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Front page illustration shows a device with porous medium in the middle to effectively

form many microchannels. We shall study this device in the end of this thesis.



Abstract

In this thesis we present a way to model a desalination device motivated by the electroki-
netic behavior in microscale systems. Many analytical and numerical studies have already
been carried out for microchannel systems but the channel size makes them unprofitable
or maybe even impossible to produce and sell. We therefore suggest device with a larger
channel size with a porous medium to effectively form many microchannel. Scaling up
from micrometre to e.g. millimetre is not straight forward as many phenomenons in the
microchannel does not scaled linear with the size of the channel.
We derive analytical and numerical solution for a simple straight microchannel with a
cation selective membrane in order to understand the basic behaviour of electrolytes in a
microchannel under the influence of an external electrical potential. We investigate the
concepts of overlimiting current and depletion. The knowledge from the microchannel will
then be used to develop a reliable model for the porous material by averaging some of the
electrokinetic phenomenons measured on the small scale.
For the new model we see some of the same behaviours for the overlimiting current and the
depletion region induced by the porosity as we saw for the microchannel. We find that nu-
merical results for depletion and overlimiting current can be partly described by analytical
expression from the microchannel. Numerical issues have made it difficult to understand
the whole system and some aspects have not been possible to simulate. We have however
been able to make decent analysis of the relation between flow and overlimiting current.
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Resumé

I denne afhandling præsenterer vi en måde at modellere en afsaltningsenhed, motiveret af
elektrokinetiske effekter i mikrosystemer. Flere analytiske og numeriske undersøgelser er
allerede udført for mikrokanalsystemer, men kanalstørrelsen gør dem urentable eller lige-
frem umulige at producere og sælge. Derfor foreslår vi en enhed med en større kanalstørrelse
indeholende et porøst medium til effektivt at forme mange mikrokanaler. At skalere op fra
mikrometer til millimeter er ikke lige til, da mange fænomener i mikrokanalen ikke skalerer
linæert med forstørrelsen af kanalaen.
Vi udleder analytiske og numeriske løsninger for en simpel lige mikrokanal med en kation
selektiv membran, for at være i stand til at forstå den basale opførsel af elektrolytter i en
mikrokanal under indflydelse af en ekstern elektrisk potential.
Vi undersøger koncepterne overbegrænsende strøm og ion-udtømning. Viden fra mikrokanalen
vil blive brugt til at udvikle en troværdig model for det porøse materiale ved at midle elek-
trokinetiske fænomener målt på mikroskala.
For den nye model ser vi nogle af de samme opførsler for den overbrænsende strøm og
udtøminingregionen, introduceret af porøsiteten, som vi så i mikrokanalen. Vi finder
ud af, at numeriske resultater for udtrømning og den overbegrænsende strøm delvist kan
beskrives af de analytiske udtryk fra mikrokanalen. Numeriske problemer har gjort det
svært at forstå hele systemet og nolge aspekter har ikke været mulige at simulere. Vi har
dog alligevel været i stand til at lave gode analysere af relationen mellem strømninger og
den overbegrænsende strøm.
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1 | Introduction

Pure drinking water is an important necessity for all life on earth. Around 97 % of earth’s
water is sea water with high ionic concentration[1]. Thus desalination of sea water suggests
a purposeful method for water supply in stressed regions. In this thesis we investigate
electrokinetic effects applicable in the scope of desalination. We will study the microchannel
with a cation selective membrane studied by the group of Henrik Bruus, DTU[2] and
the group of Martin Bazant, MIT[3, 4]. Based on this study we investigate a device for
desalination using porous medium to effectively form several microchannels.

1.1 Weak solutions and the ideal gas approximation

Figure 1.1: Relation between ionic conductance σion and concentration c. (a) Solid line
shows the ideal gas approximation where we have used µionNa+ = 5.19 × 10−1 m2 (V s)−1

and µionCl− = 7.91× 10−1 m2 (V s)−1 at 25◦C[5]. The crosses are experimental values[6]. (b)
The relative error between the ideal gas approximation and the experimental values. The
colors mark different salinity regions where we define freshwater as 0.5 ppt or around 9mM
for NaCl[7].

Desalination of sea water might not be carried out by only one process. In this thesis
we shall work with desalination of weak solutions with an ionic concentration lower than
50 mM i.e. weaker than sea water which is around 600 mM[8]. One great advantage
when working with weak solutions is that we can consider the ions as non-interacting and
thus apply an ideal gas approximation. This is shown in Fig. 1.1(a) where we compare
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experimental values for ionic conductivity with the value calculated in the ideal gas ap-
proximation. In the ideal gas approximation the ionic conductance for many particles is
simply the sum of each particles conductance. In Fig. 1.1(b) we show that for solutions
stronger than 50 mM this approximation begins to fail due to particle interaction.

1.2 The continuum hypothesis

When dealing with fluids, e.g. liquids and gasses, the first important thing we need to
establish is the conceptual model. How do we consider fluids? We know that fluids consist
of molecules and thus are quantized in length scales of the intermolecular distances in the
order of 3 nm for gasses and 0.3 nm for liquids. However keeping track of every single
particle is obviously practically impossible. Therefore, what we do in this thesis is we
apply the everyday intuition and consider a fluid as perfectly continuous i.e. not consisting
of molecules and empty space but completely filling the space it occupies. This is what is
stated in the continuum hypotheses. This enables us to describe all quantities of the fluid
in terms of continuous fields defined in every point r.
Now the natural question to ask is what value should we ascribe to e.g. a scalar field in a
given position r? This question leads to the concept of a fluid particle which we define as
a small volume V centered at the position r. The value of e.g. a scalar field in the position
r at a time t is then determined by the particles contained in a small fluid particle around
r at a time t. Three examples are density ρ(r, t), velocity v(r, t) and then momentum
P (r, t),

ρ(r, t) ≡ 1

V
∑

i∈V

mi, (1.1a)

v(r, t) ≡ 1

ρ(r, t)V
∑

i∈V

mivi, (1.1b)

P (r, t) = ρ(r, t)v(r, t) =
1

V
∑

i∈V

mivi. (1.1c)

Note that we have chosen the Eulerian description where r is fixed, i.e. not dependent of
t. To avoid cluttered notation we will whenever unnecessary omit the dependencies and
write ρ instead of ρ(r, t), v instead of v(r, t) and so forth.
We can give an estimation of the minimum scale where the continuum hypothesis is valid
by considering the size of the fluid particle. On one hand we want to make it so small as
possible to be able to describe small spatial variations in the fields. On the other hand we
need it to be large enough to avoid microscopic fluctuations. We choose a characteristic
length λ∗ of the fluid particle so that its volume is V = (λ∗)3. The number of molecules N
inside this volume can be considered as uncorrelated random events, i.e. following a Poisson
distribution with the relative uncertainty

√
N/N [5]. If we require a relative uncertainty

of 0.5% and use the average distance λ ≈ 0.3 nm between molecules in a liquid, we need
N = 4 × 104 molecules corresponding to λ∗ = λN1/3 ≈ 10 nm. This determines the size
of a fluid particle. Thus for systems with length scales much larger than λ∗ the continuum
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hypothesis is assumed valid. In this thesis we mainly work with length scales from 10−6 m
to 10−3 m. However, the Debye length introduced in chapter Chapter 3 is in the order
of 10 nm for our systems, and thus results related to the Debye length should be treated
with care. We emphasize that mathematically we shrink down the fluid particle to zero
size and consider all fields as well-defined in all points r. Thus the size of the fluid particle
only provides a length scale to helps us validating our physical model.

1.3 Brief overview

Chapter 2 - Governing Equations We present the governing equations covering hy-
drodynamics, electrostatics, electrokinetics and thermodynamics.

Chapter 3 - Electrolyte near charged wall We study the behavior of an electrolyte
near a charged wall introducing the concepts of the screening layer and the Debye length.

Chapter 4 - Numerical modeling We give a brief introduction to the finite element
method used by COMSOL and we introduce the weak formulation of conservation equa-
tions.

Chapter 5 - Microchannel We investigate a microchannel with negatively charged
walls and a cation selective membrane. We introduce the concepts of overlimiting current,
depletion region and charge polarization. A linear correspondence between the size of the
depletion region and the channel length motivates a system on a larger scale.

Chapter 6 - Modeling of porous medium We present how we adjust the govern-
ing equations for hydrodynamics and electrokinetics when dealing with porous medium.
Physical properties of the porous medium are described by the parameters porosity εp,
tortuosity τ and specific area S.

Chapter 7 - Desalination Motivated by the electrokinetic behavior of the microchannel
we suggest a device for desalination on a larger scale using porous medium to effectively
form many microchannels. The system reveals some of the same behaviors as the mi-
crochannel and we show the occurrence of a depletion region and overlimiting current. We
investigate the effect of transverse pressure driven flow and show a correspondence between
the limiting current and the pressure drop.
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2 | Governing Equations

In this chapter we present the general physics we shall use in this thesis. The impor-
tant topics are hydrodynamics, electrostatics, electrodynamics and thermodynamics. In
Chapter 6 we adjust some of these governing equations to model porous medium.

2.1 Hydrodynamics

Consider a fixed arbitrary volume Ω in a fluid through which fluid is able to flow freely.
We exploit conservation of mass MΩ inside Ω so that the change of mass ∂tMΩ must be
due to advection of mass into Ω,

∂tMΩ = ∂t

∫

Ω

dr ρ =

∫

Ω

dr ∂tρ =

∫

∂Ω
da (−n)·(ρv) =

∫

Ω

dr (−∇)·(ρv), (2.1)

where in the last step we have used Gauss’s divergence theorem. Note that the second
step is only legal since Ω is fixed. Since Eq. (2.1) holds for any Ω the integrands in the
third and last part must be equal so that we get the continuity equation Eq. (2.2a) which
reduces to Eq. (2.2b) for incompressible fluids,

∂tρ = −∇·(ρv), (2.2a)

0 = ∇·v (incompressible fluids), (2.2b)

where ρ is constant in space and time. This was an example of establishing a conservation
equation, in this case for mass.
In the same way we now consider the conservation of momentum inside Ω. The change of
momentum inside Ω must be due to either advection of momentum into Ω, stress forces
(pressure, viscosity) on the surface of Ω or bodyforces (gravitational, electric) on the bulk
of Ω. Thus in analogy with Eq. (2.2a),

∂t (ρv) = −∇·[(ρv)v − σ] + fbody, (2.3)

where σ is the second order viscous stress tensor which we define as

σij = −pδij + η (∂ivj + ∂jvi) + (β − 1) η (∂kvk) δij , (2.4a)

σij = −pδij + η (∂ivj + ∂jvi) (incompressible fluids). (2.4b)
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Here p is the pressure, η is the dynamic viscosity describing internal friction due to shear
stress, and β is the dimensionless viscousity ratio describing the internal friction due to
compression. δij is the Kronecker delta. For incompressible fluids ∂kvk ≡ ∇ · v = 0
accoding to Eq. (2.2b) so that Eq. (2.4a) reduces to Eq. (2.4b).

Combining Eqs. (2.2a), (2.3) and (2.4b), we write the Navier-Stokes equation,

ρ [∂t + v ·∇]v = −∇p+ η∇2v + fbody. (2.5)

As seen, the Navier-Stokes equation is nonlinear due to the term inertia ρ(v·∇)v. However
this term might be neglected under certain conditions as follows:

We write the Navier-Stokes equation in dimensionless form by introducing the dimen-

sionless variables r̃ =
r

L0

, ṽ =
v

v0
, t̃ =

t

T0
, p̃ =

p

P0

, where L0, v0, T0 and P0 are

characteristic scaling variables for the system. We chose the intrinsic time scale for the

system, T0 =
L0

v0
and then P0 =

v0η

L0

to get the Navier-Stokes equation in dimensionless

form (neglecting body forces),

L0ρv0
η

[

∂t̃ + ṽ ·∇̃
]

ṽ = −∇̃p̃ + ∇̃2ṽ , (2.6)

where ∇̃ = L0∇ is the spatial derivative with respect to the dimensionless position r̃.

Here Re ≡ L0ρv0
η

is the Reynold’s number. If Re ≪ 1 we see that the viscous term ∇̃2ṽ

dominates and the nonlinear inertia term (ṽ ·∇̃)ṽ vanishes. In this thesis we consider
water with ρw ≈ 103 kg m−3, ηw ≈ 10−3 Pa s and micro systems with L0 ≈ 10−6 m and
velocities in the order of v0 ≈ 10−4 m s−1, which yields Re ≈ 10−4 so that the inertia term
is vanishing. Furthermore if we assume steady state (∂t̃ ṽ = 0) the Navier-Stokes equation
reduces to the linear Stokes equation,

0 = −∇p+ η∇2v + fbody for Re≪ 1 and steady state. (2.7)

Note however, that the requirement Re ≪ 1 for Eq. (2.7) to be valid is less necessary for
systems with high symmetry, where (v·∇)v is vanishing as we shall see in Chapters 5 and 7
where we model straight channels.

2.1.1 Hydrodynamics in porous media

An important part of this thesis is the introduction of porous medium. To model the flow
in the porous medium we apply Darcy’s law,

0 = −∇p− η

k
v, (2.8)

where k is the permeability with dimensions of length squared. Darcy’s law arise from
considering the porous medium as consisting of many micro channels. The important

simplification in Darcy’s law is that the term −η
k
v accounts for all viscous drag from the
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porous medium so that we do not have to calculate η∇2v for every single channel. Hence
Darcy’s law do not give the correct velocity profile in each single channel, but it gives the
correct flow, provided k is chosen appropriately. How to choose k depends on the specific
model which we describe in Chapter 6.

If the porous medium is placed in a channel we still need the term η∇2v to account for
the viscosity from the walls. In this case we apply the usual Navier-Stokes equation with
the extra term from Darcy’s law,

ρ [∂t + v ·∇]v = −∇p+ η∇2v + fbody − η

k
v. (2.9)

2.2 Electrostatics

In this thesis we apply Gauss’s law for the electric displacement field D,

∇·D = ρel, (2.10)

where ρel is the charge density.
We shall only work with linear media with no directional preference of polarization,

so that the electric field E is parallel to D through the relation D = ǫE, where ǫ is the
scalar permittivity expressible in terms of the relative permittivity ǫr times the vacuum
permittivity ǫ0, ǫ = ǫrǫ0. We emphasize that when working with inhomogeneous media
the permittivity can be dependent of posoition. For linear media we write Gauss’s law for
the electric field,

∇·(ǫ(r)E) = ρel (generally), (2.11a)

∇·E =
ρel
ǫ

(linear media) (2.11b)

According to Maxwell-Faraday’s law, ∇ ×E = −∂tB, where B is the magnetic field.
Thus for no magnetic field or for slowly time varying magnetic field, E has zero curl and
is therefore a conservative vector field. I.e. there exists a scalar electric potential φ for E

such that
E = −∇φ. (2.12)

Note that the minus sign arises since we want φ to be the electric potential defined as the
energy it takes to move a unit charge from a reference point O (with reference potential
φ(O) ≡ 0 V) through any path (since E is conservative) to a position r,

φ(r) ≡ −
∫

r

O

dl·E(r). (2.13)

Combining Eqs. (2.11) and (2.12) we reach the Poisson equation relating the electric
potential φ and the charge density ρel,

∇·(ǫ(r)∇φ) = −ρel (generally), (2.14a)

∇
2φ = −ρel

ǫ
(homogeneous media). (2.14b)
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2.3 Electrokinetics

Just as for mass and momentum, also the concentration of ions c± is conserved, provided
that no chemical reactions R occur. Thus we can state a conservation equation of the the
same form as the continuity equations of mass Eq. (2.2),

∂tc± = −∇·J± +R (2.15a)

0 = −∇·J± (stady state and no chemical reactions). (2.15b)

where J± is the ion current defined as the number of positie/negative ions c± passing
through a unit area per unit time. Througout this thesis we shall assume no chemical
reactions so that Eq. (2.15b) is valid. The ion current J± can be described by adding up
contributions from advection, diffusion and electrophoresis,

J± = Jadv
± + Jdiff

± + Jelec
± . (2.16)

The advection term simply expresses that the ions follow the flow of the fluid that
surrounds them, Jadv

± = c±v.
The diffusion term expresses the statistical fact that if many particles fluctuate ran-

domly, they will distribute evenly over the entire domain. So due to probability the net
flow of particles will be from high concentration to low. A linear model of this behavior is
given by Fick’s law,

Jdiff
± = −D±∇c±, (2.17)

where D± is the diffusivity of positive and negative ions respectively. Note that ficks law
has noting to do with particle interaction and therefore the diffusion of positive ions is only
governed by the concentration of positive ions, and not the concentration of all particles.

Finally the electrophoresis term expresses the ion current density due to the presence
of an electric field. An ion with charge ±|Z|e, where Z is the valence number, will be
accelerated by the electric field until it reaches a constant drift velocity balanced by the
stokes drag. The ionic mobility µion± of the particle relates this electrophoretic velocity vep
and the electric field through vep = µion± E. Thus, the ion current can be written

Jelec
± = c±vep = c±µ

ion
± E = −c±µion± ∇φ, (2.18)

where we have applied the ideal gas approximation for weak solutions and assumed no
particle interaction so that the mobility of N ions is simply Nµion± . We finally write the
full Nernst-Planck equation by using the Einstein relation for the diffusivityD± = ±µion± VT,
where we have introduced the thermal voltage, VT = kBT/|Z|e,

J± = c±v −D±∇c± ∓ c±D±V
−1
T ∇φ. (2.19)

2.4 Thermodynamics

To understand how charged particles in an electrolyte distribute in the presence of an
electric field it is advantageous to consider the electrochemical potential. As discussed in
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the introduction, we shall assume weak solutions lower than 50 mM. It is well known[5]
that ions in weak solutions can be modeled as non interacting particles. Hence we adopt
the approach from the ideal gas, where the chemical potential for positive or negative
particles µ± has a logarithmic dependency on the concentration of positive and negative
particles respectively[9],

µchem± = kBT log

(

c±
c0

)

+ µ0,± (2.20)

where kB is the Boltzmann constant, T is the temperature, c0 is a chosen reference con-
centration and µ0,± is the chemical potential for a positively/negatively charged particle
in a solution of concentration c0.

Another contribution to the electrochemical potential is from the electric potential. A
particle of charge ±|Z|e gains the energy ±|Z|eφ in the presence of an electric potential
φ. Thus we write the full electrochemical potential as

µ± = kBT log

(

c±
c0

)

± |Z|eφ+ µ0,±. (2.21)

As mentioned in the introduction we have omitted the dependencies. We emphasize
though, that both c±, φ and thus µ± is a function of r while µ0 is a constant. The
electrochemical potential together with advection governs the flow of particles in a solution,

J± = c±v − c±
D±

kBT
∇µ. (2.22)

Neglecting advection, particles (and/or heat) will flow from areas with high electrochemical
potential to low until the system reaches thermodynamic equilibrium,

∇µ = 0 (thermodynamic equilibrium). (2.23)
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3 | Electrolyte near charged wall

Figure 3.1: Sketch of an electrolyte with cations and anions near a negatively charged wall.
φ(y) shows the electric potential, c+(y) (blue) and c−(y) (green) show the cation and anion
concentration respectively which both approache c0 far from the wall. The Debye length
λD is marked with a vertical line.

In this chapter we will investigate how the electric potential and the ionic concentrations
behave near a charged wall. We consider a infinite plane wall in the zx plane as shown in
Fig. 3.1. Practically the wall could be made of silica which by chemical interaction with
water at the surface give rise to a charge displacement leaving the wall more negative and
the electrolyte more positive[2].

3.1 The ionic concentrations

In thermodynamic equilibrium the chemical potential is constant throughout the entire
system,

∇µ± = kBT∇ ln

(

c±(r)

c0

)

± |Z|e∇φ(r) = 0. (3.1)
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Now, we assume that both positive and negative ions approach the same concentration
c±(∞) = c0 infinitely far away from the wall and that the potential goes to zero, φ(∞) = 0.
With these boundary conditions, Eq. (3.1) is easily integrated and solved for c±,

c±(r) = c0 exp
(

∓φ̃(r)
)

. (3.2)

where we have introduced the normalized φ̃ = φ/VT. Not surprisingly, since we have
used the ideal gas approximation, the concentration of ions is proportional to the Boltz-
mann factor. Analytical and numerical solutions for Eq. (3.2) are plotted near the wall in
Fig. 3.2(a), using the Gouy-Chapmann potential derived in the following. We notice that
the cation concentration increases more than the anion concentration decreases so that a
net charge density is formed near the wall.

3.2 The electric potential

Defining the charge density ρel ≡ |Z|e(ci+−c−), we combine the Poisson equation Eq. (2.14b)
and the Boltzmann distribution of ions Eq. (3.2) to arrive at the Poisson-Boltzmann equa-
tion,

∇2φ̃(r) =
1

λ2D
sinh

(

φ̃(r)
)

, (3.3)

where we have introduced the Debye length,

λD ≡
√

ǫVT
2|Z|ec0

. (3.4)

Note that ǫ is the permittivity of the electrolyte, which we assume is the same as for pure
water ǫw = 80.1 ǫ0[6].

Eq. (3.3) is really cumbersome to solve and in most cases impossible so that only
numerical solutions are available. However for the one dimensional case shown in Fig. 3.1
the Gouy-Chapman solution applies[5]. In dimensionless form it reads,

φ̃(y) = 4 tanh−1

[

tanh
(

ζ̃/4
)

exp (−y/λD)
]

for φ(r) = φ(y), (3.5)

satisfying φ̃(∞) = 0 and φ̃(0) = ζ̃. Here we have defined the normalized zeta-potential ζ̃ as
the potential at the wall, ζ̃ ≡ ζ/VT = φ(0)/VT. In some cases it might be more convenient
to work with the surface charge σ on the wall instead of the the zeta potential. Therefore
we search for a relation between the surface charge and the zeta potential. The gradient
of the potential at the wall is easily found by integrating Eq. (3.5) once[2]

∂yφ̃(0) = − 1

λD
2 sinh

(

ζ̃/2
)

, (3.6)

satisfying the boundary conditions φ̃(∞) = ∂yφ̃(∞) = 0 and ∂yφ̃ > 0 for y > 0. We
consider the wall and the electrolyte as a capacitor and apply the standard condition that
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the electric field outside the capacitor is vanishing[10]. Thus by the well known Gaussian
box argument we find that σ = ǫwE(0) = ǫw(−∂yφ(0)) which by Eq. (3.6) yields,

σ =
2VTǫw
λD

sinh
(

ζ̃/2
)

, (3.7)

which is the relation between the ζ and σ we searched for.
The equations simplifies a lot in the important case of low potentials, also known as

the Debye-Hückel limit, i.e. when |Z|eζ ≪ kBT . In this case Eq. (3.3) can be linearized as

∇2φ(r) =
1

λ2D
φ(r) for |Z|eζ ≪ kBT . (3.8)

From this equation the potential is easily found for the one dimensional case,

φ(y) = ζ exp

(

− y

λD

)

for |Z|eζ ≪ kBT , (3.9)

satisfying the same boundary conditions, φ(0) = ζ and φ(∞) = 0. In this equation the
Debye length is easily interpreted as the characteristic length scale with which the potential
decreases.

As sketched in Fig. 3.1 the exponential solution to the potential has the property
∂yφ(0) = −φ(0)/λD = −ζ/λD, so that Eq. (3.7) simplifies to

σ =
ǫw
λD

ζ for |Z|eζ ≪ kBT , (3.10)

which is also obtained directly by linearising Eq. (3.7). The Debye-Hückel and the Gouy-
Chapman potential have been plotted together with numerical solutions in Fig. 3.2(b) near
the membrane for different wall charges. Both the Gouy-Chapmann and the Debye-Hückel
potential are seen to be in good agreement with numerical solutions for small wall charge
whereas only the Gouy-Chapman potential follow the numerical solutions for more negative
wall charges.

3.2.1 The Debye Length

In the case of a charged wall, the Debye length gives the thickness of the screening layer
on the wall. We shall assume relatively weak concentrations of around 1mM, so that the
Debye length is around 10 nm at room temperature. Note that this length scale is in the
order of the fluid particle introduced in the introduction and thus we should be aware when
interpreting results involving this screening layer.

3.2.2 The Debye-Hückel limit

The Debye-Hückel solution is simple and easy to use for a lot of problems. But if we
choose a wall charge of around 1mC m−2 and a Debye length of around 10 nm, we get zeta
potential 14meV, which is close the thermal energy at room temperature, kBT ≈ 26 meV
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Figure 3.2: (a) Analytical and numerical solutions for cation and anion concentrations
normalised to c0 for σ = −1 mC/m2. Analytical solutions are plotted for Eq. (3.2), using
the Gouy-Chapmann potential Eq. (3.5). (b) Decaying electric potentials for three different
wall charges plotted together with the Debye-Hückel approximation. Numerical setup is
described in Chapter 5.

so that the Debye-Hückel approximation will be on the limit to break down. The Gouy-
Chapman solution on the other hand is always valid for one dimensional problems as shown
in Fig. 3.2. It only suffers from the fact that it only works for single walls. However imagine
that two parallel plates lies sufficiently far away from each so that the potential from each
wall has fallen to a vanishing level at the center. Then we can treat each plate as a single
plate and thus apply the Gouy-Chapman potential.
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4 | Numerical modeling

In this chapter we present The Finite Element Method (FEM) and how to implement it in
the software COMSOL MULTIPHYSICS. This chapter will introduce the general deduc-
tions of the theory needed for further analysing in later chapters.

4.1 The Finite Element Method

Solving the Navier-Stokes equation analytically can be a complex and sometimes impossi-
ble problem. FEM is a method for both solving ordinary and partial differential equations
and is used in a vast varieties of problems within science and engineering. Among these
problems comes fluid dynamics. The core idea of FEM is to to split the domain of interest
into many small sub domains and thereby solving each sub domain independently. Each
domain in FEM is called a grid. The geometric form of the grid varies from problem
to problem. For each grid a node is associated to each corner of the grid. Each grid is
associated with some basis functions which values runs from 1 on the node to 0 on the
neighbour node. The basis functions can be chosen as desired but often polynomials are
chosen as the are easy for a computer to both differentiate and integrate. The order of the
polynomial often depend of how the function of interest varies on the specific region.

Our general problem is to solve an inhomogeneous PDE. We start by looking at a
general partial differential equations with a boundary term

L{g(x)} = F (x), (4.1)

where L denotes a differential operator working on our function g(x), and F (x) is some
source term. An equation which satisfy Eq. (4.1) is called a strong solution. But in the
case where we need to use approximate solutions this equation can no longer be satisfied
and we therefore need to introduce the so-called deffect defined as

d(x) ≡ L{g(x)} − F (x). (4.2)

If the defect equals zero we simply have Eq. (4.1) again. To get an approximate solution
for the function g we expand it in terms of some finite basis functions

g(x) =
∑

n

cnψn. (4.3)
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where cn are the expansion coefficients. At the n’th node ψn takes the value 1 and therefore
cn takes the value of g(x) at the n’th node.

In order to find the best solution for Eq. (4.1) we demand the inner product between
the expansion coefficients and the defect to vanish

〈ψm, d(x)〉 = 0, for all m. (4.4)

We define the inner product between two real functions as 〈a(x), b(x)〉 ≡
∫

Ω
a(x)b(x) dx.

Next step is to substitute the defect into Eq. (4.4). In the case where the operator L is
linear (in this report we shall use the linear differential operator) the sum and expansion
coefficients can be taken outside the integral and we arrive at the following equation[11],

∑

n

cn〈ψm,Lψn〉 = 〈ψm, F (x)〉, for all m. (4.5)

We recognize that the left hand side can be written as a matrix-vector product and the
right hand side as a vector. This leads to the following matrix-vector product

Ka = F (x), (4.6)

where K is called the stiffness matrix. Solving this matrix equation for the coefficients cn
exactly yields the weak solution which is exactly what we wanted. As the number of basis
functions in Eq. (4.3) is only finite the weak formulation will only be approximately. To
obtain a strong solution one would require the span of basis function to go to infinity.

4.1.1 The weak formulation

One of the most crucial parts of solving the boundary value problems by FEM is the
implementation of boundary condition. Two different kind of boundary conditions will
be introduced, namely the Dirichlet and the Neumann conditions which uses the function
value and the flux at the giving boundary respectively. We consider a continuity equation
of the form of Eq. (4.1)

∇ · Γ = F (x). (4.7)

Solving the continuity equations in this way is interesting since we can write all the gov-
erning equations used in this thesis in this form. Now, inserting Eq. (4.13) into Eq. (4.2)
we have

〈ψm,∇ · Γ− F (x)〉 =
∫

Ω

ψm∇ · Γ− ψm F (x) dx = 0. (4.8)

Using the product rule for integration, we rewrite Eq. (4.8) to
∫

Ω

∇ · (ψmΓ)− (∇ψm) · Γ− ψm F (x) dx = 0. (4.9)

Now the first integrand of Eq. (4.9) can by Gauss’ divergence theorem be written as an
integral over the boundary and we finally get

∫

δΩ
ψm n · Γ dx+

∫

Ω

− (∇ψm) · Γ− ψm F (x) dx = 0. (4.10)
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The boundary conditions

The Neumann boundary conditions are used in the case of a known flux through the
specific area. Defining the flux as a function h(x) we can make the following substitution
in Eq. (4.10)

h(x) = n · Γ for x ∈ ∂Ω. (4.11)

In the Dirichlet boundary a constraint is introduced on the boundary. That is, we now
know the value of the function on the boundary

j(x) = g(x) for x ∈ ∂Ω. (4.12)

To implement the constraint in the weak form, the Lagrange multiplier λ(r) is introduced.
The multiplier consist of a new list of basis functions, which are all required to be orthogonal
to the constraint. As required in Eq. (4.12) the constraint only lives on the boundary.
Adding the product of the constraint Eq. (4.12) and the Lagrange multiplier to Eq. (4.13)
gives the continuity equations modified with the desired constraint

∇ · Γ = F (x) +
∑

n

λ(r)ĝn(r), (4.13)

where the n’th λ(r) is changed to satisfy the constraints[12, 13].

4.1.2 Mesh Convergence

The test functions mentioned above take the value one on the nodes. These nodes form
elements which together form what we call a mesh. The sizes of the mesh have a huge
impact on the quality of the solutions. Too big meshes will result in misleading solutions
where the solutions depend on the mesh size rather than the real physics. On the other
hand too small meshes demand more computational power.

The size of the mesh depends highly on how the function of interest varies locally.
In the channels of micrometre scale an extremely small mesh is needed close to the wall
where the scale is dominated by the Debye length. Later on a model in millimetre scale
is presented where nanometre size mesh is impossible with the computers available and
approximations in our models to allow for bigger mesh is crucial for the computational time.

We see from figure Fig. 4.1 (b) how the maximum mesh size is much smaller at the
boundaries than in the bulk. The bottom line is a symmetry line and because require no
stricter mesh size than the rest of the bulk. The mesh is made of nodes connected to each
other in triangles but could also be made up of other kind of geometric structures. This
can be changed in Comsol and different geometries are advantageous in different problems
but the choice of geometry have not been investigated and triangles have then been chosen
because of its general validity.

In order to find an appropriated mesh size we will now present a method to evaluate
the mesh quality. We will define the value of a dependent variable of finest mesh possible

15



Figure 4.1: (a) Mesh convergence analysis showing a semi-logarithmic plot of the relative
mesh convergence parameter for the dependent variables φ, c+, vx, and p for different
λ/dmesh and σ = −1mC/m2 and V0 = 5VT, and (b) The mesh visualised in upper right
corner of a channel modeled in Chapter 5. The mesh has a size of maximum dmesh at the
boundaries and maximum 10 dmesh in the bulk.

by gref which will work as a reference. A given value for a dependent value for a coarser
mesh is denoted g, and we define the relative convergence parameter as [14]

C(g) =

√

∫

Ω
dA (g − gref )2
∫

Ω
dA (gref )2

. (4.14)

We will define the finest mesh size with dmesh = λD/2, where λD is the Debye length,
set to λD = 9.7 nm. Now varying dmesh we can calculate Eq. (4.14) for different mesh
sizes. On the boundaries we require a the biggest to be dmesh and in the bulk the mesh
must not exceed 10dmesh.
Fig. 4.1 plots Eq. (4.14) for the dependent variables φ, c+, vx, and p. The different fields
converges considerably faster for dmesh bigger than the Debye length followed by a much
slower convergence. This behaviour is not surprisingly since the equilibrium potential
varies with the Debye length and we therefore expect to use a mesh resolution in the order
of the Debye length. To ensure that we can rely on numerical solution from Comsol we
require dmesh never to be greater than the Debye length.
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5 | Microchannel

Figure 5.1: Sketch of a microchannel of length L and height H with a cation selective
membrane at x = L. Both H and L are in the order of µm. At the walls we have negative
surface charge and in the bulk we have both cations and anions. At x = 0 and after the
membrane at x = L+ we have reservoirs with c± = c0. Electrodes on each side of the
membrane at x = 0 and x = L+ establishes an electric potential drop of −V0 across the
the channel (black text at top). The red text at the top denotes physical consequences
from this setup. Note that from x = 0 to x = L the potential drop is only V0/2.

The scope of this thesis is to understand electrokinetic behavior in microsystems in de-
tail and then use this knowledge to suggest a model for ion separation on a larger scale. In
Chapters 6 and 7 we shall work with porous medium to effectively form a network of micro
channels. In this chapter we present an investigation of a single idealised microchannel as
shown in Fig. 5.1.
We start by presenting the physical setup of our microchannel. Next we make some ana-
lytical models on how potentials, concentrations and flow behave. Finally we present our
numerical setup in COMSOL. Analytical results will throughout the chapter be compared
with numerical simulations. Depletion and charge polarization will be of the important
keywords in the interpretations of the results.

5.1 Physical setup

We will be analysing porous media made of silica which tend to have a negative surface
charge due to chemical reactions with water[2]. For this reason we will consider a mi-
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crochannel with negative walls. In each end of the channel a reservoir with a common
cation and anion concentration c± = c0 is situated. One could imagine a reservoir being a
steady flow securing a constant concentration. At x = L we place a cation selective mem-
brane which could be a nafion membrane, which is a medium with a fixed negative surface
charge so that anions are excluded and cations are let through with high conductivity. The
nafion membrane has very narrow hydrophilic pores with size in the order of angstroms[15]
so for the flow we model the membrane as a normal wall with no slip boundary condition.
We apply an external electric field over the channel by setting electrodes at x = 0 and
x = L+ (see Fig. 5.1). Since the concentration at the electrodes is c± = c0 this leads to
an electrochemical potential difference of ZeV0 over the channel as indicated with red text
at the top of Fig. 5.1.

5.2 The electrochemical potential through the channel

We can split the total electric potential into two parts. φext which is the external potential
that we establish with the electrodes, and φeq which is an equilibrium potential that we
defined in Chapter 3. Thus we write the total electric potential as

φtot(x, y) ≡ φeq(x, y) + φext(x). (5.1)

Please note that φeq depends on both x and y since concentration variation through the
channel changes the Debye ength. φext on the other hand is only a function of x.

As usually we use the Boltzmann distribution to describe how the ion concentrations
dependent on the electric potential when in thermodynamic equilibrium with respect to
the vertical direction,

c±(x, y) = c(x) exp(∓φ̃eq(x, y)), (5.2)

where c(x) is the common concentration for c+ and c− in the limit infinitely far away from
the wall. If the concentration changes through the channel due to the external potential
this is not necessarily c0. We can find c(x) by using that the anions distribute in the
horizontal direction such as to establish thermodynamic equilibrium. In dimensionless
form with µ̃ = µ/(kBT ) and c̃ = c/c0 we then have

∂xµ̃− = ∂x

(

log (c̃−)− φ̃tot

)

(5.3a)

= ∂x

(

log (c̃) + φ̃eq − (φ̃eq + φ̃ext)
)

(5.3b)

= ∂x

(

log (c̃)− φ̃ext

)

= 0, (5.3c)

which is easily integrated so that

c(x) = c0 exp(φ̃ext(x)), (5.4)
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satisfying c(0) = c0. With this value we see that,

µ̃+ = log (c̃+) + φ̃tot (5.5a)

= log
(

c exp(−φ̃eq)
)

+ (φ̃eq + φ̃ext) (5.5b)

= φ̃ext − φ̃eq + (φ̃eq + φ̃ext) = 2 φ̃ext. (5.5c)

Note that this equation is only valid where the anions are in horizontal thermodynamic
equilibrium i.e. from x = 0 to x = L.

5.3 The electric potential at the membrane

Using Eq. (5.5) and the fact that c+(L+) = c0 at the right reservoir, we can write the
chemical potential for cations at membrane and after the membrane respectively,

µ̃+(L) = 2φ̃ext(L) (5.6a)

µ̃+(L+) = −Ṽ0. (5.6b)

We can argue that these two equations are equal by the folowing considerations:
In a very short time after applying an external electric field over the microchannel, the an-
ions will distribute such as to reach thermodynamic equilibrium as mentioned. The cations
on the other hand which are allowed to pass through the membrane will contribute to a
steady current governed by the gradient of the electrochemical potential from Eq. (2.22),

J+ = − D+

kBT
ci+∂xµ+. (5.7)

To write this equation we have made two assumptions. Firstly we have assumed the channel
to be long and symmetric so that there is no current in the y-direction and the problem
reduces to one dimension. Secondly we have assumed that advective current is negligible
compared to electrophoretic current. This is a good approximations for channel heights
much larger than the Debye length[5] which is satisfied in this model with a height of 1µm
and a Debye length of 10 nm.
If we assume no chemical reactions, it can be seen from Eq. (2.15b) that a one dimensional
current density will be constant through the channel and through the membrane. Thus
inside the membrane, where we have a high concentration of cations ci+, we find that the
chemical potential must be almost constant over the membrane to keep J+ fixed. Thus we
can find the electric potential at the membrane by equating Eq. (5.6a) with Eq. (5.6b),

µ+(L) = µ+(L+) ⇒ φext(L) = −V0
2
, (5.8)

so that half of the external electric potential drop lies over the membrane alone.

We will in the following treat the microchannel in the two cases with and without wall
charges.
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5.4 Uncharged walls

In the following we shall assume charge neutrality so that ci+ = c− = c0 exp φ̃ext for no wall

charge, so that φ̃eq = 0. The assumption of charge neutrality is discussed in Section 5.4.1.
Inserting Eq. (5.5) into Eq. (5.7), the cation current density is easily found,

J+ = −D+c
i
+∂xµ̃+ (5.9a)

= −D+

(

c0 exp(φ̃ext)
)

∂x(2 φ̃ext) (5.9b)

= − (2D+c0/L) ∂x̃ exp(φ̃ext), (5.9c)

where we in the last step changed to the dimensionless x̃ ≡ xL−1. We normalize by the
prefactor (2D+c0/L),

J̃+ ≡ J+
2D+c0/L

= ∂x̃ exp(φ̃ext). (5.10)

This is easily integrated since J+ is a constant throughout the channel,

J̃+x̃ = 1− exp(φ̃ext) (5.11a)

J̃+ = 1− exp(−Ṽ0/2), (5.11b)

satisfying φ̃ext(0) = 0 and φ̃ext(1) = −̃V0/2. From Eq. (5.11b) we see that the maximum
current of cations for uncharged walls is exactly 2D+c0/L, which is known in the literature
as the limiting current[3]. We see from Fig. 5.3(a) that the cation current density for no
wall charge (σ = 0) agrees with numerical solutions. From Eqs. (5.11a) and (5.11b) we
find an expression of the external potential,

φ̃ext(x̃) = ln
[

1− J̃+x̃
]

= ln
[

1−
(

1− exp(−Ṽ0/2)
)

x̃
]

. (5.12)

And hence we can find the ionic density,

c+ = c0 exp(φ̃ext) = c0

[

1−
(

1− exp(−Ṽ0/2)
)

x̃
]

. (5.13)

From Eq. (5.13) we expect that the concentration is linear through the channel so that
no depletion region occurs. However as we show in Fig. 5.4(b) (σ = 0), we find that the
numerical solutions gives a depletion region for potentials higher than Ṽ0 = 10. This is due
to the fact, that the assumption of charge neutrality breaks down for higher potentials. We
also see that the potential found in Eq. (5.12) certainly does not satisfy the one dimensional
Laplace equation, ∂2x̃ φ̃ext = 0. We discuss break down of charge neutrality in the following
section.

5.4.1 Break down of charge neutrality

One argument for charge neutrality is seen by considering the one dimensional normalised
Poisson equation,

∂2x̃ φ̃ext = − L2

2λ2D
(c̃+ − c̃−). (5.14)
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Figure 5.2: Numerical solutions of the ionic concentration differences normalised to the
reservoir concentration c0, plotted versus x̃ = xL−1 for the last 25 percent of the channel.
The solutions are compared with the analytic result from Eq. (5.15). Note that all analytic
lines above Ṽ0 = 10 overlaps.

We see that since λD ≪ L, a small difference in the ionic concentrations leads to a huge
change in the electric field acting to equalise the difference. However if we insert Eq. (5.12)
into Eq. (5.14), we find that

c̃+ − c̃− =
2λ2D
L2

J̃2
+

(1− J̃+x̃)2
(5.15)

so that the charge neutrality breaks down near the membrane for high external potentials.
This point is illustrated in Fig. 5.2 where numerical simulations of c̃+ − c̃− has been made
for different potentials and compared with the result from Eq. (5.15). In agreement with
Eq. (5.15) the numerical solutions give a charge polarization in front of the membrane.
However as seen in the Fig. 5.2 the analytical results only cache the beginning of this
behavior. In the numerical solution we see that the charge density reaches a maximum
before the membrane. This can be understood as an effect from the strong external electric
field near the membrane accelerating the cations so that the concentration is lowered to
keep a constant current density.

5.5 Charged walls

We now consider a channel with wall charge σ. We will in this section see how a cation
current density along the walls leads to an overlimiting current and an extended depletion
region in front of the membrane.
For the case with σ = 0 we had concentration gradient in the y-direction. Now with σ < 0
the behavior described in Chapter 3 applies and we will expect a higher concentration of
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cations near the wall screening the negative wall charge. Thus we do not expect complete
charge neutrality in the bulk but we expect that the sum of all charges in the bulk and on
the walls is zero,

|Z|eH (〈c+〉 − 〈c−〉) + 2σ = 0, (5.16)

where 〈·〉 denotes averaging across the channel from −H/2 toH/2. We see that for negative
wall charge we have a higher concentration of cation in the bulk in order to maintain total
charge-neutrality. This high concentration of cations will mainly be near the negative walls
as shown in Chapter 3. We will now derive an expression for the cation current in the same
way as we did for the case with no wall charge. Normalising Eq. (5.16),

〈c̃+〉 = 〈c̃−〉 − ρ̃s ≈ exp(φ̃ext)− ρ̃s, (5.17)

where the normalised averaged wall charge is defined as,

ρ̃s ≡
2σ

|Z|eHco
. (5.18)

Note that in Eq. (5.17) we have assumed that the average anion concentration over a
vertical cross section is just the same as for no wall charge. This can be considered in two
limits: For low ζ-potentials c− only varies a little near the wall so that for a wide channel
the average concentration is approximately c0. For high ζ-potentials ci+ is very high near

the wall, but c− is limited by 0 ≤ c
−

c0
≤ 1 and as the zeta potential gets higher the anions

are only depleted in a very small area in front of the wall so that the average concentration
of anions over the hole channel is still approximately c0.

Similar to before we now find the averaged cation current by combining Eqs. (5.5)
and (5.7),

2 〈J̃+〉 = 〈−c̃+∂x̃ µ̃+〉 (5.19a)

= 〈−c̃+∂x̃(2 φ̃ext)〉 (5.19b)

= 〈−c̃+〉∂x̃(2 φ̃ext). (5.19c)

In the last step we have used that φext is constant in y. Inserting Eq. (5.17) yields

〈J̃+〉 = −
(

exp(φ̃ext)− ρ̃s

)

∂x̃ φ̃ext (5.20a)

= −∂x̃
(

exp(φ̃ext)
)

+ ρ̃s∂x̃ φ̃ext. (5.20b)

Again 〈J̃+〉 is constant throughout the channel and Eq. (5.20b) is easily integrated,

〈J̃+〉x̃ = 1− exp(φ̃ext) + ρ̃sφ̃ext (5.21a)

〈J̃+〉 = 1− exp(−Ṽ0/2)− ρ̃s(Ṽ0/2) (5.21b)

satisfying φ̃ext(0) = 0 and φ̃ext(1) = −V0

2
as usual. We notice that for no wall charge

ρ̃s = 0, and Eq. (5.21b) reduces to Eq. (5.11b).
For small potentials the term − exp(−Ṽ0/2) in Eq. (5.21b) dominates. For increasing
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Figure 5.3: (a) The cation current density 〈J̃+〉 averaged over a vertical cross section
plotted versus the potential Ṽ0 for different wall charges. (b) 2D plot of the cation current
for Ṽ0 = 10. Arrows indicate the vector field (proportional) and colors indicate the scalar
field |J̃+|.

potentials this term approach zero and the so-called limiting current is reached. Now, due
to the wall charges, a high concentration of cations are located near the wall and a current of
positive ions is allowed in this region. This gives rise to the so-called overlimiting current[3].
In Fig. 5.3(a) we plot Eq. (5.21b) for different wall charges. Numerical solutions are seen
to be in good agreement except for σ = 0 mCm−2. In this case we see a small overlimiting
current due charge polarisation near the membrane as described in Section 5.4.1.

We write the analytical expression for the external potential by solving Eq. (5.21a)[16],

φ̃ext = −W



−
exp

(

(J̃+x̃ − 1)/ρ̃s

)

ρ̃s



+
(J̃+x̃ − 1)

ρ̃s
, (5.22)

where W (z) is the Lambert W function satisfying z = W (z) exp(W (z)). In Fig. 5.5
Eq. (5.22) is plotted versus numerical solutions. As expected an external potential drop of
Ṽ0/2 is seen. We can now find 〈ci+〉 by inserting Eq. (5.22) into Eq. (5.17). 〈ci+〉 is plotted
in Fig. 5.4(a) where we see an extended depletion region for higher surface charges. Please
notice that 〈ci+〉 never goes to zero due to the cations in the Debye layer. We can also
isolate x by combining Eqs. (5.17) and (5.21)

x̃ =
1− (〈c̃+〉+ ρ̃s) + ρ̃s log (〈c̃+〉+ ρ̃s)

1− exp(−Ṽ0/2)− ρ̃s(Ṽ0/2)
. (5.23)

Please notice that from this equation the size of the depletion region relative to the length
of the channel, 1− x̃, is constant for a given potential. Thus the size of the depletion region
scales linearly with the channel length, which seems promising for a system on a larger
scale as we shall investigate in Chapter 7. In Fig. 5.4(b) we have used Eq. (5.23) to make
a plot of the size of the depletion region for different potentials. This is done by claiming

23



Figure 5.4: Depletion regions for different wall charges. (a) The normalised average cation
concentration plotted along the channel. (b) The size of the depletion region is plotted for
varying potentials.

Figure 5.5: Numerical solutions for the normalised external potential compared with the
analytical result from Eq. (5.22). The potentials are plotted along the channel for varying
external potential drop Ṽ0.

〈c̃+〉+ ρ̃s to be 0.01 in Eq. (5.23) and then plot 1− x̃ as the size of the depletion region. It
is seen that, independently of the wall charge, the depletion region starts around Ṽ0 = 10
corresponding to where the overlimiting current takes places in Fig. 5.3(b). It is important
to emphasize that from Eq. (5.23), the depletion region will occur around V0 = 10VT (5VT
from x = 0 to x = L) independently of the length of the channel. This is confirmed in
Chapter 7 where we make a system on a larger scale (see Fig. 7.6).
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5.6 Introducing electro-osmotic flow

So far we have only considered a channel with no flow. But in the presence of an electric
field, ions will start to move in the electrolyte due to the electrophoretic term in the Nernst-
Planck equation, Jelec

± = −D±c±∇φ̃ext. In the Debye layer, where we have more cations
than anions, we will have a net flow of particles which by viscous forces give rise to electro-
osmotic flow of the fluid surrounding them. As the fluid is blocked by the membrane, a back
pressure must be established for the velocity to satisfy the continuity equation ∇·v = 0.

We investigate this electro-osmotic flow in the channel in the presence of an external
electric field E in the x-direction. We assume that the plates are long and symmetric
so that the velocity field is invariant in the x direction. Using the boundary conditions
vx(H/2) = vx(−H/2) = 0 and φeq(H/2) = φeq(−H/2) = ζ we find from the Stokes
equation in the case of no back pressure,

∂2yvx(y) + ρelE = 0 ⇒ vx(y) =
(

ζ − φeq(y)
) ǫwE

η
, (5.24)

where we have used the Poisson equation to substitute ρel = −ǫw∂2yφeq. We use the well
known symmetric equilibrium potential for a two plated system

φeq(y) = ζ
cosh( y

λD
)

cosh( H
2λD

)
, (5.25)

satisfying the boundary conditions φeq(H/2) = φeq(−H/2) = ζ and valid in the Debye-
Hückel limit, |Z|eφ≪ kBT . Inserting Eq. (5.25) into Eq. (5.24) we find the solution,

vx(y) =

(

1−
cosh( y

λD
)

cosh( H
2λD

)

)

ǫwζ

η
E. (5.26)

We notice that in the limit λD ≪ H/2 the velocity will be almost constant across the
channel except for the boundaries of course, where it because of the no-slip constraint goes
to zero. We also notice that the velocity is zero everywhere in case of zero wall charge i.e.
ζ = 0 as expected. For very narrow channels i.e. H ≈ λD advection of ions is the main
contribution to the current, but as the channel gets higher, conduction dominates[5]. Now
introducing the membrane into the system, a back pressure comes into the picture and we
now write the total velocity by superimposing the two velocity fields from electro-osmosis
and the well known Poiseuille flow for a straight channel with walls at ±H/2. The total
velocity therefore becomes

vx(y) =

[(

1−
cosh( y

λD
)

cosh( H
2λD

)

)

ǫwζ

η
E

]

+

[(

(

y

H/2

)2

− 1

)

H2

8η
∂xp

]

. (5.27)

Since the total flow is zero we require the velocity integrated over a vertical cross section
to vanish. Thus we integrate Eq. (5.27) from −H/2 to H/2 and equate with zero to find
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Figure 5.6: (a) Analytical (solid) and numerical (points) solutions for 1D velocity in x-
direction plotted along y at x = L/2 for three different external potentials. Analytical
solution is given by Eq. (5.29) combined with Eq. (5.22). (b) Numerical 2D plot of the
velocity in the end of the channel close to the membrane. Colour plot indicates speed and
arrows indicate velocity vectors (proportional).

the pressure gradient,

∂xp =
12

H2
ǫwζE



1−
tanh

(

H
2λD

)

H
2λD



 ≈ 12

H2
ǫwζE for H ≫ 2λD. (5.28)

Now inserting Eq. (5.28) into Eq. (5.27) gives us the velocity profile for electro-osmosis
with back pressure,

vx(y) =



−
cosh

(

y
λD

)

cosh
(

H
2λD

) − 1

2
+

(

y

H/2

)2





ǫwζ

η
E for H ≫ 2λD. (5.29)

The final step is to insert E = −∂xφext into Eq. (5.29), using the analytical expression
for the external potential from Eq. (5.22). We show the analytical velocity together with
numerical solutions in Fig. 5.6(a). The analytical model seems to deviate from the numer-
ical solution for increasing potentials. This corresponds to the somewhat higher current
density for the analytical model seen in Fig. 5.3(a). Fig. 5.6(b) shows the 2D velocity. As
expected due to high current density at the boundaries (see Fig. 5.3(b)) flow goes to the
right at the walls and backwards in the center due to the back pressure.

5.7 Numerical set-up

The solutions given so far have all been analytical. We will now show how to use COMSOL
to verify analytical solutions. As described earlier we put in conservation equations. These
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Table 5.1: Parameters used in calculations on the microchannel.
Quantity Label Value

Height of channel H 1 µm
Length of channel L 10 µm
Reservoir Concentration c0 1 mM
Cation Diffusion Constant D+ 1.33× 10−9 m2 s−1 [5]
Anion Diffusion Constant D− 2.03× 10−9 m2 s−1[5]
Viscosity of water η 1 mPa s [5]
Dielectric constant of water ǫw 80.1 ǫ0[6]
Temperature T 300 K
Density of water ρw 103 kg m−3[6]

must be given in weak form along with boundary condition in the form of a constraint
or a weak contribution. We shall use the the Stokes equation Eq. (2.7), the continuity
equation of mass Eq. (2.2b), the Poisson equation Eq. (2.14a) and the continuity equation
of particles Eq. (2.15b).
We will first introduce the governing equations in their weak form and hereafter introduce
the boundary conditions.

5.7.1 The Stokes equation

For low Reynold numbers we apply the Stokes equation,

0 = ∇ · σ + fbody, (5.30)

where we remember that σ is the viscosity tensor, and we therefore write each element in
Eq. (5.30) as

0 = ∇ · σi + fbodyi . (5.31)

Multiplying Eq. (5.31) with a test function, integrating by parts and rewriting it by Gauss’s
Theorem we end up with

0 =

∫

∂Ω
dA v̂i,mn · σi +

∫

Ω

dV [(−∇v̂i,m) · σi + v̂i,mfi] , (5.32)

which is the equation for the i’th component in the m’th element. The first part describes
the flux and Comsol will take n · σ as the input for the Neumann boundary condition.
Second part of Eq. (5.32) is the so-called weak form and describes the fluid in the bulk.

5.7.2 The continuity equation

We do not have any continuity equation related explicitly to the pressure. However we can
claim that the pressure must settle such as to keep the fluid incompressible. This is done
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by multiplying the continuity equation ∇·v = 0 with a test function for the pressure,

0 =

∫

Ω

dV p̂m∇·v, (5.33)

where p̂m is the m’th test function and v is the two dimensional velocity field. Here
Eq. (5.33) only describes the pressure in the bulk.

5.7.3 The Poisson equation

We write the poisson equation in the general form from Eq. (2.14a),

∇ · (−ǫw∇φtot) = ρel. (5.34)

We again multiply with a test function, φ̂m, and integrate by parts
∫

∂Ω
dA φ̂tot,mn·(−ǫw∇φtot) +

∫

Ω

dV
[(

−∇φ̂tot,m

)

·(−∇φtot)− φ̂tot,mρel

]

= 0. (5.35)

5.7.4 Continuity equation of particles

We model the concentrations by the equation for conservation of ions in Eq. (2.15b). Thus
we multiply ∇·J = 0 a testfunction ĉ± for the concentrations and write the weak form,

∫

∂Ω
dA ˆc±,mn · J± +

∫

Ω

dV [(−∇ ˆc±,m) · J±] = 0. (5.36)

Observe how we for the Stokes equation and the Nernst-Planck equation have two
dependent variables, whereas the two other equations only have one. Thus we have 6
equations for each mesh element in our geometry.

5.7.5 Boundary conditions

y

x

H
2

L

∂Ω1

(inlet)

∂Ω2 (wall)

∂Ω3

(membrane)

∂Ω4 (symmetrilyne)

Ω (bulk)

0

Figure 5.7: Definitions of the four boundaries and the bulk domain.

For clarity we will introduce the boundary conditions for the flow and for the ion
movement separately. In Table 5.2 the applied constraints and weak contribution are
sumerised. All the weak boundary contributions will be derived and explained in the
following. We refer to Fig. 5.7 for a definition of the boundaries.
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Flow boundary conditions

Due to the viscosity we require no-slip on the wall which implies a zero velocity Dirichlet
constraint for the wall and the membrane.

v = 0 for ∂Ω2, ∂Ω3 (5.37)

The channel must be long enough for the flow to have established at the left inlet ∂Ω1, i.e.
no change in flow in the x-direction and no flow at all in the vertical direction,

∂xvx = 0 for ∂Ω1 (5.38a)

vy = 0 for ∂Ω1. (5.38b)

To obtain symmetry at the symmetry line there can be no flow across the line and the
velocity profile must reach an extremum at the symmetryline.

vy = 0 for ∂Ω4 (5.39a)

∂yvx = 0 for ∂Ω4. (5.39b)

Pressure

We apply a pressure of value p = p0 at the inlet ∂Ω1. Furthermore due to the wall charge
cations will be attracted towards the wall and a pressure gradient in the vertical direction
must establish to equalise this attractive force. In order for COMSOL to calculate for
the pressure field better we impose a Gouy-Chapman pressure on the constraint of the
inlet ∂Ω1 as follows. By the Stokes equation we have ∇p = ρel(−∇φ). Using the Poisson
equation we can write

∇p = (−ǫw∇2φ)(−∇φ), (5.40)

where ǫw is assumed constant. Given the general relation ((f ′)2)′ = 2f ′f ′′ we have

∇p =
ǫw
2
∇
(

(∇φ)2
)

(5.41a)

p = p0 +
ǫw
2
(∇φ)2, (5.41b)

satisfying that ∇φeq(0, 0) = 0 and p(0, 0) = p0. We see that the first term expresses
the well known energy density for a electrostatic field[10]. Inserting the Gouy-Chapman
potential from Eq. (3.5) we get

p(y) = p0 + VT|Z|ec0





tanh
(

ζ̃/4
)

exp
(

H/2−y
λD

)

1− tanh
(

ζ̃/4
)

exp
(

H/2−y
λD

)





2

≡ p0 + pGC for ∂Ω1 (5.42)

where we have defined pGC as the pressure due to the wall charge. Please notice that in
case of no wall charge, ζ = 0 and the pressure will be p0 at the entire inlet as expected.
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Electric Pontential

It appeared easier for COMSOL to converge when the chemical potential was set to zero
at the membrane. Therefore we we introduced a potential shift in the calculations, and
substituted the results back again, so that the boundary conditions for the electric field
are the same as shown in Fig. 5.1.

We use the electrochemical potential to set the boundary condition for the electric
potential.

µ+ = |Z|eV0 for ∂Ω1 (5.43a)

µ+ = 0 for ∂Ω3. (5.43b)

We then set COMSOL to adjust for the potential to satisfy this equation. For the wall we
apply the boundary condition,

n·(−ǫw∇φ) = −σ, (5.44)

where n is the normal vector pointing out of the domain.

Ionic concentration

The concentrations can assume both very high numbers at the Debye layer and low numbers
at the depletion region. In both cases in appears better for COMSOL to work with the
logarithm of the concentration and thus we introduce two new variables in COMSOL,

s± = ln

(

c±
c0

)

. (5.45)

These variables are only used in calculations and we always substitute the results back to
c±.

There is no flow of ions at the wall or at the symmetry line. At the inlet we require
the concentration to be c0 to satisfy the reservoir condition. However the wall charge will
perturb this a little. We therefore describe the concentration of ions with the Boltzmann
distribution, Eq. (3.2)

c±(0, y) = c0 exp(∓φ̃GC)(y) for ∂Ω1 (5.46)

where φ̃GC)(y) is the dimensionless Gouy-Chapmann solution from Eq. (3.5).
The current density for anions is zero everywhere so we apply no flux on every walls.

We do not know the cation current density at the membrane exactly. However we know
that the cations concentration decrease towards the membrane and reach minimum very
near the front of the membrane. Due to high concentration of cations inside the membrane
the concentration has a heavy increase just in front of the membrane. We model L as just
before the membrane where ∂c+ = 0. Further there is no slip for the velocity so advection
is vanishing. Thus we get the boundary constraint on the membrane,

J+ = −c+D+∇φ̃ for ∂Ω3. (5.47)
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5.7.6 Summarising all boundary conditions

Table 5.2: List of all boundary conditions for the microchannel.
Constraint Equation Weak contribution Equation
(Dirichlet) reference (Neumann) reference

∂Ω1 ∂xvx = 0 Eq. (5.38a)
Inlet vy = 0 Eq. (5.38b)

p = p0 + pGC Eq. (5.42)
µ+ = |Z|eV0 Eq. (5.43a)

c+ = c0 exp(−φ̃GC) Eq. (3.2)

c− = c0 exp(φ̃GC) Eq. (3.2)

∂Ω2 v = 0 Eq. (5.37) n·σ = 0 Eq. (5.32)
Wall n·(−ǫw∇φ) = −σ Eq. (5.44)

∂Ω3 v = 0 Eq. (5.37) n·σ = 0 Eq. (5.32)

Membrane µ+ = 0 Eq. (5.43b) n·J+ = −c+∂xφ̃ Eq. (5.47)
n·J− = 0 Eq. (5.36)

∂Ω4 ∂yvx = 0 Eq. (5.39a)
Symmetry vy = 0 Eq. (5.39b) n·(−ǫw∇φ) = 0 Eq. (5.35)

line

5.7.7 Concluding remarks

We have in this chapter described a way to model salt depletion in a microchannel with
negatively charged walls. Analytical solutions has been compared with numerical solutions
and shown good agreement. However the numerical results showed that in the case of no
wall charge a charge polarization occurs in front of the membrane giving rise to a small
overlimiting current. Thus was not predicted analytically. Introducing wall charges extends
the depletion region further and give rise to a larger overlimiting current. For this system
we found that a depletion region appears for external potentials around 10VT as shown
in Fig. 5.4(b). From Fig. 5.3(a) we see that this corresponds to the potential where the
overlimiting current takes place. From Fig. 5.3 we also see a larger depletion region and a
higher overlimiting current for increasing wall charge. We found from Eq. (5.23) that the
size of the depletion region scales with the length of the channel which seems promising
for a system on a larger scale as we shall investigate in Chapter 7.
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6 | Modeling of porous medium

6.1 Physical modeling of porous medium

In Fig. 6.1(a) we show a sketch of how we model the porous medium as consisting of
many small glass beads which we approximate by uniform spheres with diameter d. As
shown in Fig. 6.1(b) these beads effectively form many microchannels which we assume have
approximately the same properties as the microchannel we described in detail in Chapter 5.
The hope is to use our knowledge from Chapter 5 to make an effective averaging over these
many channels.

Figure 6.1: Sketch of our physical model of the porous medium as consisting of small beads
(grey) which we approximate by uniform spheres with diameter d. We distinguish the
interstitial velocity vi (small red arrows) which is the velocity inside the porous medium
and the superficial velocity vs (big yellow arrow) which is the velocity averaged over a
domain Ω (blue).

In the introduction we explained how the continuum hypothesis gave us the ability to
consider variables as fields. In the same way we now formulate a continuum hypothesis for
this new model. This time we define fields as the average of fields in many microchannels.
Let us keep the same uncertainty of 0.5% in the number of microchannels so that we
need N = 4 × 104 channels. Assuming one channel per bead and an average distance
between the beads of approximately 1.5 d = 1.5 × 10µm[17], we need Vcoarse to be about
Vcoarse = Nd3 ≈ (0.5mm)3 and hence we can only resolve our system in length scales of
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0.5mm. However, for computational reasons we shall use a porous material of an area of
about (1mm)2 and thus the fields presented in this model is much finer than this coarse
grained model allows us.

6.2 Variables in porous medium

Now that we have established a new continuum hypothesis and described how we average
variables in our coarse grained model we are ready to define the variables used when deal-
ing with porous medium. We emphasize that all variables presented in this section might
be position depended for inhomogeneous porous medium. We also remind the reader that
all variables are averaged over a volume Vcoarse. But, to avoid cluttered notation we omit
both dependencies and averaging, 〈·〉Vcoarse

.

We start by defining three properties of the porous medium. Porosity εp is the fraction
of void Vvoid volume to the total volume V ,

εp ≡ Vvoid
V

. (6.1)

The specific area S is the fraction of surface area A to solids volume V (1− εp),

S ≡ A

V (1− εp)
. (6.2)

Finally the tortuosity is the fraction of length travelled to the length between the endpoints,

τ ≡ Length of curve

Length of straight line
≡ 1.3. (6.3)

Please note, that τ might be more complex than just a constant and typically it depends
on εp. However in this thesis we shall use the simple constant 1.3 corresponding to a
porosity of around 0.4 according to more comprehensive mathematical studies for spherical
particles[18].

As sketched in Fig. 6.1 we distinguish between the interstitial velocity vi and superficial
velocity vs. vi is the average microscopic in between the channels. vs is the macroscopic
velocity corresponding to an average velocity flowing in the entire volume instead of only
in the void volume. If we demand vi and vs to give the same flow rate, the relations must
be,

vs ≡ εpv
i. (6.4)

In the same way, we establish the relations for mass density, ionic concentration and charge
density, which can be defined either per total volume (superficial) or per void volume
(interstitial),

ρs ≡ εpρ
i cs± ≡ εpc

i
± ρsel ≡ εpρ

i
el. (6.5)

Note that in the presence of a wall charge σ we can define the interstitial charge density
as charge per void volume,

ρiel ≡ |Z|e(ci+ − ci−) + σS(1− εp)/εp. (6.6)
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In the rest of this thesis we shall only use interstitial variables i.e. vi, ci±, ρiel.

6.3 Hydrodynamics in porous medium

In this section we define the continuity equation of mass and the permeability k of the
porous medium.

We define the mass current density by the following argument: Imagine a velocity field
in the x-direction with velocity vi flowing through many channels and crossing a total area
∆y∆z. In the time ∆t = ∆x/vi a volume of ∆V εp has flown through this area. Then the
mass current density must be defined as

Jmass,x ≡ mass

area × time
=

ρi(∆V εp)

∆y∆z × (∆x/vix)
= ρiviεp. (6.7)

By this argument and by Eqs. (6.6) and (6.5) we see that there are many right ways of
defining the mass current density,

Jmass = ρiviεp = ρivs = ρsvi. (6.8)

Since we consider water as an incompressible fluid, ρi is just a constant, ρi = ρw and
we choose the relation with ρi and vi. Thus the continuity equation Eq. (2.2) for porous
medium must be

∂tρ
i = −∇·(ρiviεp(r)) (6.9a)

0 = ∇·
(

viεp(r)
)

(incompressible fluids), (6.9b)

where we have emphasized that εp is a function of r for inhomogeneous media thus must
be included in the divergence.

For the porous medium we write the Navier-Stokes with the interstitial velocity,

ρi
[

∂t + vi ·∇
]

vi = −∇p+ η∇2vi + fbody − η

k
vi, (6.10)

where the last term accounts for all viscous drag from the porous medium. The rest of this
section serves to determine k in our model.

It is suggested[19] that k should be proportional to the square of the hydraulic diameter
dhyd, which is conventionally defined as four times the flows cross-sectional area divided
by the wetted perimeter. In our case, we work with porous medium where each pore does
not have well defined dimensions. However, we can approximate dhyd using the fraction of
void space Vvoid to the surface area A[19],

dhyd = 4
Vvoid
A

= 4
εp

S(1− εp)
, (6.11)
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where we have used Eqs. (6.1) and (6.2) to write dhyd in terms of the more convenient
terms S and εp. We can think of the hydraulic diameter as the diameter of a circular
channel should have if it should replace a more complex channel without changing the flow
properties significantly. Thus we consider each small domain Vcoarse in the porous medium
as replaced by a circular channel with diameter dhyd with the velocity vi flowing through
it.

We choose k = d2hyd/K where K is the dimensionless Kozeny constant. Just as for τ it
is shown that this value might be strongly depended on εp[20]. However in this model we
shall use K = 5 suggested by P. C. Carman[19]. Finally we choose S = 6/d for spherical
particles with diameter d and arrive at the final value of the permeability,

k =
d2ε2p

180(1− εp)2
. (6.12)

Note that if we had chosen vs in the Navier Stokes, k should be multiplied by εp.

6.4 Electrostatics in porous medium

Within electrostatics we make two adjustments in the equations from Section 2.2. The
first one concerns the effective electric permittivity of porous medium. There are many
approaches on determining this value. A comprehensive study based on thousands of
computer simulations was made by Kärkkäinen[21] with the conclusion that one can only
tell the most likely effective electric permittivity for a mixture. As a first approach we
shall apply the most simple model where we imagine that the porous medium consists of
partly glass with permittivity ǫg and partly water with permittivity ǫw so that,

ǫeff = (1− εp)ǫg + εpǫw. (6.13)

Despite the fact that we know from Kärkkäinen that this approach is not exact at all we will
however in this first approach only consider a simple model that changes the permittivity
in the porous medium relative to the pure water.

The second adjustment concerns the charge density. We account for all surface charge
σ on the surface of the glass beads by using the same approach as we did in Chapter 5 i.e.
we smear out all the wall charge on the void volume,

ρiel = |Z|e(ci+ − ci−) +
S(1− εp)

εp
σ. (6.14)

6.5 Electrokinetics in porous medium

The ionic current densities in porous medium must be analog to the mass current density
from Eq. (6.8)

Jadv
± = ci±v

iεp = ci±v
s = cs±v

i. (6.15)

Now, in this model we shall write the first version. Then for the diffusive and electrophoretic
part of the ionic currents we keep the concentration as ci±. Then we adjust the diffusivities
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D± by two factors: we multiply by εp since ions only move in the void space, and we divide
by τ2 since ions do not move in straight lines in the porous medium[18]. Thus we write
the ionic current densities,

J± ≡ ci±v
iεp −

(

D±εp
τ2

)

∇ci± ∓
(

D±εp
τ2

)

ci±∇φ̃. (6.16)

After redefining the ionic currents, the conservation of particles still apply,

∂tc± = −∇·J± +R (6.17a)

0 = −∇·J± (stady state and no chemical reactions). (6.17b)

6.6 Model overview

In this section we summarize our new definitions in this coarse grained model for porous
medium by Table 7.1.

Category New definition

Coarse resolution ≈ 0.5mm for d = 10µm

Velocity v → vi

Mass density ρ→ ρi

Charge density ρel → ρiel

Ionic density c± → ci±

Diffusivity D± → D±εp
τ2

Charge density ρiel = |Z|e(ci+ − ci−) +
S(1− εp)

εp
σ

Permeability k =
d2ε2p

180(1− εp)2

Permittivity ǫeff = (1− εp)ǫg + εpǫw

Table 6.1: List of new definitions made when dealing with porous medium.

36



7 | Desalination

Figure 7.1: Sketch of the channel set-up with height H and length L both in the order of
mm. A porous medium is placed in the middle with a cation selective membrane at the
bottom and a reservoir at the top. An electric potential drop of V0 is applied over the
porous medium. A pressure drop of p0 give rise to a flow from the reservoir to the left
through the porous medium and out of the outlet to the right.

In Fig. 7.1 we show the set-up for the a new channel in millimetre scale. The idea behind
this design is to be able to apply a pressure driven transverse flow to wash out desalinated
water. Physically we imagine the porous medium as small glass beads as shown in Fig. 6.1.
In this way the porous medium will form small micro channels in all directions. The hope
is, that microchannels formed in the vertical direction will act as the microchannel we
described in Chapter 5.

Since we only found convergence in COMSOL for a porosity around εp = 0.4 we have
chosen this fixed value and unfortunately we were not able to investigate the full effect of
changing this parameter. However we were able to vary the potential, the pressure and
the surface charge, revealing some interesting results.

In the following we will handle hydrodynamics and electrodynamics separately for this
setup to give an intuition of the complex behavior. Finally we show desalination in the
fully coupled system.
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7.1 Numerical set-up

Table 7.1: List of parameters used in the channel with porous medium.

Quantity Label Value

Length of channel L 15 mm
Height of channel H 3 mm
Width of porous medium Wm 6 mm
Width of membrane Wp 6 mm
Height of extensions de 0.1 mm
Mean bead diameter d 10 µm
Porosity εp 0.4
Tortuosity τ 1.3

Figure 7.2: (a) Boundaries and bulk notations for channel with porous medium. (b) 1D
plot of the isp(x) function used to describe the variations of the porosity.

7.1.1 Design of geometry

As shown in Fig. 7.2 we implement the porous medium by defining a second derivative
continuous step function isp(x) (is porous) with a relative transition length of 0.3, i.e. the
transition length is 0.3 (L−Wp)/2 + 0.3Wp. Then the porosity is εp ≡ 0.4 isp(x).

Another numerical implementation in the design is the small extensions of height de =
0.1 mm near the membrane and the top reservoir. They serve to avoid discontinuous
boundary conditions near the membrane. At the wall we have no flux on the electric field

n·(∇φ) = 0, (7.1)

since we assume charge neutrality in the porous medium so that there is no net charge
inside the porous medium to form a flux in the electric field out of the channel. At the
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membrane and top reservoir on the other hand we have a Dirichlet boundary condition.
Without these extensions we have seen huge charge densities just at the boundary between
the wall and the membrane giving rise to a huge tangential electric force on the fluid.

7.1.2 Boundary conditions for hydrodynamics

For the flow we apply the usual no slip boundary conditions on the walls, vi = 0. Further
we assume transverse invariance in the flow at the left inlet and the outlet so that ∂xv

i
x = 0

and viy = 0. We set the pressure to

p = p0 for ∂Ω1 (7.2a)

p = 0 for ∂Ω2. (7.2b)

at the left inlet and at the outlet, respectively.

7.1.3 Boundary conditions for electrodynamics

Since there is a build in space charge of S(1− εp)σ, we set the concentration at the center
inlet to

ci+ = c0 − σS(1− εp)/e for ∂Ω3 (7.3a)

ci− = c0 for ∂Ω3, (7.3b)

and at the left inlet,
ci± = c0 for ∂Ω1 (7.4)

Then at the outlet we again assume transverse invariance of the concentrations,

∂xc
i
± = 0 for ∂Ω2. (7.5)

By Eq. (7.5) there is no diffusion at the outlet and since the outlet is far away from the
electrodes we claim that the currents just follow the flow,

n·J± = ci±v
i
x for ∂Ω2. (7.6)

The electrical potential drop from the center inlet to the membrane is V0 and we require
the following constraints

φ = 0 for ∂Ω3, (7.7a)

φ = −V0 for ∂Ω4. (7.7b)

(7.7c)

Finally we model the membrane the same way as in Chapter 5 except for a small change
in the diffusivity,

n·J+ = −(D+εp/τ
2)ci+∇φ for ∂Ω4. (7.8)

All boundary condition are shown in Table 7.2.
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Table 7.2: List of boundary conditions for the macro model channel.

Constraint Eq. Weak contribution Eq.
(Dirichlet) Ref. (Neumann) Ref.

Ω1 viy = 0 Eq. (5.38b) n·E = 0 Eq. (7.1)

(left inlet) ∂xv
i
x = 0 Eq. (5.38a)

p = p0 Eq. (7.2a)
ci± = c0 Eq. (7.4)

Ω2 viy = 0 Eq. (5.38b) n·J± = ci±v
i
x Eq. (7.6)

(outlet) ∂xv
i
x = 0 Eq. (5.38a) n·E = 0 Eq. (7.1)

∂xc
i
± = 0 Eq. (7.5)

p = 0 Eq. (7.2b)

Ω3 vi = 0 Eq. (5.37)
(center inlet) ci+ = c0 − σS(1− εp)/e Eq. (7.3a)

ci− = c0 Eq. (7.7b)
φ = 0 Eq. (7.7a)

Ω4 vi = 0 Eq. (5.37) n·J− = 0 Eq. (5.36)
(membrane) φ = −V0 Eq. (7.7a) n·J+ = −(D+εp/τ

2)ci+∇φ Eq. (7.8)

Ω5(walls) vi = 0 Eq. (5.37) n·E = 0 Eq. (7.1)

7.2 Illustration of pressure driven flow in porous medium

We investigate a channel of length L and height H with both a porous and void regions
as shown in Fig. 7.3. The pressure gradients in the two regions are ∂xpporous and ∂xpvoid
respectively. By solving the Stokes equation in the two regions we get the flow rate in one
dimension as Q =

∫ H
0

dy v,

0 = −∂xpvoid + η∂2yvvoid → Qvoid = −H
2

12

∂xpvoid
η

H, (7.9a)

0 = −∂xppor + η∂2yvpor −
η

k
vpor → Qpor = −k

(

1− tanhα

α

)

∂xppor
η

H, (7.9b)

where we have introduced the dimensionless α = H/(2
√
k). We demand the same flow

rate in the porous medium as in the void region so that

∂xppor
∂xpvoid

=
α2

3

(

1− tanhα

α

)−1

>

(

H

25 d

)2

for εp < 0.99. (7.10)

In the last step we have inserted k from Eq. (6.12). Since H ≫ 25 d we see that the pressure
gradient is much higher in the porous medium. This corresponds to the numerical results
shown in Fig. 7.3 where we have also plotted the velocity profiles vs and vi. Please note
how the interstitial velocity is much faster than the superficial velocity inside the porous
medium.
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Figure 7.3: A channel with H = 2 mm and L = 15 mm with porous medium (εp = 0.4)
from L/3 to 2L/3 and a pressure drop of p0 = 1 kPa. (a) and (b) shows vs and vi

respectively. (c) shows the pressure through the channel.

7.3 Electrodynamics in porous medium

In this section we will describe how ions behave in the system with no applied pressure
drop, p0 = 0. The basis for our electrodynamic analysis will be from Fig. 7.4 showing
four 2D-plots of different fields. Considering electrodynamics with no flow is of course
important in order to understand the impact of the electrical field alone but it also works
as an important test of the numerical model in COMSOL. For a pressure driven flow the
advection in the Nernst-Planck equation dominates the diffusion and electrophoresis and
so that we will not be able to see the effect from the electric potential alone.

7.3.1 Qualitative 2D analyse

The colors in Fig. 7.4(a) indicates the size of the electrical potential. It is almost constant
throughout the whole channel except in front of the membrane. The arrows plot the
electrophoresis term from the Nernst-Planck equation and are thus proportional with the
electric field. As expected the arrows look like the electric field inside a capacitor.
In Fig. 7.4(b) we plot the cation diffusion vectors and the cation concentration. Like we
saw for the microchannel a low cation concentration in front of the membrane will be
created. This leads to a diffusion towards the membrane for cations coming from the two
reservoirs.
Fig. 7.4(c) plots cation advection vectors and the value of the pressure. We see that
advection is vanishing in front of the membrane. This is the same as we saw for the
microchannel where the net flow over the channel was zero. Please that the velocity vi
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Figure 7.4: Arrows in (a) to (c) show the three terms in the Nernst-Planck equation
respectively. (d) shows the full cation current density. All four plots are for σ = −5 mC/m2

and V0 = 20 VT . White to black indicates the following, (a) φ̃ = 0 to φ̃ = −Ṽ0, (b) ci+ = c0
to ci+ = 0, (c) p = 0.9 kPa to p = 0, and (d) high to low current. (e) The isp(x) function
is plotted to indicate the transition region in the 2D plots.

is the average interstitial velocity which is zero as expected. As the electro-osmotic back
pressure in the microchannel gave a flow straight backwards, now we see that the electro-
osmotic backpressure give rise to a flow near the lower walls. This creates a vortex around
the porous transition area, so that the velocity is downwards in the porous medium and
upwards before the porous medium.

Superimposing the three arrow plots from (a), (b), and (c) in Fig. 7.4 gives us the total
cation current, plotted in (d). As one would expect the cation current goes from the reser-
voir at ∂Ω3 to the membrane in straight lines following the diffusion and electrophoresis.
We also see the effect from the advection term expressed in the vortex around the porous
transition area.
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Figure 7.5: The cation current density is normalised given in Eq. (7.12) and the potential is
normalised to VT as usually. (a) Average cation current densities plotted versus potential
for different wall charges, with both numerical and analytical solutions. Please notice
that numerical solutions has been connected by line for better overview and should not
be confused with the analytical results. (b) Difference in analytical and numerical results
from (a).

7.3.2 Transition function considerations

Fig. 7.2(b) plots the function isp(x) described at the beginning of this chapter. Different
relative transitions length have been tested before the choice of 0.3 was taken. A much
longer relative transition region is not possible as this would start to remove the porous
media in between the two transitions. Making the transition smaller creates of large gra-
dients in the fields, making it difficult for COMSOL to converge. The convergent problem
could have been solved by using a much finer mesh at the transition region (a finer mesh at
the transition region than the the rest of the bulk has already been implemented) instead
of making a larger transition region. This however increases the computational time dra-
matically and since there are no crucial physical contradictions in using a large transition
this was preferred.

7.3.3 Overlimiting current and depletion

The homogeneous cation current field in Fig. 7.4 suggests that we can treat this part of
the channel as many small microchannel analogue the microchannel in Chapter 5. We
naively assume the Nernst-Planck model from Eq. (5.21a). Now given different boundary
conditions and a different ρ̃s as suggested in Chapter 6, Eq. (5.21b) changes to

〈J̃+〉 = 1− exp(−Ṽ0)−
σS(1− εp)

|Z|ec0
Ṽ0, (7.11)

where 〈J̃+〉 due to new geometry and porous media now is defined in the following way

〈J̃+〉 =
(H + 2de)

2
(

D+εp
τ2

)

c0
〈J+〉. (7.12)
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Figure 7.6: Numerical results for the normalised cation concentration in front of the mem-
brane at x = L/2 for p0 = 0. Electric potentials and wall charges are varied. The
membrane is placed at −de.

The prefactor in Eq. (7.11) can be understood as the new limiting current. However due
to the complex geometry we can no longer expect the diffusion length to be (H+2de) since
ions comes from two reservoirs. We have plottedEq. (7.11) together with the numerical
results in Fig. 7.5(a) showing a significant difference. However we still notice the behavior
of overlimiting current for the numerical results. From Fig. 7.5(b) we see that in the
overlmiting current regime the difference between analytical and numerical results are
the same constant. This suggests that the limiting current can be expressed just as the
prefactor in Eq. (7.11) but with an extra factor depending on the geometry of the system.
This is also suggested by Deng et. al and confirmed with experimental results[4]. As
expected we see a constant current for no wall charge (red curve). Notice that we were not
able to get convergence in the case of σ = 0 mC m−2, so we have chosen σ = 0.1 mC m−2

instead.
In Chapter 5 we discussed how the depletion region arises at V0 = 5VT, independent of

the wall charge. This behavior is repeated for the macroscopic model as seen in Fig. 7.6
where we confirm depletion at V0 = 5VT. We refer to Fig. 5.4(a) for a comparison with the
results from the micro channel. When the depletion regime is reached higher wall charge
causes a larger depletion area which is clearly seen by comparing σ = −5 mC/m2 with
σ = −3 mC/m2 and σ = −1 mC/m2 for V0 = 20 VT.

7.4 The coupled system

We now combine the models of electrodynamics and hydrodynamics and we end up with
our final model for desalination. For the case of no pressure we we see a depletion region
just as for the microchannel. But when transverse pressure driven flow is introduced, this
flushes out the depletion region so that a larger potential drop is needed to form depletion.
The supply of new ions from the flow allows for a higher current through the membrane
since the concentration of ions gets closer to c0.
In figure Fig. 7.7(a) we show the numeric result of the average cation current through the
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Figure 7.7: The average cation current normalised, in accordance to Eq. (7.12), is plotted.
(a) The current plotted versus the pressure for varying potential. (b) The current plotted
versus the electrical potential for varying pressure. Both plots are for σ = −1 mC/m2.

membrane as a function of pressure and for different potentials. We see that the curves
flattens out for high potential as a concentration near c0 is reached in front of the mem-
brane. This suggests that to a given potential drop a saturation pressure can be found
which supplies the area in front of the membrane with a concentration close to c0. As
expected, a larger potential drop gives a higher current. And to a higher potential corre-
sponds a higher saturation pressure.
Fig. 7.7(b) confirms that the saturation point increases with increasing potential. Com-
paring the IV-curves of Fig. 7.5(a) and Fig. 7.7(b) we find that that an increasing pressure
increases the current through the membrane. This can be explained by the steady supply
of ions from the flow keeping a higher concentration near the membrane.

In Fig. 7.8(a) we plot the potential across the channel at x = L/2 for different pressures.
It is seen that the potential approaches a linear drop as the pressure is increased. Since the
linear potential is the solution to the Laplace equation, this behavior can be interpreted
as the flow flushing out any charge density leaving ρel = 0 in front of the membrane. In
Fig. 7.8(b) we show that the transverse flow ruins the depletion and leaves the area in front
of the membrane with a concentration close to c0.

For high pressures, we therefore suggest a linear potential as shown in Fig. 7.8(a) and a
concentration close c0 in front of the membrane according to Fig. 7.8(b). In this case, since
the current through the membrane is only electrophoretic, we can calculate the current as

〈J̃+〉 =
Ṽ0
2

(for the saturation pressure, simple model). (7.13)

As seen from figure Fig. 7.7(a) this estimation is too low corresponding to the fact that
the limiting current for our system is larger than for the microchannel.

For a desalination device we want to know how effectively we remove ions from the
solvent. We are not interested in moving cations from center inlet to the membrane as this
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Figure 7.8: Both plots are for V0 = 9 VT and σ = −1 mCm−2, plotted across the channel at
x = L

2
for varying pressure. (a) The normalised electrical potential and (b) the normalised

cation concentration.

leads to no real removal of ions from the water. From Fig. 7.7(a) we see that for low pres-
sure the current is much lower than for high pressure. Since the potential is hold constant
assume that the increasing cation current is a result of the increasing amount of cations
coming from the reservoir at the left inlet. For high efficiency of a desalination device we
are interested in increasing the pressure in order to remove ions but not higher than the
saturation point. At this point increasing the pressure will not lead to a significant amount
of removed ions but the extra ions will rather be flushed right through the channel instead.
Considering the potentials from V0 = 1VT to V0 = 9VT in Fig. 7.7(a) we set the saturation
point to arround V0 = 4 VT. In Fig. 7.7(b) wee see that for pressures above p0 = 4 kPa
the current depends almost linearly on the potentials in the regime V0 = 1VT to V0 = 12VT.

We have in Fig. 7.9 have plotted the concentration of cations in the entire channel. For
(a) no pressure is applied and a large depletion region is created in front of the membrane.
For (b) a pressure of 0.8 kPa is applied. As expected most of the channel has a cation
concentration equal to the concentration in reservoir due to flow. However we notice a
depletion area close to the membrane and to the right. In a real set-up we suggest to put
a separate outlet close to the membrane which would work as to sort out the desalinated
water from this area fluid. We compare Fig. 7.9 to Fig. 7.8(b) and notice how an increasing
pressure creates a smaller depletion region and a concentration close to c0. No studies have
been carried out for the design and size of a separate outlet channel.
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Figure 7.9: 2D plots of the normalised cation concentration for σ = −5mC m−2. (a) No
pressure is applied. (b) For p0 = 0.8 kPa.
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8 | Conclusion and outlook

We have described the well known behavior of an electrolyte near a charged wall where
counter-ions are attracted to the wall giving rise a screening layer near the wall. A mi-
crochannel with a cation selective membrane was investigated with and without negatively
charged walls. We found that for charged walls, the screening layer acts to conduct a cur-
rent of cations near the wall giving rise to an overlimiting current. The extended current
density near the wall results in a salt depletion region in the bulk in front of the membrane
for potential drops above 5VT. It was shown that the relative size of the depletion region
depends on the external potential and the wall charge but not on the length of the channel.
These results were shown analytically and confirmed by numerical results.

In order to apply the behaviors from the microchannel on a larger scale, we have devel-
oped a physical model for a channel containing porous medium by adjusting the governing
equations for flow and electrokinetics with parameters characterising porous medium i.e.
porosity, tortuosity, and specific area. Based on the approach suggested by Dydek et al.[3]
where surface charged is smeared out in the liquid, we model surface charge on the walls of
porous medium as an intrinsic volume charge. Claiming an intrinsic volume charge in the
porous medium, the system exhibits some of the same behaviors as for the microchannel.
Hence we have confirmed the occurrence of a depletion region for potentials above 5VT as
for the microchannel. In this regime we also showed an overlimiting current for charged
walls and a clear limited current for porous medium without wall charge. There are good
evidence that the limiting current takes the same form as for a microchannel which is also
suggested by Deng et al.[4]. However, due to the more complex geometry of our device we
were not able to derive an analytical expression for the limiting current as we did for the
microchannel.

Introducing a transverse pressure driven flow in our device in order to flush out de-
salinated water gave some interesting results. In this case the depleted region in front
of the membrane is supplied with new ions from the flow keeping a higher concentration
in front of the membrane. We found that for a given potential a certain pressure satu-
rates the area in front of the membrane so that a new, larger limiting current through the
membrane is possible. Thus, based on numerical results, we suggest that there should be a
most efficient pressure for a given electric potential in order to remove ions from the system.

The model suggested revealed many interesting behaviours and we have only sketched
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a few of them. As mentioned, the geometry of our model limits the analytic approach.
Despite the fact that we found many of our results physically likely, there are still many
cases that we can not simulate, e.g. we found that only some certain values for the
porosity gave convergence in COMSOL. For further investigations we suggest to understand
the impact from the implementation of porosity by looking at a much simpler system
e.g. a straight channel with no flow. One could be even more diligent and investigate
electrokinetic behaviour between glass beads to validate the averaging approach suggested
in this thesis. Further, understanding the supply of ions from the flow and its exact impact
on the overlimiting current better would be vital in developing a device like the one been
suggested in this thesis.
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