g) of the field variable g(r) by

C(g) =

√∫
dxdy (g − gref)

2∫
dxdy g2

ref
, (3.8)

where the reference solution gref is the solution to the smallest dmesh [8]. In COMSOL,
the relative convergence parameter is found by sweeping over different values of dmesh and
applying the JOIN function to find the difference to the reference solution.
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4 | Electrolytes near solid surfaces

Near a charged surface, ions in an electrolyte form a screening layer, the so-called Debye layer.
The following sections provide an explanation and an analytical model of this electrokinetic
phenomena. The chapter serves as an introduction to theoretical and numerical considera-
tions in electrokinetics, and a thorough understanding of the Debye layer is important for the
study of the electrokinetic system presented in chapter 5.

When an electrolyte gets in contact with a solid surface, a charge transfer often appears.
In the case of glass, Si-OH (silanol group) at the surface loses a proton in the presence of an
aqueous solution and leaves negatively charged Si-O− on the surface [4, ch. 1].

Consider a binary Z:Z electrolyte, i.e. an aqueous solution of anions and cations with equal
concentration c0 and equal absolute valence |Z| [9], near a positively charged infinite planar
surface in the xz-plane at y = 0, as illustrated in figure 4.1. Counterions are attracted to the
oppositely charged surface and co-ions are repelled. Due to thermal behaviour of the particles,
the transport is governed by statistical physics. However, since this statistical behaviour is
build into the Nernst–Planck equation through Fick’s law, we find the ionic distribution by

λD0 y

φ

E

ζ

Figure 4.1: Sketch of the electric potential φ in a binary electrolyte as function of distance
y from a positively charged surface. Anions are attracted to the surface, and cations are
repelled. The Debye length λD is marked on the y-axis, and the corresponding Debye layer
is marked with a vertical grey dashed line. Electric field lines are drawn from the charged
surface together with a Gaussian pillpox, marked with a blue dotted line.
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Chapter 4. Electrolytes near solid surfaces

requiring the ion current densities (2.18) to vanish in equilibrium

J± = −D±∇c± ∓ c±D±V
−1
T ∇φ = 0 ⇔ (4.1a)

∇c±
c±

= ∇ ln(c±) = ∓V −1
T ∇φ. (4.1b)

The potential at the surface is known as the zeta-potential, φ(0) = ζ. For glass and an
aqueous solution of pH 7, the zeta-potential is of the order −100 mV [4, ch. 1].

Infinitely far away from the surface, the electrolyte cannot feel the charged wall, thus,
φ(∞) = 0 and c±(∞) = c0. Applying these boundary conditions yields

c±(r) = c0 exp

(
∓φ(r)

VT

)
. (4.2)

To obtain a differential equation for the electric potential, equation (4.2) is inserted into
Poisson’s equation (2.14)

∇2φ(r) = −1

ε
ρel(r) = −1

ε
Ze(c+(r)− c−(r)) =

2Zec0

ε
sinh

(
φ(r)

VT

)
. (4.3)

This illustrates how non-linearity is introduced into the system due to coupling of the govern-
ing equations. In general, we must turn to approximations or numerical methods to solve this
non-linear differential equation. However, an analytical solution can be found for the simple
infinite planar surface considered here. [10, 2, 4].

4.1 The Debye–Hückel approximation

First, we consider an approximate solution to equation (4.3). For sufficiently high tempera-
tures, VT � |ζ|, and we can linearise the hyperbolic sine in (4.3)

∇2φ(r) =
1

λ2
D

φ(r), (4.4)

where we have introduced the Debye length

λD ≡
√

εkBT

2(Ze)2c0

=

√
εVT

2Zec0
. (4.5)

For a binary 1:1 electrolyte with permittivity ε = 78ε0 and ionic concentration c0 = 1 mM (of
both cations and anions), the Debye length is 9.6 nm (for T = 25 ◦C).

We have already mentioned that a typical zeta-potential is of the order -100 mV and that
VT = 25.7 mV at room temperature for a monovalent ionic species. Thus, the Debye–Hückel
approximation is almost never satisfied. However, qualitatively, the Debye–Hückel approxi-
mation provides a great physical insight.

Note furthermore, that the Debye length is of the same order as a fluid-particle defined in
the introduction. Hence, we approach the length scale where the continuum hypothesis is no
longer valid. However, the model provides results in agreement with experimental observations
[4, p. 199], and we therefore take this model as valid, but are aware of that we should be
careful in this small length scale.
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4.2 The Gouy–Chapman solution

For the system considered in figure 4.1, symmetry reduces the problem to

∂2
yφ(y) =

1

λ2
D

φ(y). (4.6)

By applying the boundary conditions from before, we find an expression for the electric
potential

φ(y) = ζ exp

(
− y

λD

)
, y ≥ 0. (4.7)

The Debye length provides a characteristic length of the area of increased counterion concen-
tration, as illustrated in figure 4.1. Equation (4.5) reveals the diffusive and electric contribu-
tion to the Debye layer. The Debye length squared is proportional to the thermal voltage,
hence, diffusion tends to move the screening ions further out into the bulk, and inversely
proportional to a contribution from the electrostatic potential, 2Zec0/ε from equation (4.4),
which tends to draw the screening ions closer to the surface.

The charge per area qliq in the Debye layer that screens the positively charged surface is
given by

qliq =

∫ ∞
0

dyρel(y) =

∫ ∞
0

dy
[
−ε∂2

yφ(y)
]

=

∫ ∞
0

dy
[
−εζ
λ2
D

exp

(
− y

λD

)]
= − ε

λD
ζ. (4.8)

The system acts as a capacitor, with capacitance per area CD = −qliq/ζ = ε/λD, since electric
charge is accumulated due to the electric potential difference of the solid surface and the bulk
[2, ch. 8]. We might regard the surface as a positive plate and the Debye layer as a negative
"plate" in a parallel-plate capacitor with equal charge on the plates (the Debye layer screens
the charged surface). The electric fields cancel outside the capacitor and add up inside the
capacitor [5, p. 74]. Effectively, field lines run perpendicular from the charged surface to the
Debye layer, as illustrated in figure 4.1. The surface charge per area σ can thus be calculated
by considering a Gaussian pillbox, as illustrated in figure 4.1 with a blue dashed line. By
Gauss’s law we find∮

∂Ω
da ·E = E(0) · ŷA =

σA

ε
⇔ σ = εE(0) · ŷ = −ε∂yφ(0) =

ε

λD
ζ. (4.9)

We notice that qliq = −σ, thus ensuring global charge neutrality.

4.2 The Gouy–Chapman solution

For the simple infinite planar surface considered here, an exact solution to equation (4.3) can
be found, the so-called Gouy–Chapman solution. By introducing y = λDỹ, φ = VTφ̃, we write
equation (4.3) in dimensionless form

VT

λD
2∂

2
ỹ φ̃(ỹ) =

2Zec0
ε

sinh
(
φ̃(ỹ)

)
⇔ ∂2

ỹ φ̃(ỹ) = sinh
(
φ̃(ỹ)

)
, (4.10)

where symmetry has reduced the problem to one dimension. We multiply with φ̃′, where
prime denotes differentiation with respect to ỹ, and find

φ̃′(ỹ)φ̃′′(ỹ) = φ̃′(ỹ) sinh
(
φ̃(ỹ)

)
⇔

(
1

2
[φ̃′(ỹ)]2

)′
=
(

cosh(φ̃(ỹ))
)′
. (4.11)
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Chapter 4. Electrolytes near solid surfaces

Infinitely far from the wall, we require that φ′(∞) = 0. Furthermore, since we have assumed
a positively charged surface, we choose the negative sign when isolating φ̃′

φ̃′(ỹ) = −
√

2 cosh(φ̃(ỹ))− 2 = −2 sinh

(
1

2
φ̃(ỹ)

)
. (4.12)

Substituting u = 1/2φ̃, we find by separation of variables1

tanh

(
u(ỹ)

2

)
= tanh

(
ζ

4VT

)
exp(−ỹ), (4.13)

satisfying φ(0) = ζ. Substituting back to physical variables, we reach the Gouy–Chapman
solution for the electric potential

φ(y) = 4VTarctanh
[
tanh

(
ζ

4VT

)
exp

(
− y

λD

)]
, y ≥ 0. (4.14)

For VT � |ζ|, tanh(u) ≈ u and arctanh(u) ≈ u, hence, equation (4.14) reduces to the De-
bye–Hückel approximation. A numerical verification of the result is presented in the following
section.

The Gouy–Chapman solution is plotted in figure 4.2 together with the Debye–Hückel ap-
proximation and numerical calculations for VT = 26 mV, Z = 1, ε = 78ε0, and c0 = 1 mM.
For VT � |ζ|, the Debye–Hückel approximation is close to the exact result. However, for
larger absolute values of the zeta-potential, the Debye–Hückel begins to deviate from the
Gouy–Chapman solution.

1Using that
∫
du 1

sinh(u)
= ln

(
tanh

(
u
2

))
+ c

0 1 2 3 4 5-5

-4

-3

-2

-1

0

φ
/
V
T

y / λD

−0.5−2 −5

Gouy–Chapman
Debye–Hückel
Numerical simulation

ζ/VT =

Figure 4.2: The Gouy–Chapman solution, the Debye–Hückel approximation, and numerical
calculations of the electric potential in an electrolyte as function of distance y from a charged
surface.
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4.3 Numerical set-up

The relation between surface charge and zeta-potential for the Gouy–Chapman solution is
found from equation (4.12) by applying Gauss’ law

σ =
2εVT
λD

sinh

(
ζ

2VT

)
. (4.15)

4.3 Numerical set-up

The numerical set-up is illustrated in figure 4.3, where governing equations and boundary con-
ditions are labelled by their equation-references on the corresponding domain Ω and bound-
aries ∂Ωi.

Ionic concentration
At steady-state, assuming that no chemical reactions occur, equation (2.15) becomes

∇ · J± = 0, (4.16)

where the ion current densities, given by equation (2.18) for v = 0, are functions of the
dependent variables c+ and c−. In weak form (4.16) becomes∫

∂Ω
da c±,nn · J± +

∫
Ω
dr[−∇c±,n · J±] = 0, (4.17)

where c±,n denotes the test-functions for the ionic concentrations and n denotes the normal
unit vector pointing out of the domain.

No particle flux is allowed through the walls, hence, we apply the weak contribution

n · J±(r) = 0, (4.18)

for r ∈ {∂Ω2, ∂Ω3}.
At the inlet and outlet we apply the constraints

c±(r) = c0, (4.19)

x

y

0 L

H
(4.21)

(4.18)

(4.17)
(4.19)(4.19)

(4.20)∂
Ω

1

∂Ω3

∂Ω2

∂
Ω

4

(4.18)

(4.21)

(4.22) (4.22)
Ω

Figure 4.3: Schematic illustration of the numerical set-up of an electrolyte near a charged
surface. Ω denotes the domain, H refers to the height of the domain (length of boundaries
∂Ω1 and ∂Ω4), and L refers to the length of the domain (length of ∂Ω2 and ∂Ω3). Rigid walls
are black, and non-rigid boundaries are grey. Numbers in parenthesis refer to the equation
number of the governing equation or boundary condition.
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Chapter 4. Electrolytes near solid surfaces

for r ∈ {∂Ω1, ∂Ω4}.

Electric potential
In weak form Poisson’s equation becomes∫

∂Ω
da φnn · (−ε∇φ) +

∫
Ω
dr[−∇φn · (−ε∇φ)− φnρel] = 0, (4.20)

where ρel = Ze(c+ − c−).
At the walls, we have in agreement with equation (4.9) the weak contribution

n · (−ε∇φ) = −σ, (4.21)

and set σ(r) = 0 for r ∈ {∂Ω2} and apply equation (4.15) for r ∈ {∂Ω3}.
At the inlet and outlet we apply the constraint

φ(r) = 0, (4.22)

for r ∈ {∂Ω1, ∂Ω4}.

Note that the boundary conditions near the charged wall at the inlet and outlet are un-
physical and contradict the formation of a Debye layer. However, far from the inlet and
outlet, the numerical solution is stabilized, and data are extracted with a vertical cut-line
through L/2. The numerical result for the electric potential is plotted in figure 4.2 together
with the analytical expressions. The numerical result agree with the exact Gouy–Chapman
solution as expected. This serves as a good verification of both the analytical expression and
the numerical set-up.
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5 | Microchannel with an
ion-selective membrane

Ionic transport through ion-selective membranes is found in a variety of fields from fuel cells to
purification of water. This chapter provides a study of electrokinetic effects in a microchannel
with an ion-selective membrane, illustrated in figure 5.1, focusing on applications for desali-
nation. An analytical and numerical model of such a system is examined, explaining the
effects of concentration polarization and overlimiting current in an electrolyte in response to
an electric field.

0

φ = 0
H
2

Reservoir Reservoirx

y

L

φ = −V0

Figure 5.1: Sketch of an electrolyte exhibiting concentration polarization in a microchannel
(of height H and length L) with a cation-selective membrane at x = L. The reservoirs contain
an electrolyte of fixed concentration. An electric potential difference is applied as indicated.
Dimensions are for illustrative purpose.

Channel and electrolyte
The reservoirs in figure 5.1 contain a binary 1:1 electrolyte. Of particular importance for
desalination, we consider a 1:1 electrolyte of chloride and sodium. The concentration of dis-
solved salts in seawater is measured by the salinity in units of parts per thousand by weight.
The average oceanic salinity is around 35h. The major constituents are chloride and sodium
which account for 30.3h. This corresponds to a total concentration of chloride and sodium
of around 500 mM [11, p. 23-25]. However, since the contributing terms in the ion current
density are valid for small ionic concentrations, we adopt the typical concentration c0 = 1 mM
used in similar studies [9, 10], which is sufficient for studying some fundamental electrokinetic
effects in the system. The reservoirs could be thought of as transverse channels with the
electrolyte flowing through. The length of the channel between the reservoir and the mem-
brane is set to L = 10 µm, a compromise between demanding sufficiently small concentration
gradients near the reservoir and a reasonable computational time. Unless otherwise noticed,
the height is set to H = 1 µm, which is around the typical height of channels studied for
desalination by the group of Henrik Bruus (TMF) at DTU and the group of Martin Bazant
at MIT [10].
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Chapter 5. Microchannel with an ion-selective membrane

To drive the ionic transport, an electric potential difference is applied over the system.
In the physical set-up this is provided by an anode and a cathode, however, we simply apply
this electric potential difference as boundary conditions indicated in figure 5.1.

Ion-selective membrane
A cation-selective membrane is placed in the channel at a distance L from the left reservoir.
The membrane could consist of nanochannels with negative charge embedded on the walls.
No current of anions can run in the negatively charged nanochannels, however a current of
cations can [9]. Due to a high hydraulic resistance in the nanochannels, the velocity of the
fluid is approximately zero at the boundary of the membrane.

A physical and chemical study of the membrane is not part of this thesis but has been
examined by the TMF group at DTU [12]. We simply apply a boundary condition at the
membrane that allows a current of cations but no current of anions.

Physical and chemical considerations
Due to the electric field pointing from left to right, a current of cations flow to the right
through the membrane, and a current of anions flow to the left into the reservoir. Since
the cation-selective membrane prevents anions from flowing through the membrane from the
channel to the right, the anion concentration decreases in front of the membrane. As anions
deplete, the electro-neutrality condition causes cations to deplete correspondingly. This cre-
ates a longitudinal ionic concentration gradient or so-called concentration polarization with
depletion in front of the membrane. We consider the behaviour of the system to the left of
the membrane.

Both chemical and physical effects contribute to the ionic current, and in particular to an
overlimiting current, explained in section 5.2.1.

Chemical effects include self-ionization of water into hydroxide, OH−, and hydronium,
H3O

+. The reaction term in equation (2.15) is non-zero, and hydroxide can effectively cir-
cumvent the cation-selective membrane and contribute to the current. Furthermore, the
positive space charge formed from depletion of anions lowers the hydronium concentration
and increases the hydroxide-concentration correspondingly (pH increases). This reduces the
positive space charge, and allows the cation concentration to be higher than zero which further
increases the cation current [10]. Of particular importance in microchannels, is the surface ef-
fect of a varying surface charge (due to a varying pH) [10]. Surface reactions in the membrane
can furthermore lead to "current-induced membrane discharge" and thereby less pronounced
concentration polarization [12].

Physical effects in microchannels contributing to the current are the particular important
conductive Debye layers near charged walls and advection by electro-osmotic flow.

As a simplified model, we neglect chemical contributions and study only physical effects
to provide a thorough understanding of these. In section 5.1, we present a one-dimensional
model of the system with uncharged channel walls, and explain the effect of concentration
polarization. In section 5.2, we consider charged channel walls which give rise to overlimiting
current and an extended depletion region in front of the membrane. The analytical model
presented is due to Dydek et al. [9].

Results and physical discussions are supported by numerical simulations. Refer to section
5.3 for a description of the numerical set-up. The physical parameters used in the calculations
are given in table 5.1.
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5.1 Uncharged walls

Quantity Label Value
Channel height H 1 µm
Channel length L 10 µm
Temperature T 25 ◦C

Viscosity of water η 1 mPa s [2, p. 145]
Dielectric constant of water ε 78ε0 [2, p. 147]

Diffusivity of cation D+ 1.33× 10−9 m2s−1(a)

Diffusivity of anion D− 2.03× 10−9 m2s−1(b)

Concentration of ions c0 1 mM

Table 5.1: Physical parameters used in the calculations. Diffusivities are for small concen-
trations of (a) Na+ and (b) Cl− in aqueous solutions at temperature 25 ◦C [2, p. 145].

5.1 Uncharged walls

Neglecting chemical reactions, the continuity equation (2.15) at steady-state becomes in one
dimension

∂xJ± = 0. (5.1)

The ion current densities are thus constant throughout the channel. Notice the huge sim-
plification provided by considering a one-dimensional model. In two dimensions, we cannot
simply assume a constant current density for zero divergence since flux can enter and leave a
point in infinitely many directions.

As a first approximation, we neglect advection. Since the flow rate depends on the height to
the third power for an infinite parallel-plate channel [2, p. 45], this corresponds to sufficiently
thin channels where flow is negligible compared to diffusion and transport by the electric field
[9]. Thus, the ion current density is given by

J± = −D∂xc± ∓ c±DVT
−1∂xφ. (5.2)

We assume that anions and cations have equal diffusivity D. From table 5.1 we notice that
this is a fairly good approximation for chloride and sodium dissolved in water.

The ionic species distribute such as to minimize the Coulomb interaction energy, and the
electrolyte is assumed charge neutral in equilibrium, c± = c. This can also be understood by
normalizing the one-dimensional Poisson’s equation

∂2

∂x̃2 φ̃ = − L2

2λ2
D

(c̃+ − c̃−), (5.3)

where we have substituted φ = VT φ̃, c± = c0c̃±, and x = Lx̃, and used equation (4.5) to
introduce the Debye length into the expression. As noted in chapter 4, a typical Debye length
is of the order 10 nm, thus L2/λ2

D � 1, and a small difference in concentration induces a large
electric field that acts to even out the difference.
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Chapter 5. Microchannel with an ion-selective membrane
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Figure 5.2: Analytical (ana) and numerical (num) calculations of (a) the ionic concentration
and (b) electric charge density as function of x for varying electric potential differences in a
channel without surface charge.

The cation-selective membrane prevents an anion current in the system

J− = −D∂xc+ cDV −1
T ∂xφ = 0 ⇔ (5.4a)

∂xc

c
= ∂x ln(c) = V −1

T ∂xφ ⇒ (5.4b)

c = c0 exp (φ/VT) , (5.4c)

satisfying the boundary conditions φ(0) = 0 and c(0) = c0 at the inlet.
By inserting equation (5.4c) into the Nernst–Planck equation for the cation current density,

we find in normalized form
J̃+ = − exp(φ̃)∂x̃φ̃, (5.5)

where the dimensionless cation current density is defined as J̃+ ≡ J+L/(2Dc0). Since the
cation current density is constant throughout the channel, equation (5.5) is easily integrated

J̃+x̃ = 1− exp(φ̃) ⇒ (5.6)

J̃+ = 1− exp(−Ṽ0), (5.7)

satisfying φ̃(0) = 0, φ̃(1) = −Ṽ0 = −V0/VT. Combining equation (5.4c) and (5.6), we reach
the final expression for the concentration

c = c0(1− J̃+x̃) = c0

[
1−

(
1− exp(−Ṽ0)

) x
L

]
. (5.8)

5.1.1 Depletion

The ionic concentration as function of x is plotted in figure 5.2 (a) for varying electric potential
differences. The ionic concentration is a linearly decreasing function of x with minimum in
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5.2 Charged walls

front of the membrane. This effect is referred to as concentration polarization and has great
potential for desalination (as we will see in chapter 6).

The concentration gradient yields a diffusive contribution to the cation current density.
When the electric potential difference is increased from zero, the cation current density in-
creases as shown in figure 5.3 (a) for σ̃ = 0, where σ̃ is a dimensionless surface charge defined
by σ̃ = σ / [mC/m2]. More ions are removed in front of the membrane, and the concentration
goes towards zero. The effect is quite strikingly. An electric potential difference of 5VT (0.1 V)
yields a concentration of 1% of the inlet concentration in front of the membrane. However, as
the concentration goes towards zero in front of the membrane, an even larger electric potential
difference cannot increase the cation current further, they would have to move through the
charge-neutral region and create an energetically unfavourable space charge region. The ion
current is thus limited by the diffusive current which depends linearly on the diffusivity and
concentration of the ionic species.

Analytical and numerical calculations agree well for small electric potential differences as
seen in figure 5.2 (a). For larger electric potential differences, a space charge region of cations
is formed in front of the membrane in the numerical simulations, plotted in figure 5.2 (b) [10].
The energetic cost of forming a space charge region is compensated by the energetic gain when
ions are free to lower their electric potential energy, thus the charge-neutrality assumption
breaks down. Hence, cations can run through this space charge region and contribute to an
overlimiting current as plotted with a dashed line in figure 5.3 (a) (for σ̃ = 0). However,
since it is energetically expensive to form this space charge region, it would benefit greatly
to consider charged walls where the Debye screening layer provides the necessary conductive
path for overlimiting current.

5.2 Charged walls

Consider a parallel-plate channel with a surface charge σ ≤ 0 on the walls. As explained in
chapter 4, cations in the Debye layer screen the negative surface. In the bulk, the ionic species
cannot feel the screened surface, here, the electrolyte is assumed charge-neutral. In total, we
also require charge-neutrality such that

Ze(〈c+〉 − 〈c−〉)H + 2σ = 0 ⇔ 〈c+〉 = 〈c−〉 −
2σ

ZeH
, (5.9)

where 〈c±〉 denotes an average concentration along the height H of the channel. The ex-
pression to the right in equation (5.9) provides an illustrative picture: In the bulk, the ionic
concentrations are equal, and in the Debye layers, cations screen the negatively charged walls
and the screening charge is smeared over the height in the one-dimensional model.

The equation for the anion current density is similar to before, thus,

〈c−〉 = c−,0 exp(φ̃) = c0 exp(φ̃), (5.10)

where c0 now defines the inlet concentration of anions. Equation (5.9) and (5.10) are inserted
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Chapter 5. Microchannel with an ion-selective membrane

into the Nernst–Planck equation for the cation current density

J+ = −D∂x
[
〈c−〉 −

2σ

ZeH

]
−
[
〈c−〉 −

2σ

ZeH

]
D∂xφ̃ ⇔ (5.11a)

J+ = −Dc0

L
∂x̃ exp(φ̃)− Dc0

L
exp(φ̃)∂x̃φ̃+

2Dσ

ZeLH
∂x̃φ̃ ⇔ (5.11b)

J̃+ = − exp(φ̃)∂x̃φ̃+ ρ̃s∂x̃φ̃, (5.11c)

where ρ̃s ≡ σ/(ZeHc0). Equation (5.11c) is easily integrated

J̃+x̃ = 1− exp(φ̃) + ρ̃sφ̃ ⇒ (5.12)

J̃+ = 1− exp(−Ṽ0)− ρ̃sṼ0, (5.13)

satisfying φ̃(0) = 0 and φ̃(1) = −Ṽ0. Note that equation (5.13) reduces to (5.7) for the case
of zero surface charge as expected. From equation (5.12) we solve for the potential1

φ̃ = −W

(
−

exp((J̃+x̃− 1)/ρ̃s)

ρ̃s

)
+
J̃+x̃− 1

ρ̃s
, (5.14)

1Easier to solve if you introduce g = −φ̃+ (J̃+x̃− 1)/ρ̃s
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Figure 5.3: Dimensionless cation current density as function of (a) dimensionless electric
potential difference for varying wall charges and (b) dimensionless wall charge for an electric
potential difference of 20VT .
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5.2 Charged walls

where W is the Lambert W function defined as the inverse of f(W) = W exp(W). Inserting
equation (5.14) in (5.10), we find an expression for the ionic concentrations

〈c̃−〉 = 〈c̃+〉+ 2ρ̃s = exp

[
−W

(
−

exp((J̃+x̃− 1)/ρ̃s)

ρ̃s

)
+
J̃+x̃− 1

ρ̃s

]
. (5.15)

[9, 10, 13].

5.2.1 Extended depletion region

Analytical and numerical calculations of the dimensionless cation current density is plotted
as function of Ṽ0 in figure 5.3 (a) for different wall charges. In figure 5.3 (b), the linear
correspondence between cation current density and wall charge as given by equation (5.13) is
plotted for V0 = 20VT.

The conductive Debye layer give rise to an overlimiting current, 1−ρ̃sṼ0. The effect is seen
quite clearly in figure 5.4 (b) where numerical simulations of the cation current density (arrow
surface in logarithmic scale) and the electric charge density ρel (color surface) are plotted. In
the depleted region, cations run in the Debye layers. Notice that the cation current density
vectors point slightly towards the center of the channel just in front of the membrane. This
is due to simplified boundary conditions at the membrane as discussed in section 5.3. The
effect, however, is exaggerated by the logarithmic scale.

Overlimiting current removes more ions in front of the membrane which leads to an ex-
tended depletion region as shown in figure 5.4 (a) where the total ionic concentration (normal-
ized to the inlet concentration) is plotted as function of x for a wall charge of σ = −1mC/m2
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Figure 5.4: (a) Total ionic concentration (normalized to the inlet concentration) as function
of x for σ = −1 mC/m2 and varying electric potential differences. Analytical results are
plotted in solid clear colors, numerical results are plotted in similar colors a with dashed line.
In weak similar colors are plotted the numerical result when flow is considered in the channel
(introduced in section 5.4). On the x-axis, the points x = J̃−1
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charge density (color surface) and cation current density (arrow surface in logarithmic scale)
for σ = −1 mC/m2 and V0 = 20VT.
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Chapter 5. Microchannel with an ion-selective membrane

and varying electric potential differences. In the linear regime of the concentration profile
c+ ≈ c− = c, thus, the total ion current density is

J+ + J− = J+ = −2D∂xc, (5.16a)

and is dominated by diffusion. Changing to dimensionless variables we find by straightforward
integration

c̃ = 1− J̃+x̃, (5.17)

satisfying c̃(0) = 1. This elucidates the important scaling characteristic of the depletion
region. The extend of the depletion region, approximately equal to (1− J̃−1

+ )L, scales linearly
with the length of the channel [9, 10]. In figure 5.4 (a), the points x = J̃−1

+ L are marked on
the x-axis and show good agreement with the extend of the depletion region.

5.3 Numerical set-up

In the previous sections, analytical expressions have been compared to numerical calculations.
The numerical set-up is illustrated in figure 5.5.

The governing equations are similar to the system described in chapter 4. New physics
lies in the boundary conditions.

Electric potential
The Gouy–Chapman solution (4.14) added an external electric potential difference is applied
as constraints

φ(y) = 4VTarctanh
[
tanh

(
ζ

4VT

)
exp

(
−(H/2− y)

λD

)]
, (5.18)

for y ∈ {∂Ω1}, and

φ(y) = 4VTarctanh
[
tanh

(
ζ

4VT

)
exp

(
−(H/2− y)

λ∗D

)]
− V0, (5.19)

for y ∈ {∂Ω4}. These expressions depend on the ionic concentration infinitely far from the
charged wall via the Debye length λD. At the inlet, we set this concentration to c0. However,
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Figure 5.5: Schematic illustration of the numerical set-up of a microchannel with a cation-
selective membrane. The rigid wall ∂Ω2 and membrane ∂Ω4 are drawn in black, the inlet
∂Ω1 is drawn in grey, and the symmetry line ∂Ω3 is drawn in dashed black. Numbers in
parenthesis refer to the equation number of the governing equation or boundary condition.
Numbers in black are new for this system, numbers in grey are similar to the system in figure
4.3.
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5.3 Numerical set-up

the condition at the membrane is not as simple to implement. We use a boundary probe to
measure the concentration at the symmetry line ∂Ω3 where c+ ≈ c−. Note from figure 5.4
(b) that this condition yields a slightly higher electric charge density near the membrane,
which allows the cation current density to go slightly down into the channel just in front of
the membrane. However, the effect is quite small, and the numerical and analytical results
show very good agreement in figure 5.4 (a).

Simulations are run for varying wall charge σ on the rigid wall ∂Ω2 through the weak
contribution (4.21).

Ionic concentration
The concentration at the inlet is set to the Gouy–Chapman solution (4.2) as a constraint

c±(y) = c0 exp

(
∓4arctanh

[
tanh

(
ζ

4VT

)
exp

(
−(H/2− y)

λD

)])
, (5.20)

for y ∈ {∂Ω1}.
A discussion of the weak contribution for the ion current densities is provided in the

following section.

5.3.1 Ion current density at the membrane

The cation-selective membrane prevents anion current through the membrane, hence, we
apply the weak contribution

n · J−(r) = 0, (5.21)

for r ∈ {∂Ω4}.
When an electric potential difference is applied, the cation concentration decreases in

front of the membrane. Inside the membrane, the cation concentration is high such as to
satisfy charge-neutrality (remember the membrane consists of negatively charged nanochan-
nels). This behaviour is modelled by setting ∂xc+ = 0 in the weak contribution for the
Nernst–Planck equation

n · J+(r) = −D+ny∂yc+(r)− c+(r)D+V
−1
T n ·∇φ(r), (5.22)

for r ∈ {∂Ω4}.
For the real physical set-up, this condition is not a complete description of the behaviour

at the boundary between the channel and the membrane. The contributing terms in the right-
hand side of equation (5.2) for the cation current density are large compared to the current
density (which remain constant) due to the large gradients at the interface. Thus, similar
to the behaviour of an electrolyte near a charged surface, the concentration is governed by
Boltzmann statistics which yields a small but finite transition region between low and high
concentrations at the interface [10]. Thus, the condition ∂xc+ = 0 is satisfied close to the
membrane, but not exactly at the interface. If we regard the boundary at L, not as the
membrane, but as a point close to the membrane, the numerical model describes the system
correctly. Things complicate slightly when flow is introduced.
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Chapter 5. Microchannel with an ion-selective membrane

5.3.2 Symmetry and technical aspects

In order to reduce computational time, we take advantage of the horizontal symmetry line
through the center of the channel and simulate only half of the system. At the symmetry line,
the normal component of the gradient of all dependent variables must be zero, i.e. flux does
not enter from a part of the system into its symmetric part. We collect this requirement for
all dependent variables into

n · flux(r) = 0, (5.23)

for r ∈ {∂Ω3}.

For computational reasons, we define two new dependent variables

ĉ± = ln

(
c±
c0

)
⇔ c± = c0 exp(ĉ±). (5.24)

In this way, the problem of searching for concentrations near zero is transformed into a prob-
lem of searching for large negative values of c̃±, which is preferred by COMSOL.

In order to run simulations in the highly non-linear regime of large electric potential dif-
ferences, we run a parametric sweep with increasing V0. In this way, COMSOL uses the
previous solution as input for the next simulation. However, since often COMSOL do not let
solutions converge properly between steps in a single-parameter sweep, we define a dummy
parameter to run over the same values as V0 [10].

The concentration profile in figure 5.4 (a) is calculated using a linear projection operator
in COMSOL.

5.4 Flow

In general, it is difficult to find analytical solutions to the non-linear Navier–Stokes equation,
and often one have to rely on numerical methods. However, some idealized flow solutions ex-
ist, and they provide an important physical insight. This chapter introduces the steady-state
cases of Poiseuille-flow and electro-osmotic flow.

Consider a translational invariant section of the channel in figure 5.1 far from the mem-
brane. When an external electric potential difference is applied, the Debye layers are brought
to move in response to the body force density −ρeqel ∇φext, where ρ

eq
el = −ε∂2

yφeq and φeq is
given by the Gouy–Chapman solution (4.14) or the Debye–Hückel approximation (4.7). When
the electrolyte is brought to move, the membrane provides a backpressure. In steady-state,
the Navier–Stokes equation used for analyzing this flow is

ρ(v ·∇)v = −∇p+ η∇2v − ρeqel ∇φext. (5.25)

The non-linear left-hand side might vanish due to symmetry or by assumption of sufficiently
low Reynolds numbers. In the numerical set-up, we make the last assumption. However, for
the simple geometry considered here (far from the membrane), due to constant pressure- and
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5.4 Flow

electric potential gradients (approximately true for sufficiently low electric potential differ-
ences) and vanishing forces in the y-direction, the velocity is independent of x with only the
x-component being non-zero. Hence (v ·∇)v = 0, and equation (5.25) simplifies to

0 = η∂2
yvx(y)− ∆p

L
+ ε(∂2

yφeq)(y)
−V0

L
, (5.26)

satisfying p(0) = 0, p(L) = ∆p, φext(0) = 0, and φext(L) = −V0.
We make the ansatz vx(y) = vx,1(y) + vx,2(y)

0 =

[
η∂2

yvx,1(y)− ∆p

L

]
+

[
η∂2

yvx,2(y) + ε(∂2
yφeq)(y)

−V0

L

]
, (5.27)

and solve the two terms separately. From the first term, we find

vx,1(y) = −
[
(H/2)2 − y2

] 1

2η

∆p

L
, (5.28)

satisfying vx,1(±H/2) = 0. This solution is a standard Poiseuille flow.
In the second term, we insert the solution to equation (4.6) for the equilibrium De-

bye–Hückel potential and find

vx,2(y) =

1−
cosh

(
y
λD

)
cosh

(
H

2λD

)
 εζ
η

−V0

L
, (5.29)

satisfying φ(±H/2) = ζ and vx,2(±H/2) = 0. This is the electro-osmotic flow due to move-
ment of the Debye layers in response to an electric field [2, ch. 9]. We consider the behaviour
of the total electro-osmotic flow with backpressure further after introducing the numerical
set-up.

5.4.1 Numerical set-up

The numerical set-up is illustrated in figure 5.6. Boundary conditions applied for the pressure
and velocity fields are given in table 5.2.

Velocity
At steady state and for low Reynolds number, the Navier–Stokes equation becomes

∇ · σ = −f . (5.30)

For an incompressible fluid, the components of the stress tensor σ are given by

σij = −pδij + η(∂jvi + ∂ivj), (5.31)

and the body force density comprises the electrostatic force density

f = −ρel∇φ = −Ze(c+ − c−)∇φ. (5.32)

In weak form equation (5.30) becomes∫
∂Ω

da vi,nn · σi +

∫
Ω
dr [−∇vi,n · σi + vi,nfi] = 0, (5.33)
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Chapter 5. Microchannel with an ion-selective membrane

where the dependent variables are the x-component and y-component of the velocity field.
We require normal inflow (5.36) (table 5.2) and translational invariance (5.37) at the inlet.

At the symmetry line, we apply the usual no-flux condition (5.23) and in addition, we require
that the normal component of the velocity field is zero (5.40) since otherwise opposite pointing
velocity vectors would be at the same point in space.

At the walls and membrane, we assume no-slip boundary conditions (5.39). This is due
to the assumption of momentum relaxation between the fluid molecules in contact with the
wall [2, p. 37]. Note that when we introduced the boundary condition ∂xc+ = 0 at the
membrane in section 5.3.1, we made clear, that this described the system till very close to the
membrane. When the velocity field is introduced, this boundary condition becomes an ap-
proximation since we assume a no-slip condition to characterize the flow near the membrane.
Thus, we should not overinterpret results very close to the membrane.

Pressure
For an incompressible fluid, the continuity equation reads

∇ · v = 0. (5.34)

We could write this in the usual weak form, but since we already deal with derivatives of the
velocity field in the Navier–Stokes equation, we simply write it in the form∫

Ω
dr pn∇ · v = 0, (5.35)

where pn are test-functions for the pressure [6]. Note that even though equation (5.34) do
not involve the pressure explicitly, it is coupled into the velocity via the full stress tensor in
(5.33).

The charged walls provide an electrostatic pressure (5.38).
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Figure 5.6: Schematic illustration of the numerical set-up
of a channel with a cation-selective membrane including pres-
sure and velocity fields. The rigid wall ∂Ω2 and membrane
∂Ω4 are drawn in black, the inlet ∂Ω1 is drawn in grey, and
the symmetry line ∂Ω3 is drawn in dashed black. Numbers
in parenthesis refer to the equation number of the governing
equation or boundary condition. Numbers in black are new
for this system, numbers in grey are similar to the system in
figure 5.5.

∂Ω1

vy = 0, (c.) (5.36)
∂xvx = 0, (c.) (5.37)
p = 1/2ε(∂yφ)2, (c.) (5.38)

∂Ω2, ∂Ω4

v = 0, (c.) (5.39)

∂Ω3

vy = 0, (c.) (5.40)

Table 5.2: Additional
boundary conditions ap-
plied for the pressure and
velocity fields. Note that
additional boundary condi-
tions at the symmetry line
are governed by (5.23). (c.)
denotes constraint.
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5.4 Flow

5.4.2 Results

In figure 5.7 (b), the magnitude of the velocity field (color surface) and velocity field vectors
(arrow surface) are plotted near the membrane for σ = −1 mC/m2 and V0 = 5VT. The
electrolyte is dragged by the Debye layer near the channel walls and flows back in the center
of the channel due to the backpressure provided by the membrane. Near the membrane, a
vortex is formed. As we will see, this becomes important when we study a desalination device
in chapter 6.

In the full system, the pressure and electric potential are not simple linear functions of
x. However, for sufficiently small electric potential differences, they are approximately linear.
For V0 = 0.1VT, the pressure difference over the channel is ∆p = 0.3 Pa. The analytical
solution for the x-component of the velocity field is plotted in figure 5.7 (a) together with the
numerical result at a cut line through the channel at x = 0.3L. The analytical and numerical
results show fine agreement.

As seen in figure 5.7 (c), electrolyte of high ionic concentration flows near the charged wall
towards the membrane and desalinated electrolyte flows back in the center of the channel.
This provides a transverse concentration gradient in addition to the longitudinal concentration
gradient covered by the analytical model. Furthermore it gives rise to the question: Can we
extract the most desalinated electrolyte flowing in the center of the channel when electrolyte
of higher ionic concentration flows near the walls? In chapter 6, we return to a discussion of
how this transverse concentration gradient affects desalination.

The ionic concentration (averaged over the height of the channel and normalized to the
inlet concentration) for a channel with σ = −1 mC/m2 is plotted in figure 5.4 (a) together
with analytical and numerical concentration profiles for the system without flow for varying
electric potential differences. We see that the electro-osmotic flow with backpressure does
not affect the average concentration profile remarkably since the total advective current is
small. As expected, charged walls still provide an extended depletion region in the system,
the extend being illustrated in figure 5.7 (d), where the total ionic concentration (normalized
to the inlet concentration) is plotted as a function of x for different wall charges and electric
potential differences.
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Chapter 5. Microchannel with an ion-selective membrane

0
1
2
3
4
5

20
40
60
80

|v
|/

1
0−

5
m
/
s

0
8.8 9 9.2 9.4 9.6 9.8 10

x / µm

1
2
3
4
5

y
/1

0
−

7
m

0.06

0.1

0.14

0.18

( c̃
+

+
c̃ −

)/
2

y
/
1
0
−

7
m (b)

(c)

v x
/

1
0−

6
m
/
s

y / 10−7 m
0 1 2 3 4 5

-2

-1

0

1

2

3

Analytical
Numerical

(a)

8.6

0 2 4 6 8 10
x / µm

0 2 4 6 8 100 2 4 6 8 10

σ̃

−3

0

0.2

0.4

0.6

0.8

1

x / µm

〈c̃
+

+
c̃ −
〉/

2

−2
−1

0

(d.1) Ṽ0 = 2
σ̃

−3
−2
−1

0

(d.3) Ṽ0 = 20
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Figure 5.7: (a) Numerical and analytical calculations of vx as function of y for a vertical cut
line through the channel at x = 0.3L for σ = −1 mC/m2 and V0 = 0.1VT. (b) Magnitude of
velocity field (color surface) and velocity field vectors (arrow surface) near the membrane for
σ = −1 mC/m2 and V0 = 5VT. (c) Total ionic concentration relative to c0 (color surface) and
velocity field vectors (arrow plot) near the membrane for σ = −1 mC/m2 and V0 = 5VT. (d)
Total ionic concentration (averaged over the height of the domain and normalized to the inlet
concentration) as function of x for varying wall charge and an electric potential difference of
V0 = 2VT (d.1), V0 = 10VT (d.2), and V0 = 20VT (d.3).
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6 | Desalination

Many possible electrokinetic systems for desalination devices have been suggested. The spe-
cific configuration vary, however, common for the systems studied by the group of Henrik
Bruus (TMF) at DTU and the group of Martin Bazant at MIT are the components illus-
trated in figure 6.1 (a) [14, 10].

The device is composed of an anode and a cathode to drive the ionic transport, an ion-
selective membrane to develop concentration polarization, and a porous glass frit to provide
extended depletion (the glass spheres provide a negative surface charge). The porous glass
frit is an inexpensive alternative to precise microfabrication of channels. Numerous channels
are effectively formed in the frit (illustrated with a dashed line in figure 6.1 (a)), and the
porous structure ensures that desalinated water can be extracted. The frit also protects the
membrane from fouling, and is easy to clean or cheap to replace, rather than replacing the
membrane if fouled [14].

In this chapter, we consider the system established in chapter 5 with outlet channels
implemented in front of the membrane, as illustrated in figure 6.1 (b). This provides a simple
model of a single channel formed in the glass frit where an outflow is allowed in front of
the membrane. The channels formed in the frit have a complex form, but for simplicity we
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H
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Figure 6.1: (a) Illustration of the components used in the desalination devices studied by
the group of Henrik Bruus at DTU and the group of Martin Bazant at MIT. Inspiration to
drawing from [10]. (b) Illustration of the suggested model of the microchannels formed in the
glass frit.
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Chapter 6. Desalination

consider a two-dimensional parallel plate channel. In the porous glass frit, we expect the
conductive path in the Debye layers, contributing to an overlimiting current, to effectively
remain to the membrane, with electrolyte escaping through holes in the porous channel. In
order to model the porous structure of the channel wall, we implement a leaky wall in front of
the outlet channel (∂Ω5 in figure 6.2) [13]. The leaky wall maintains the same surface charge
σ as the remaining wall but allows electrolyte to flow through.

Similar studies often take a macroscopic approach and neglect electro-osmotic flow [15].
As we saw in chapter 5, electrolyte of high concentration flows near the charged channel walls,
and it is not a trivial question whether we can actually extract the desalinated water flowing
in the center of the channel. The advantage of this model is that we can get an understanding
of some of the effects contributing in the microchannels formed in the glass frit, and how flow
in these affects desalination. In particular, we study whether we can exploit the extended
depletion region provided by charged channel walls.

6.1 Symmetric wall charge

The numerical set-up is illustrated in figure 6.2. Additional boundary conditions applied for
the outlet channel and the leaky wall are given in table 6.1. A comment is in order for some
of the boundary conditions.
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Figure 6.2: Schematic illustration of the numerical set-up of
a desalination device with symmetrically charged walls. The
rigid walls ∂Ω2, ∂Ω6, ∂Ω7, and membrane ∂Ω4 are drawn in
black, the inlet ∂Ω1, outlet ∂Ω8, and leaky wall ∂Ω5 are drawn
in grey, and the symmetry line ∂Ω3 is drawn in dashed black.
Numbers in parenthesis refer to the equation number of the
governing equation or boundary condition. Numbers in black
are new for this system, numbers in grey are similar to the
system in figure 5.6.

∂Ω8

vx = 0, (c.) (6.1)
∂yvy = 0, (c.) (6.2)
p = 0, (c.) (6.3)
n ·E = 0, (w.c.) (6.4)
∂yc± = 0, (c.) (6.5)

∂Ω5

vx = 0, (c.) (6.6)

n · J± = c±vyŷ, (w.c.) (6.7)

∂Ω1

p = 1/2ε(∂yφ)2 + p0, (c.) (6.8)

Table 6.1: Additional
boundary conditions ap-
plied to the leaky wall and
outlet channel. (c.) de-
notes constraint and (w.c.)
denotes weak contribution.
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6.1 Symmetric wall charge

The leaky wall maintains the same charge as the remaining wall, governed by the weak
contribution (4.21). This lowers the zeta-potential but conserves the total space charge in the
two Debye layers formed on each side of the leaky wall. The surface charge must be embedded
into a wall, thus we require zero tangential velocity.

For the pressure we apply the constraint p = 1/2ε(∂yφ)2 +p0 at the inlet ∂Ω1 and p = 0 at
the outlet ∂Ω8. In the system with the glass frit, the pressure at the outlet would depend on
the next formed channel, however, it is difficult to determine this pressure, and the condition
of zero external pressure is sufficient for our study. Nevertheless, some of the observations in
the following are indeed due to this assumption.

The concentration in the outlet channel is approximately independent of y, hence, we apply
the constraint ∂yc± = 0 at the outlet. However, numerical simulations can be tricky and in
order for COMSOL to accept this constraint, we apply in addition the weak contribution
n · J± = c±vy.

The normal component of the electric field is set to zero at the outlet. We do not consider
charged walls in the outlet channel, and do not apply a potential difference on the walls, but
simply treat the outlet channel as a confinement for the electrolyte outflow.

For the numerical simulations, unless otherwise noted, Houtlet = 3H (the length of ∂Ω6

and ∂Ω7), Woutlet = H (the length of ∂Ω5 and ∂Ω8), and physical parameters are as given in
table 5.1.

6.1.1 Mesh and mesh convergence

The mesh is constructed as described in table 6.2 for dmesh = 5 nm.

Domain/
boundary Mesh

Ω Maximum element size 20dmesh.
∂Ω2 Boundary layer, thickness 1/5dmesh

(8 layers with stretching factor 1.2).
Maximum element size 3/2dmesh.

∂Ω5 Maximum element size dmesh.
∂Ω4, ∂Ω8 Maximum element size 6dmesh.
∂Ω2, ∂Ω6 Corner refinement on corner between ∂Ω2 and ∂Ω6.

Table 6.2: Specification of the mesh used in the numerical simulations of the channel with
symmetrically charged walls.

In order to resolve fields from the Debye layer varying in the direction normal to the wall ∂Ω2,
on a length scale around 10 nm, we apply boundary layers. To resolve the tangential varying
fields, we apply in addition a maximum element size of 3/2dmesh. At the leaky wall we have
both considerable normal and tangential varying fields, therefore, we do not use boundary
layers but implement a finer maximum element size.

Note that for a 1:1 electrolyte of ionic concentration around 250 mM (of both anions and
cations, as for seawater), the Debye length becomes 0.61 nm (for T = 25 ◦C), and we would
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Chapter 6. Desalination

have to optimize the mesh or geometry in order to resolve these fields, especially at points
between boundaries (as the point between ∂Ω5 and ∂Ω8).

For the results in figure 6.5, we have used a coarser mesh without boundary layers in
order to calculate the average concentration (linear extrusion in COMSOL does not work
with boundary layers). The fields have been compared with results from simulations with the
finer mesh and agree.

For verification of the numerical results, we perform a mesh convergence analysis (refer to
section 3.2). The reference solution is found for dmesh = 5 nm. The relative convergence
parameter C (3.8) for vx, p, φ, and c+ is plotted in figure 6.3 for V0 = 20VT, (a) σ = 0 C/m2,
(b) σ = −1 mC/m2, and varying dmesh. vy and c− are left out from the graph since these lie
very close to the curves for vx and c+, respectively.

From the semilogarithmic plot we see an exponential convergence of all fields. Note that
the pressure and velocity fields have a higher relative convergence parameter since their gov-
erning equations deal with derivatives of the velocity.

For the simulations, we have used the smallest dmesh possible on the student terminals
provided by DTU. If time allowed, it would be worth the effort to optimize the mesh and do
simulations on a more powerful computer.
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Figure 6.3: Mesh convergence analysis for V0 = 20VT and (a) σ = 0 C/m2, and (b) σ =
−1 mC/m2. The relative convergence parameter C for vx, p, φ, and c+ is plotted for varying
dmesh.
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6.1 Symmetric wall charge

6.1.2 Results

The ionic concentration of extracted electrolyte, denoted outlet concentration coutlet, is cal-
culated by

coutlet =

∫
∂Ω8

dx(c+ + c−)vy∫
∂Ω8

dxvy
. (6.9)

The outlet concentration relative to the inlet concentration c̃outlet is plotted in figure 6.4 as
function of area flow rate Q = 2

∫
∂Ω8

dxvy for (a) p0 = 0 Pa, (b) p0 = 103 Pa, and varying σ.
For p0 = 0 Pa and V0 = 20VT, the outlet concentration is only a few percent of the inlet

concentration, thus desalination is indeed accomplished. For even higher electric potential
differences, we find the relative outlet concentration down to around 10−4 for σ = 0 C/m2.
From figure 6.4 (b) for V0 = 0VT, we find that a pressure difference of ∆p = 103 Pa yields a
flow rate around 6.9× 10−9 m2s−1 to 7.4× 10−9 m2s−1. To obtain a similar flow rate for the
purely electro-osmotic driven system, we should apply an electric potential difference of the
order 70VT to 90VT (1.8 V to 2.3 V). This will give us a relative outlet concentration in the
range 4× 10−3 to 10−4.

Notice that even for zero wall charge, a quite large flow is achieved when an electric
potential difference is applied. A pressure is build up in front of the membrane due to the
space charge region formed as shown in figure 5.2 (b). This drives a flow towards the outlet
which is the nearest boundary condition with p = 0 Pa.

The specific behaviour of figure 6.4 is due to a combination of various effects in the non-
linear system. In the following, we provide a discussion of the results. For the discussion, refer
to figure 6.5 of (a) the velocity field for the system with σ = −1 mC/m2 and (b) the total
concentration 〈c̃+ + c̃−〉 / 2, averaged over the height of the main channel and normalized to
the inlet concentration, as function of x for (1) V0 = 2VT, (2) V0 = 20VT, and (3) V0 = 35VT.
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Figure 6.4: Total ionic concentration of extracted electrolyte relative to the concentration
at the inlet as function of flow rate with (a) no external pressure applied, and (b) an external
pressure difference of p0 = 103 Pa. Some corresponding electric potential differences are
marked on the curves.
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Figure 6.5: (a) Magnitude of velocity field (color surface) and velocity field vectors (arrow
surface) near the outlet channel for σ = −1 mC/m2 and (1) V0 = 2VT, (2) V0 = 20VT, and
(3) V0 = 35VT. (b) Total ionic concentration (averaged over the height of the main channel
and normalized to the inlet concentration) as function of x near the outlet channel for varying
wall charges and (1) V0 = 2VT, (2) V0 = 20VT, and (3) V0 = 35VT. The outlet concentration
for σ = −1 mC/m2 is shown with a red dashed line.

As the electric potential difference is increased from zero, the outlet concentration decreases
as the concentration in front of the outlet channel starts to decrease. From figure 6.5 (a.1)
we see that a vortex is formed due to the electro-osmotic flow and backpressure from the
membrane. For small electric potential differences, overlimiting current does not have a pro-
nounced effect, and the higher ionic concentration near charged walls dominates as seen in
figure 6.5 (b.1) (in agreement with figure 5.7 (d.1)). The electrolyte is flushed out from a
broad part of the width of the outlet channel, and the relative outlet concentration (0.199
for the situation in figure 6.5 (b.1), illustrated with a red dashed line) is only slightly above
the average concentration in front of the outlet channel (0.197). The outlet concentration is
slightly larger since the largest velocity field area, flushing out electrolyte to the outlet, is
nearer to the charged wall than the center of the main channel.

As we increase the electric potential difference, we still find that a smaller wall charge
provides better desalination for a given flow rate and electric potential. From the physical
discussion in chapter 5, we would expect the opposite result. Nevertheless, this result has also
been observed in similar studies [13]. However, in the following we provide an explanation
of this observation. The reason is found in figure 6.5 (b). We observe that charged walls do
not contribute to an extended depletion region in the system, thus we find a higher outlet

34



6.1 Symmetric wall charge

Woutlet = 0.5 µm
Woutlet = 1 µm
Woutlet = 2 µm
Woutlet = 4 µm

0 2 4 6 8 100

0.2

0.4

0.6

0.8

1

〈c̃
+

+
c̃ −
〉/

2

(a)

8.0 8.4 8.8 9.2 9.6 10
0

0.25

0.50

x / µm

y
/
µ
m

0.75

1

3

2
.52

1
.51

0
.5

|v| / 10−3m/s(b)

x / µm

Figure 6.6: (a) Total ionic concentration (averaged over the height of the main channel and
normalized to the inlet concentration) as function of x for σ = −1 mC/m2, p0 = 0 Pa, V0 =
100VT and varying width of the outlet channel, marked with a dashed line. (b) Magnitude of
velocity field (color surface) and velocity field vectors (arrow surface) near the membrane for
σ = −1 mC/m2, p0 = 0 Pa, V0 = 20VT, and Woutlet = 4 µm.

concentration for a higher wall charge since we extract electrolyte through the leaky wall
surrounded by electrolyte of higher ionic concentration. For large electric potential differences,
the concentration increases in the main channel (the advective contribution to the anion
current density cancels the electric contribution) and decreases rapidly in the vortex. The
vortex provides large mixing of the electrolyte, and the extend of the depletion region is
determined by the size of this vortex, i.e. the width of the outlet channel. This effect
is elucidated in figure 6.6 (a) where the normalized total ionic concentration is plotted as
function of x in the channel for σ = −1 mC/m2, p0 = 0 Pa, V0 = 100VT, and different
widths of the outlet channel Woutlet. In the figure, the position of the left boundary of the
outlet channel is marked with a dashed line, and we clearly see the tendency that the large
concentration gradient is centred around this boundary. The diffusive contribution to the
current is responsible for smoothing out this rapid drop in concentration. As the width of the
outlet channel increases, the vortex becomes less dominating (provides less mixing) and we
see in figure 6.6 (b) a flow rather similar to the flow studied in figure 5.7 (b).

When a pressure difference is applied (figure 6.4 (b)), we see a small indication that
charged walls might provide better desalination: For small V0, charged walls provide a lower
outlet concentration for a given flow rate and the points at V0 = 7VT show slightly lower
concentration the higher the wall charge. The effect, however, is quite small and does not
provide clear conclusions. However, it suggests that charged walls might provide extended
depletion if the vortex can be suppressed by a pressure-driven flow. This supposition is
examined in section 6.2.2. Note that the flow rate in figure 6.4 (b) for V0 = 0VT decreases for
higher wall charges. An increase in wall charge increases the cation concentration around the
leaky wall. In front of the leaky wall, flow carries ions into the equilibrium Debye layer, and
on the rear of the leaky wall, flow removes cations from the Debye layer. This tends to slow
down the electrolyte.

The curves in figure 6.4 (a) have a plateau of almost constant outlet concentration for V0

around 20VT to 35VT. In this electric potential range, the outlet concentration is balanced
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between a small lowering in concentration just in front of the membrane and an increase in
concentration further from the membrane (see figure 6.5 (b.2,3)). However, since most of
the electrolyte is flushed out from just in front of the membrane, the concentration decreases
slightly. For even higher electric potentials, the curves flattens as the concentration tends
towards a limiting profile at high flow rates (when the concentration gradient increases in
front of the outlet channel, as in figure 6.6 (a) for Woutlet = 0.5 µm at V0 = 100VT).

We note that for σ = −3 mC/m2, the velocity in the vortex is up to 3 × 10−2 m/s (for
V0 = 70VT). Considering H as the characteristic dimension for the confinement of this vortex
we have ρH/η = 1 s/m, thus Re = 3 × 10−2. Hence, we still do not expect the non-linear
term in the Navier–Stokes equation to dominate. However, for larger velocities, we approach
the regime where we should be careful about the assumption of neglecting the non-linear
contribution.

We conclude, that the observation of worsened desalination for an increasing wall charge
is due to a combination of the transverse concentration gradient, thus we extract electrolyte
through the leaky wall containing electrolyte of high concentration, and the vortex formed in
front of the outlet channel. In this model, we find that uncharged walls provide better de-
salination. However, we should not per se extend this conclusion to the macroscopic system.
We found, as we increased the width of the outlet channel, that the contribution from the
vortex was less pronounced for small electric potential differences. The extend of the deple-
tion region due to overlimiting current scales linearly with the length of the channel (when
advection is neglected), as discussed in chapter 5, whereas the vortex seems to dominate on
a smaller length scale. However, the model does suggest some important points: The results
indicate that the transverse concentration gradient does contribute to the concentration of
extracted electrolyte. This is examined further in the next section by considering asymmet-
rically charged walls. Furthermore, since electro-osmotic flow carries electrolyte of high ionic
concentration towards the depletion region, it suggests that it might benefit to impose a trans-
verse pressure-driven flow. This would also suppress the longitudinal advective contribution
and the formation of a vortex, thus allow charged walls to contribute to an extended depletion
region. This is examined in section 6.2.2.

6.2 Modified systems

6.2.1 Asymmetric wall charge

In order to understand how the transverse concentration gradient affects the outlet concen-
tration, we consider a channel with asymmetrically charged walls. We place an outlet channel
in only one side of the main channel, and apply a surface charge on the opposite wall as
illustrated in figure 6.7 (a). The specific numerical set-up is illustrated in the appendix figure
A.1.

The relative outlet concentration is plotted in figure 6.8 (a) as function of flow rate Q =∫
∂Ω8

dxvy for the case of p0 = 0 Pa and varying σ. Note that the flow rate for a given electric
potential difference decreases compared to figure 6.4 (a) since we only have an outlet channel
in one side of the main channel. However, in spite of a slightly lower flow rate, the behaviour
of the systems for σ = 0 C/m2 looks similar, as we would expect.
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By comparison of figure 6.4 (a) and figure 6.8 (a) we find a lower outlet concentration for
a given flow rate (and a given electric potential difference) for the system with asymmetrically
charged walls. For σ = −3 mC/m2 and a flow rate of Q = 4× 10−9 m2s−1, the relative outlet
concentration is decreased from 1.2×10−2 (symmetric wall charge) to 3.9×10−4 (asymmetric
wall charge). This suggests that the transverse concentration gradient provides a considerable
contribution to the outlet concentration. To neglect this contribution in a macroscopic model
might be a crude approximation.

6.2.2 Transverse pressure-driven flow

In the system with symmetrically charged walls, we found that the vortex in front of the
outlet channel determined the extend of the depletion region which explained why desalination
worsened for a higher wall charge. We consider a system with a transverse flow channel as
seen in figure 6.7 (b) [15]. For the numerical simulations, we set H = L = 1 µm and
Hinlet = Houtlet = 3 µm. The specific numerical set-up is illustrated in the appendix, figure
A.2.

The outlet concentration as function of electric potential difference is plotted in figure 6.8
(b). Since electrolyte of high ionic concentration flows with high pressure into the system,
we find a higher outlet concentration compared to the previous systems. However, one could
imagine numerous of these channels connected, thus providing lower outlet concentration. The
interesting observation is that we clearly find smaller outlet concentration the higher the wall
charge for a given electric potential difference. The total ionic concentration (averaged over
the height of the channel in front of the membrane and normalized to the concentration at
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(b) Ṽ0 = 10

x / L

Figure 6.9: Concentration (averaged over the height of the channel in front of the membrane
and normalized to the concentration at the left reservoir) as function of x for varying wall
charges and an electric potential difference of V0 = 2VT (a), V0 = 10VT (b), and V0 = 20VT
(c) for the system with a transverse flow channel.

the left reservoir) is plotted in figure 6.9 as function of x for varying wall charges and varying
electric potential differences. The vortex is suppressed by the large Poiseuille flow flushing
transverse through the system, thus allowing charged walls to provide extended depletion and
a lowering of the outlet concentration. In order to reduce the contribution from the electro-
osmotic flow and to suppress the formation of a vortex it would seem reasonable to impose
such a transverse pressure-driven flow of seawater in a macroscopic desalination device.
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In this thesis we have studied electrokinetics in microchannels with ion-selective membranes.
We explained the well-known phenomena of a Debye screening layer in an electrolyte near
a charged surface, and presented an analytical and numerical model of a microchannel with
a cation-selective membrane exhibiting concentration polarization in response to an electric
field. Conduction in the Debye layers provided overlimiting current and extended depletion in
the electrolyte. In the numerical study, we found that electro-osmotic flow carries electrolyte
of high ionic concentration near charged walls, which provides a transverse concentration
gradient in addition to the longitudinal concentration polarization.

In order to study applications for desalination and how electrokinetic effects contribute in
a desalination device, we presented a numerical model of a microchannel with outlet channels
implemented in front of the cation-selective membrane. This provides a simple model of the
microchannels effectively formed in a glass frit in the desalination device studied by the group
of Henrik Bruus at DTU and the group of Martin Bazant at MIT. In order to model the
conductive path in the glass frit, we implemented a leaky wall in front of the outlet channel
which maintains the same wall charge as the remaining wall but allows electrolyte to flow
through.

We found that charged walls did not provide extended depletion in the system, which
resulted in worsened desalination due to the higher ionic concentration near the charged walls
and the leaky walls. The depletion region was governed by a vortex providing large mixing in
front of the outlet channel. As we increased the width of the outlet channel, the contribution
from the vortex was less pronounced. Since the extend of the depletion region due to over-
limiting current scales linearly with the length of the channel (when advection is neglected),
whereas the vortex seems to dominate on a smaller length scale, we should not per se ex-
tend this conclusion to the macroscopic system. However, the model indicates the important
points that the transverse concentration gradient might provide a non-negligible contribution
to the concentration of the extracted electrolyte in the macroscopic desalination device. By
considering a channel with asymmetrically charged walls, we found much improved desali-
nation. Furthermore, the results suggest that it might benefit to consider a system with a
transverse pressure-driven flow which would minimize the contribution of electro-osmotic flow
and suppress the formation of a vortex.

For further study, one could examine the system with a transverse flow channel even fur-
ther. For instance, one could implement a rigid wall instead of the reservoir to the left of the
membrane, and implement a partition wall in the outlet channel to divide extracted electrolyte
of high and low concentration. It could also provide important information if one could estab-
lish a one-dimensional model of the channel including the transverse concentration gradient
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to acquire further knowledge of the contribution from the higher ionic concentration near
charged walls. Furthermore, even though we can learn much by studying the microchannels
formed in the glass frit, it is difficult to achieve quantitative results about the performance of
a macroscopic device from this microscopic view. The next step would be to consider how to
implement a macroscopic model of the system. A first step could be to include Darcy’s law
of a porous material into the Navier–Stokes equation, and from this, consider whether it is
possible to include a way of describing the contribution from electro-osmotic flow.

For future work it is also crucial to combine theoretical considerations with knowledge
from experiments. Together, this could provide further insight into this complex but exciting
physical system.
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A | Appendix

A.1 Asymmetric wall charge

At ∂Ω1 we apply the constraints

c±(y) = c0 exp

(
∓4arctanh

[
tanh

(
ζ

4VT

)
exp

(
− y

λD

)])
, (A.1)

φ(y) = 4VTarctanh
[
tanh

(
ζ

4VT

)
exp

(
− y

λD

)]
. (A.2)

At ∂Ω4 we apply the constraint

φ(y) = 4VTarctanh
[
tanh

(
ζ

4VT

)
exp

(
− y

λ∗D

)]
− V0, (A.3)

where the concentration in λD is measured by a probe at the midpoint of ∂Ω4.
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Figure A.1: Schematic illustration of the numerical set-up of the channel with asymmet-
rically charged walls. The rigid walls ∂Ω2, ∂Ω3, ∂Ω6, ∂Ω7, and membrane ∂Ω4 are drawn
in black, and the inlet ∂Ω1, outlet ∂Ω8, and leaky wall ∂Ω5 are drawn in grey. Numbers in
parenthesis refer to the equation number of the governing equation or boundary condition.
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A.2 Transverse pressure-driven flow

At ∂Ω1, since λD � H, we apply the constraints

c±(y) =c0 exp
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At ∂Ω4 we apply the constraint

φ(y) =4VTarctanh
[
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+ 4VTarctanh
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(A.6)

where the concentration in λD is measured by a probe at the midpoint of ∂Ω4.
At ∂Ω10 we apply the constraints

c± = c0, (A.7)

p = p0. (A.8)
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Figure A.2: Schematic illustration of the numerical set-up of a channel with a transverse
pressure-driven flow. The rigid walls ∂Ω5, ∂Ω6, ∂Ω8, ∂Ω9, reservoir ∂Ω1, and membrane, ∂Ω4,
are drawn in black, the inlet ∂Ω10, outlet ∂Ω7, and leaky walls ∂Ω2, ∂Ω3 are drawn in grey.
Numbers in parenthesis refer to the equation number of the boundary condition. Governing
equations are similar to figure A.1.
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