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The picture on the front page shows a sketch of a silica wall contacting an electrolyte.



Abstract

In this thesis we develop two solid/liquid interface models for calculating the ζ potential
and surface charge density in a silica nanochannel contacting an aqueous salt solution. We
generalize the models to include an arbitrary number of solutes and be valid for diffusive
layer overlap in a high aspect ratio silica nanochannel. We use one of the models to cal-
culate the conductance versus salt concentration of a nanochannel, and show that it is
essential to include the inherent ions in the water together with absorbed CO2 for low salt
concentrations. This has not been seen in any previous solid/liquid interface model used
for conductance calculations. We are the first to show a model that predicts a conduc-
tance which can be characterized by four regimes: the bulk regime, departure, valley, and
plateau. We will show that for low KCl bulk concentrations in a bare silica nanochannel
the fixed concentration of inherent hydrons dominates the conductance. We show how to
expand our models to account for coated silica surfaces which has not been done before.
Furthermore, we investigate how the conductance depends on aminosilane coverage. We
fit one of our models to experimental conductance data for a bare silica nanochannel and
find good correlation. From the fit we determine the dissociation constant for the deproto-
nation of free silanol surface groups and obtain a value within 3% of the literature value.

iii



iv ABSTRACT



Resumé

I denne afhandling udvikler vi to overflademodeller til beregning af ζ potentialet og over-
fladeladningstætheden i en silika nanokanal i kontakt med en vandig saltopløsning. Vi
generaliserer modellerne så de kan inkludere et arbitrært antal opløste stoffer og er gyldige
for overlap af de diffusive lag i en silika nanokanal med højt dimensionsforhold. Vi bereg-
ner konduktansen mod salt koncentrationen af en nanokanal og viser at det er essentielt at
inkludere de naturligt forekommende hydrogen ioner i vandet samt optagelse af CO2 fra
luften for lave salt koncentrationer. Dette er ikke set før i litteraturen og vi er de første
til at vise en model, der forudsiger en konduktans, der kan karakteriseres ved fire regimer:
Volumen-, fravigelses-, dal- og plateau-regimet. Vi demonstrerer at konduktansen for lave
KCl salt koncentrationer i en bar silika nanokanal er domineret af de naturligt forekom-
mende hydrogen ioner. Vi viser hvordan man udvider vores modeller til at tage højde for
belægning af aminosilan på silika overflader hvilket ikke er blevet gjort før. Endvidere un-
dersøger vi hvordan konduktansen afhænger af belægningsgraden af aminosilan. Gennem
parameterjustering tilpasser vi en af vores modeller til eksperimentelle konduktansdata for
en bar silika nanokanal og finder gode overensstemmelser mellem model og forsøg. Fra pa-
rameterjusteringen bestemmer vi dissociationskonstanten for deprotonisering a frie silanol
ovarfladegrupper og opnår en værdi, der ligger indenfor 3% af literaturværdien.
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Chapter 1

Introduction

1.1 Nanofluidics

Nanofluidics is typically defined as the study of fluids in structures with one or more di-
mensions in the range 0–100 nm [1]. It is a much younger field compared to microfluidics,
but the theory central to the nanofluidic field originates from well-established fields such as
colloidal and interface sciences. The Nanoscale Device Laboratory known as the Nanolab
is a part of the Mechanical Engineering Department at University of California, Santa
Barbara (UCSB) under the direction of Dr. Sumita Pennathur. The experimental work of
this thesis is carried out in the UCSB Nanolab. The UCSB Nanolab primarily focuses on
applications of nanofluidics in biological engineering applications where the small dimen-
sions in nanochannels are a big advantage primarily since it allows for very small sampling
volumes, it gives very low diffusion times, and the reaction kinetics are enhanced when
compared to e.g microchannels. Furthermore, nanofluidics shows promising prospects in
converting hydrostatic energy into electrical energy which we will refer to as energy har-
vesting [2, 3]. Applications have been proposed which can convert the pressure created
in each step from walking into energy charging a mobile device. For a review of energy
applications for nanofluidics we recommend Ref. [4]. In nanochannels the surface to vol-
ume ratio is large, so in order to engineer them it is essential to understand the physics
governing the surface. Specifically, the surface charge density and surface potential, the
latter known as the ζ potential, are parameters determining the behavior of the channels
by affecting the liquid ions inside them. In this thesis our focus will be on an electrical
characterization of nanochannels through a theoretical study and it will lead to the de-
termination of the ζ potential and surface charge density by measuring the conductance
of the nanochannel. This thesis will mainly be theoretical and the concrete system in our
study will be a silica nanochannel filled with KCl solution.

In our work we will focus on high aspect ratio rectangular silica nanochannels where the
height is much smaller than the width of the channel h≪ w. It requires very high pressures
to drive a liquid through a nanochannel because the flow rate Qp scales linearly with the

1
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applied pressure ∆p and with the cube of the height h

Qp ∝ h3w

L
∆p, h < w, (1.1)

where L is the channel length. Reducing the height with an order of magnitude requires the
pressure to increase with 3 orders of magnitude to maintain the same flow rate. Therefore,
other methods are used to drive the liquid through a nanochannel one of which is the
electrokinetic phenomenon electro-osmosis which provides the flow rate

Qeo ∝
hw

L
∆V, λD ≪ h

2
, (1.2)

where ∆V is an externally applied electric potential and λD is the Debye screening length,
a central length parameter in nanofluidics to be defined later. The example shows how
electrokinetics which is the main subject of this thesis is of great interest in nanochannels.

When a silica nanochannel surface contacts an aqueous solution the SiOH surface groups
react with the hydrons in the water. They either deprotonate to create negative SiO− sites
or become protonated creating SiOH+

2 sites. The large surface to volume ratio makes it
essential to understand the nanochannel surface in terms of charge and potential since ev-
erything else can be derived from these. A theoretical description of the surface in terms of
chemical reactions is done by Charmas et al. for a silica surface in Ref. [5]. The bulk com-
position of the solution is important because it influences the nanochannel system through
ionic strength and pH which are both determining for the chemical equilibrium reactions
of the surface. Persat et al. [6] provide the theory of how to calculate the composition of
a solution with an arbitrary number of solutes being either acids, bases, or salts.

1.2 Overview of Solid/Liquid Interface Models

We will here give an overview of how the model of a surface contacting a liquid was per-
ceived through history. For a thorough discussion on the general historical development of
electrokinetic phenomena we recommend Ref. [7]. The first important theoretical approach
toward describing the observed electrokinetic phenomena in channels was by Hermann von
Helmholtz in 1879 who introduced a rigid layer of adsorbed counterions in a particular
distance from the surface. This allowed him to model the ions in the wall together with
the counterions as a capacitor as shown in Fig. 1.1(a). Later, the model independently
introduced by Louis–Georges Gouy in 1910 and David Leonard Chapman in 1913 intro-
duced the concept of a diffusive screening layer, also known as the Debye layer, but with
no capacitor as shown in Fig. 1.1(b). Neither of these approaches alone predicted the
right outcome of experiments until Stern in 1924 [8] combined the two models into the
Gouy–Chapman–Stern model shown in Fig. 1.1(c) where an immobile monoatomic layer,
also known as the Stern layer, of screening ions is modeled as a capacitor. Stern then used
the Gouy–Chapman diffusive theory to describe the counterion distribution away from the
immobile layer. The Gouy–Chapman–Stern model is today the most common in describing
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a surface contacting an electrolyte. It is common to refer to these models in terms of the
number of planes, or layers, parallel to the surface where charge can reside. Therefore,
the Gouy–Chapman–Stern model is a two-layer model. We will build our theory using the
Gouy–Chapman–Stern model approach.

When the aqueous solution next to the surface consists of a high concentration of metal
cations such as Na+ or K+ the Gouy–Chapman–Stern model was in the mid 1970’s refined
based on ideas of Yates et al. [9] and Chan et al. [10] to the metal adsorption model also
known as the triple-layer model shown in Fig. 1.1(d). This model introduced a layer (layer
3) inside the immobile region where adsorbed metal cations could reside.

In 1980 the four-layer model was developed by Bowden et al. [11, 12] who used layer
3 for the adsorption of doubly ionized metal cations such as Ca2+. The singly ionized
cations and anions were situated in a new layer (layer 4). Then, Bousse et al. [13] used the
same four layer model on a singly ionized electrolyte now to account for the difference in
adsorption distance between cations (layer 3) and anions (layer 4) from the silica surface.
With beginning in 1995 a series of papers were introduced by Charmas et al. with the goal
of developing a full thermodynamic description of the four-layer model. The first paper in
the series [5] stated the governing equations for the triple-layer model and the four-layer
model in general condensed forms obtained from previous work which we adopt in our
thesis and modify to fit our system.

Throughout this thesis the word electrolyte will be taken to mean any particle or col-
lection of particles with a nonzero charge. The individual ions in an aqueous solution as
well as the solution itself are thus both electrolytes.

In Appendix B we provide all parameters used for the numerical calculations and gen-
eration of the plots in the thesis. Finally, we have focused on explaining the physics rather
than engulfing the reader in numerical details. Therefore, in Appendix C we provide all
the MatLab scripts with detailed comments central to our work and we will be referring
to them as we go along.

1.3 Outline of Thesis

Chapter 2: Basic Electrokinetic Theory

In this chapter we will state the governing equations for a nanochannel system. We will
introduce the ζ potential and derive the general Grahame equation expressing the surface
charge density.

Chapter 3: Chemical Models of Bulk and Surfaces

In this chapter we start out by discussing how to calculate the solute concentrations of all
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Figure 1.1: The theory of a surface contacting an electrolyte in different historical versions.
The figures are indexed consistently with their historical appearance in literature. (a)
shows the Helmholtz model from 1879. The wall (brown) contacts an electrolyte creating
an immobile layer (green) modeled as a capacitor. Next to the immobile layer is the bulk
region (orange). (b) shows the Gouy–Chapman model first introduced in 1910. The wall
(brown) contacts an electrolyte creating a diffusive layer, also known as the Debye layer,
of elevated counterion concentration (purple). Next to this layer is the bulk (orange). The
two orange arrows pointing toward (c) indicates that the Gouy–Chapman–Stern model is
a fusion of (a) and (b). (d) and (e) show the triple-layer model and four-layer model,
respectively. The red arrows identify and label the planes where charge can reside.
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species dissolved in an aqueous solution. We introduce the concept of pH and we discuss
how to account for CO2 absorption in an aqueous solution. We move on to discussing
which assumptions are used when modeling a silica surface contacting an electrolyte and
derive the 2pK-model together with the metal adsorption model. We will show how to
implement coating of silica nanochannels in our models and how the potentials, surface
charge densities, and coverages calculated from the metal adsorption model depend on pH.
Finally, we study how the pH varies transverse to negatively charged walls in a nanochan-
nel and define the weighted pH.

Chapter 4: Electrical Conductance of Nanochannels

In this chapter we will derive the conductance of a rectangular nanochannel and calculate
it numerically for various KCl salt concentrations using the 2pK-model. We will charac-
terize the conductance by four regimes: the bulk regime, departure, valley, and plateau.
We will explain the shape of the conductance curve from the concentration profiles inside
the nanochannel and study which surface related parameters in the 2pK-model are most
relevant with respect to being used as fitting parameters. Finally, we will calculate how
aminosilane coating of the silica surface changes the conductance of a nanochannel.

Chapter 5: Characterization of the Silica Nanochannel Surface by Conduc-
tance Measurements

In this chapter we describe how to experimentally measure the conductance of a nanochan-
nel. Then we will fit the conductance calculated by the 2pK-model to experimental data
provided by two experimentalists from the UCSB Nanolab. Finally, we discuss the fitting
results.

Chapter 6: Conclusion and Outlook

In this chapter we draw the conclusions of our work and present an outlook for future
studies of how to characterize the silica nanochannel surface using the theory developed in
this thesis.
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Chapter 2

Basic Electrokinetic Theory

In the present chapter the necessary theoretical framework for an electrohydrodynamic ap-
proach to nano- and microfluidic systems will be established by introducing the governing
equations of fluid mechanics, electrodynamics and statistical physics. In Appendix A.1 we
use the theory developed in this chapter in a basic study of an electrolyte at arbitrary ionic
strength interacting with a containing wall.

In Fig. 2.1(a) a micro- and a nanochannel are seen connected to a reservoir containing
an aqueous electrolyte solution. A horizontal xy co-ordinate system has been defined in
the far right of the figure. For each channel the origin of the third co-ordinate z, trans-
verse to the flow direction, is taken to be symmetrically placed midways between the lower
and upper bounding channel walls. The cross-sections of the micro- and nanochannel
dubbed sec. A-A and sec. B-B, respectively, can be seen in Fig. 2.1(b). The cross-sections
show typical concentration profiles for anions and cations and potential distributions in
the transverse dimension z together with channel-defining parameters. The micro- and
nanochannel have height H and h, respectively. For the microchannel, and what is gener-
ally characteristic for channels with a large smallest dimension, the concentration profiles
and the potential profile drop to bulk levels in the middle of the channel. The bulk levels
are mathematically referred to as infinity. In the nanochannel the potential profile and
hence the concentration profiles are elevated from their bulk values in the middle of the
channel due to the confinement.

2.1 Governing Equations

Throughout this thesis it is assumed that the continuum hypothesis is valid. It states that
the macroscopic properties of a fluid are the same if the fluid were perfectly continuous in
structure. Since the fluidic channel widths used in todays research have already approached
10 nm it is worth discussing this continuum approach. Ref. [1] shows that the smallest
system dimension allowable for a continuous description is ∼ 3 nm. The smallest dimension
in this thesis is one order of magnitude higher than this so we consider the continuum
hypothesis valid. When stating the relevant equations the Eulerian picture of the fluid

7
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Figure 2.1: (a) a sketch of a reservoir, microchannel, and nanochannel all placed on
a silica substrate. The xy-plane is defined in the far right of the figure and for each
channel the origin of the third co-ordinate z, transverse to the flow direction, is taken to be
symmetrically placed midways between the lower and upper bounding channel walls. Two
cross-sections: sec. A-A and sec. B-B of the microchannel and nanochannel, respectively,
have been highlighted. (b) shows the cross-section for the microchannel (left, sec. A-A) and
the nanochannel (right, sec. B-B). For each channel a cross-section of typical concentration
profiles (top) for co-ions (red) and counterions (green) have been shown together with the
electric potential profile (bottom). c+(z) and c−(z) are the concentrations of the cation
and anion in the channel, respectively. cb+ and cb− are the concentrations of the cation and
anion in the bulk, respectively. The figure shows the parameters: c±(z), c

b
±, λD, δ, ζ, and

φm.
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will be adopted, where a certain domain of interest is spatially fixed and the temporal
development of the fluid is described. With these assumptions in place the governing
equations are ready to be introduced.

2.1.1 The Continuity Equation

Assuming that a given compressible fluid cannot spontaneously generate and/or lose mass
in the interior of the domain delineating it at any given time the continuity equation,
expressing mass conservation, reads

∂tρ(r, t) = −∇·
[
ρ(r, t)v(r, t)

]
, (2.1)

where ρ(r, t) is the mass density of the fluid at the spatial point r at time t and v(r, t) the
velocity field of the fluid. For an incompressible fluid its density in both time and space
can be assumed constant and thus Eq. (2.1) becomes

∇·v(r, t) = 0. (2.2)

The explicit spatial and temporal dependence notation will be suppressed throughout the
thesis and used only when necessary.

2.1.2 The Electrodynamic Equations

Assuming any present current to be weak and slowly varying in time both the magnetic
field strength H and the magnetic flux density B can be neglected,

∇·D = ρel, (2.3a)

∇×E = 0, (2.3b)

D = ǫ0E+P = ǫE, (2.3c)

Jel = σelE (Ohm’s law), (2.3d)

F = qE (Lorentz’s force law), (2.3e)

where D, ρel, E, ǫ0, P, ǫ, Jel, σel, F, and q are the electric displacement field, the free spatial
charge density, the electric field, the electric permittivity of vacuum, the polarization field,
the electric permittivity, the electric current density, the electric conductivity, the electric
force, and the charge, respectively. It is noted that since the rotation of E is zero the field
itself is conservative and can be written as the gradient of some scalar potential function,
here the electric potential φ,

E = −∇φ. (2.4)

For a homogeneous liquid the permittivity tensor is a constant scalar ǫ and we get the
Poisson equation,

∇2φ(r) = −1

ǫ
ρel(r). (2.5)
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2.1.3 The Navier–Stokes Equation

The Navier–Stokes equation for an incompressible fluid in an electric field reads,

ρ
[
∂tv+ (v ·∇)v

]
= −∇p+ η∇2v+ ρg + ρelE, (2.6)

where ρ∂tv is the local acceleration, ρ (v ·∇)v the advective acceleration, −∇p the pres-
sure gradient force, η∇2v the viscous force due to shear stress, ρg the gravitational force
density and ρelE the electric force density. The term βη∇ (∇·v) has been dropped as the
fluid is incompressible. This will be the general way of stating the Navier–Stokes equation
in the chapters to follow.

2.1.4 The Chemical Potential

Modeling the solute ions in a given low-concentration electrolyte contained in a control
volume as an ideal gas, statistical mechanics provides an equation describing the differential
change in free energy from an incremental addition of an ion. In the case where the free
energy in question is Gibbs free energy G the chemical potential µ is formally defined as

µ ≡
(
∂G

∂N

)

T,p

, (2.7)

where the temperature T and the pressure p are kept constant. For the purposes of
presenting the fundamental equations it will be assumed that the fluid is made up of only
one electrolyte with opposite valences ±N with N thus defined as always being a positive
integer. In this case it can be shown that the chemical potential for both the negative and
positive ionic concentrations at a spatial point r can be compactly written as,

µ±(r) = µ0,± + kBT ln

(
c±(r)

co

)

±Neφ(r), (2.8)

where ± refers to positive and negative ions, respectively, and where co and µo,± are the
concentration and chemical potential, respectively, which would be present without the
potential φ(r). kB, c±(r), and e are the Boltzmann constant, the concentration of the ion
at point r, and the elementary charge, respectively.

2.1.5 The Poisson–Boltzmann Equation

In thermodynamic equilibrium the chemical potentials µ± must be constant throughout
the system, since otherwise, the system would be able to reduce its Gibbs free energy by
reorganizing its constituents contradicting the state of equilibrium. Therefore we have

∇µ±(r) = 0, (2.9)

and Eq. (2.8) becomes

kBT∇ ln

(
c±(r)

co

)

= ∓Ne∇φ(r). (2.10)
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One way of solving the equation is to approximate the wall of the chamber as being an
infinite planar wall which occupies the half-space z < 0. The potential at the wall is
known as the ζ potential. At infinity, assume that the potential decays to zero, that is,
φ(∞) = 0, and let the concentration at infinity of both the positive and negative ion be co,
such that c±(∞) = co. Due to equal valences this latter statement ensures overall charge
neutrality. With these boundary conditions Eq. (2.10) is readily integrated to yield the
ionic concentrations

c±(r) = co exp

[

∓ Ne

kBT
φ(r)

]

. (2.11)

Since the valence numbers are always counted positive the charge density ρel at any given
point is

ρel(r) = Ne
[
c+(r)− c−(r)

]
= −2Neco sinh

[
Ne

kBT
φ(r)

]

, (2.12)

where the negative charge is treated with an explicit sign. Noting that ρel equals the free
charge density, combining Eq. (2.12) with Poisson’s equation, Eq. (2.5), yields the so-called
Poisson–Boltzmann equation

∇2φ(r) = 2
Neco
ǫ

sinh

[
Ne

kBT
φ(r)

]

. (2.13)

To solve this equation we use that the potential decays to zero infinitely far from the wall

φ(∞) = ∂zφ(∞) = 0, (2.14)

and that it decreases monotonically to zero away from the wall. The solution is the so-called
Gouy–Chapman solution given by

φ(z) =
4kBT

Ne
arctanh

[

tanh

(
Neζ

4kBT

)

exp

(

− z

λD

)]

, (2.15)

whereby the characteristic length scale, the Debye length λD, is introduced and will be
derived presently. In the Debye–Hückel limit where the electric potential energy is much
smaller than the thermal energy,

Ne|ζ| ≪ kBT , (2.16)

Eq. (2.13) can be Taylor expanded to give

∇2φ(r) = 2
(Ne)2 co
ǫkBT

φ(r) ≡ 1

(λD)
2φ(r), λD ≡

√

ǫkBT

2(Ne)2co
. (2.17)

Eq. (2.17) can be solved in a parallel plate channel with surfaces at z = 0 and z = h
assuming that the potential at both plates is ζ

φ(z) = ζ
cosh

(
z−h/2
λD

)

cosh
(

h
2λD

) , 0 < z < h. (2.18)
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2.2 The Surface Charge Density in a Parallel Plate Channel

Consider two infinite parallel plates symmetrically placed at z = +h/2 and z = −h/2,
respectively. Furthermore, consider a liquid containing N ions each of concentration ci
and valence Zi in between the plates. Each plate can exchange charge with the liquid and
thereby gain a potential ζ. The surface charge density δ can be expressed via the electric
potential as

δ

(

±h
2

)

= ±sgn (ζ) ǫ∂zφ

(

x, y,±h
2

)

, (2.19)

where sgn(·) is the signum function. So, knowing the gradient of the electric potential
at the surface implies knowing the surface charge density. An expression for the ith ion
concentration as a function of the electric potential was derived in Eq. (2.11) and is here
stated on the form

ci(r) = cbi exp

(

− Zie

kBT
φ(r)

)

. (2.20)

The charge density generalized for N ions is then

ρel(r) = e

N∑

i=1

Zici(r), (2.21)

which used in Poisson’s equation gives

∇2φ(r) = −e
ǫ

N∑

i=1

Zici(r). (2.22)

Assuming a Boltzmann distribution of the ions the concentration of an ion at any point
r can be related to its bulk concentration cbi and the equation becomes the Poisson–
Boltzmann equation

∇2φ(r) = −e
ǫ

N∑

i=1

Zic
b
i exp

(

− Zie

kBT
φ(r)

)

, (2.23)

with the bulk value of zero as reference for the electric potential. In steady state the
potential is translation invariant in the x and y directions and thus only depends on z,
that is, φ(r) = φ(z) ≡ φ, so

d2zφ ≡ φ′′ = −e
ǫ

N∑

i=1

Zic
b
i exp

(

− Zie

kBT
φ

)

. (2.24)

Using that φ′′φ′ =
(
1
2 [φ

′]2
)′

the equation becomes

(
1

2

[
φ′
]2
)′

= −φ′ e
ǫ

N∑

i=1

Zic
b
i exp

(

− Zie

kBT
φ

)

=

(

kBT

ǫ

N∑

i=1

cbi exp

(

− Zie

kBT
φ

))′

. (2.25)
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Integrating both sides in z and exploiting the symmetry condition at the mid channel
φ′|z=0 = 0 we get

φ′ = ±
{

2kBT

ǫ

N∑

i=1

cbi

[

exp

(

− Zie

kBT
φ

)

− exp

(

− Zie

kBT
φm

)]}
1
2

, (2.26)

where we denote the potential at z = 0 as φm (m for mid channel). Using Eq. (2.19)
the surface charge density for an arbitrary composition of electrolytes can be found by
evaluating the gradient at the surface where the potential is the ζ potential

δ = sgn (ζ)

{

2ǫkBT
N∑

i=1

cbi

[

exp

(

− Zie

kBT
ζ

)

− exp

(

− Zie

kBT
φm

)]}
1
2

. (2.27)

Eq. (2.27) is general but assume now that φm = 0 which is the case if the channel height
is much larger than the Debye length. Then

δ = sgn (ζ)

{

2ǫkBT

N∑

i=1

cbi

[

exp

(

− Zie

kBT
ζ

)

− 1

]}
1
2

, λD ≪ h. (2.28)

If however, the Debye length becomes large compared to the height the diffusive layers can
overlap which is known as diffusive layer overlap.

2.3 Ionic Concentrations

We now introduce the ionic strength and derive the Debye length in terms of this. A
sketch of the system parameters discussed in this section can be seen in Fig. 2.1. If the
wall is assumed neutral before any electrolyte contacts it, then far away from the wall the
ζ potential cannot be felt by any ion, and the system has arranged itself in such a way
that charge neutrality preserves here. Therefore, the total charge density ρel satisfies

ρel(∞) = e

N∑

i=1

Zic
b
i = 0. (2.29)

The ionic strength I is a useful concept defined as

I ≡ 1

2

N∑

i=1

(
Zi

)2
cbi . (2.30)

In the Debye–Hückel limit the Poisson–Boltzmann equation Eq. (2.23) can be expressed
as

∇2φ(r) = −e
ǫ

N∑

i=1

Zic
b
i

(

1− Zie

kBT
φ(r)

)

. (2.31)
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Exploiting the charge neutrality in the bulk, Eq. (2.29), Eq. (2.31) simplifies to

∇2φ(r) =
e2

ǫkBT

N∑

i=1

(
Zi

)2
cbi φ(r) =

1

{λD (I)}2
φ(r), (2.32)

where the Debye length in terms of the ionic strength Eq. (2.30) is

λD
(
I
)
=

√

ǫkBT

2e2

√
2

(
N∑

i=1

(
Zi

)2
cbi

)− 1
2

=

√

ǫkBT

2Ie2 . (2.33)

2.4 Chapter Summary

In this chapter we have stated the governing equations for our system shown in Fig. 2.1.
In Section 2.1.5 we introduced the ζ potential and stated the analytical Gouy–Chapman,
Eq. (2.15), and Debye–Hückel, Eq. (2.18), solutions for the electric potential in a par-
allel plate channel. In Section 2.2 we derived the general Poisson–Boltzmann equation,
Eq. (2.23), together with the general surface charge density δ, Eq. (2.27). The theory
presented in this chapter is the theoretical foundation for the remaining of the thesis.



Chapter 3

Chemical Models of Bulk and

Surfaces

In the present chapter we show how to calculate the ζ potential and the surface charge
density on a discretized amorphous silica surface with a total number of chargeable sites
Γtot = 5 sites nm−2 [16] contacting an electrolyte containing a salt which is KCl in this
thesis. We start the chapter by discussing how to calculate the solute concentrations of all
added species in an aqueous solution, we introduce the concept of pH, and show how to
account for CO2 absorption in an aqueous solution. We continue to derive two models of
the system which form the basis of the remaining chapters: the 2pK-model strictly only
valid for low salt concentrations, and the metal adsorption model valid in the entire salt
concentration range. We will discuss how to implement surface coating on the silica channel
surfaces in our models. Furthermore, we provide a study of how the plane potentials and
surface charge densities calculated from the metal adsorption model, depend on the bulk
pH of the electrolyte. We round off this chapter with a study on how the pH varies
transverse to the channel walls.

3.1 Aqueous Solutions

A solute in an aqueous solution can separate reversibly into smaller constituents with
the dissociation constant measuring the propensity of the constituents to the compound.
Consider the dissociation of the solute AxBy

AxBy ⇌ xA+ yB, Kd ≡ (aA)
x (aB)

y

aAxBy

, (3.1)

where ai is the activity of the ith particle and Kd is the dissociation constant for the
reaction. For an acid-base reaction Kd is typically dubbed Ka and is normally scaled
down to give the pKa value

pKa ≡ − log10 (Ka) . (3.2)

15



16 Chemical Models of Bulk and Surfaces

3.1.1 Calculation of Solute Concentrations

The formal concentration of a solute in a solution is the total amount of added solute
to a volume of solution. The solute dissociates into different charge states and the con-
centration of each of these is the actual concentration of the particular charge state. The
Santiago group at Stanford University has developed a script [14] for calculating the actual
concentration of all charge states for any number of added solutes. The Santiago script
modified for our purposes can be found in Appendix C.1. It takes as input the formal
concentration of all solutes written on an acid dissociation form therefore requiring the
pKa values for each dissociation. The underlying theory of the Santiago script is found
in Ref. [6] and we have discussed the governing equations behind the Santiago script in
Appendix A.3. The Santiago script facilitates the inclusion of absorbed CO2 and other
solutes when calculating the actual concentrations of all ions in the bulk reservoirs.

3.1.2 pH of an Aqueous Solution

pH and pOH are a measure of the acidity and basicity, respectively, of a solution with1

pH ≡ − log10 (aH) and pOH ≡ − log10 (aOH) , (3.3)

where aH is strictly speaking the activity of hydronium ions H3O
+, but in this thesis

referred to as the activity of hydrons H+, and aOH is the activity of hydroxide ions OH−.
We assume that the activity ai of ion i in an aqueous solution is defined as [15]

ai ≡ γi
ci

1 M
, with ln (γi) = −AZ2

i

[

I 1
2

1 + I 1
2

− 0.3I
]

, (3.4)

where ci and γi are the actual concentration of ion i and its activity coefficient, respectively.
A = 1.825 × 106/(ǫrT )

3/2 so the error in assuming

ai =
ci
1 M

, (3.5)

for water at room temperature will stay below 10 % for ionic strengths up to 100 mM. The
approximation modifies the modern version of the pH and pOH to

pH = − log10 (cH) and pOH = − log10 (cOH) , (3.6)

respectively, where cH and cOH are inserted in units of molar. In water the hydrons and
hydroxide ions satisfy

pH + pOH = 14. (3.7)

From this relation, the pH alone determines both the concentration of hydrons and hy-
droxide ions.

1The concept of pH was originally introduced by the Danish chemist Søren Peder Lauritz Sørensen at
the Carlsberg Laboratories in Denmark, and was refined in 1924 to this modern version.
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3.1.3 CO2 Absorption

Deionized water is expected to have a pH at 7 under the assumption that only water
molecules are present subject to autoprotolysis. If the solution is in contact with the
atmosphere the pH is lowered because atmospheric CO2 is absorbed in the solution in
much greater amounts than the rest of the atmosphere gasses primarily forming carbonic
acid H2CO3. In the literature the absorption of CO2 is seldom taken into account in the
solid/liquid interface models and in Chapter 4 we will show that for very low salt concen-
trations the lowered pH from CO2 absorption becomes very important when measuring
the conductance of a nanochannel.

The equilibrium between gaseous CO2 in the atmosphere and dissolved CO2 in an aqueous
solution is [17]

CO2(g) ⇋ CO2(aq), HCO2 =
cCO2(aq)

pCO2(g)

= 3.5× 10−2 Matm−1, (3.8)

where HCO2 is the Henry’s law coefficient and pCO2(g)
is the partial pressure of CO2 in the

gas phase. The formation reaction for carbonic acid from CO2 in an aqueous solution is
given by [6]

CO2(aq) +H2O(l) ⇋ H2CO3(aq), KH2CO3 =
cH2CO3(aq)

cCO2(aq)

= 2.6× 10−3. (3.9)

We will here assume a formal concentration of carbonic acid of 1.18× 10−5 M at 25◦C [6].
The dissociation reactions for carbonic acid are [6]

H2CO3(aq) ⇋ HCO−
3(aq) +H+

(aq), KCO3,−1 =
cH(aq)

cHCO−
3(aq)

cH2CO3(aq)

= 1.7 × 10−4 M, (3.10)

HCO−
3(aq) ⇋ CO2−

3(aq) +H+
(aq), KCO3,−2 =

cH(aq)
cCO2−

3(aq)

cHCO−
3(aq)

= 4.7× 10−11 M. (3.11)

We implement Eqs. (3.10) and (3.11) in the Santiago script and get a pH of 5.68 for deion-
ized water with absorbed CO2. This correlates with our own experimental measurements.

3.2 Modeling the Solid/Liquid Interface of a Silica Channel

We now turn our discussion to a specific system where the wall is a heterogenous amorphous
silica surface and the electrolyte is an aqueous solution with added KCl. The solution has
been exposed to CO2 from the atmosphere neglecting the presence of other atmospheric
gasses. The solid/liquid interface as we perceive it is shown in Fig. 3.1. The amorphous
nature of the wall makes the distance between each silicon wall atom vary as well as the
bond length. From the top of the wall is shown 4 different bond types. (1) a geminal silanol
bond where one silicon atom binds to two hydroxide molecules; (2) two silicon atoms bind-
ing to the same oxygen atom forming a siloxane bond; (3) two free silanol groups loosely
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Silica wall Immobile layer Diffusive layer Bulk

Surface/Liquid System

(1) Geminal silanol

(2) Siloxane

(3) Associated 

      silanols

(4) Free silanol

Nomenclature

K+
Si

Cl-

AP+

AP-

OH-

H2O

H3O+

O-

+ a lot of other 
   alien particles

H2CO3

HCO3
-

CO3
2-

Figure 3.1: A sketch of the surface/liquid system contacting an aqueous solution of KCl.
The silica nanochannel surface is the brown area. Four different wall binding types have
been shown and labeled at the top of the wall. A nomenclature has been provided to the
right in the figure. AP+ and AP− stands for a positively and negatively charged alien
particle, respectively. At the bottom, four areas of main interest have been identified: the
silica wall (black), the immobile layer (green), the diffusive layer (purple), and the bulk
region (orange).

binding to each other becoming associated silanols; and (4) a free silanol group which is
the most commonly occurring binding type [18]. It is clear from the figure that in order
to theoretically capture the physics of the nanochannel surface we need some simplified
models so we will start out by discussing our assumptions.

First, we model the ions in the electrolyte as point particles with no spatial extend. In
Appendix A.4 we show that it is not necessary to account for finite-sized particles (steric
effects) for the ζ potentials and bulk concentrations considered in our thesis. Each ion cre-
ates various fields around itself e.g. an electric potential field which affects other particles
introducing inter-ionic effects. On a microscopic level the exact effects are difficult to deal
with and cannot easily be solved in larger molecular systems using today’s methods. We
can avoid this complication by assuming the validity of the Poisson–Boltzmann equation
which is a mean-field approximation. We assume that the thickness of the immobile layer
is constant along the surface and that the dielectric permittivity ǫ does not vary in space.
Furthermore, we assume that the electric potential energy arising from the charged sites
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System Model

Particles

Spatially finite particles (steric effects) Point particles

Many interactions including correlated
interaction effects

No correlated interaction effects but mean-field
interaction through Poisson–Boltzmann.
Ideal gas

Dissolved molecules from atmosphere Only considers dissolved CO2 from atmosphere

Steady-state ion distribution

Result of all possible microscopic and
macroscopic effects in electrolyte

Result only of thermal and electric
potential energy

Dielectric permittivity ǫ varies in space Dielectric permittivity ǫ is constant in space

Silica surface topology

Different silanol surface groups with different
equilibrium equations and dissociation constants
(heterogeneous)

Only free chargeable silanol SiOH groups
all with the same dissociation constant
(homogeneous)

Different bond lengths depending on
e.g. neighboring molecules

Same bond length along the surface

Can gain charge e.g. by adsorption of unwanted
particles

Gains charge purely by protonization and
deprotonization

Thickness of immobile layer varies along surface Thickness of immobile layer is constant

Table 3.1: The system properties (left column) and the corresponding assumptions in our
models (right column). The system has been divided into three major categories: particles,
steady-state ion distribution, and silica surface topology.

at the wall together with the thermal energy determine the steady-state ion distribution.
Before the surface contacts any electrolyte it is assumed homogeneous consisting only of
equally spaced free chargeable silanol groups (SiOH). The potential φ(r) is given with
reference to the bulk potential φ(∞) = 0. The only way for the wall to attain charge is
through protonization and deprotonization of free silanol groups. We have summarized
our discussion of our model assumptions in Table 3.1. In the left column the nanochannel
liquid/interface system is described with respect to the different major categories of inter-
est: particles, steady-state ion distribution, and silica surface topology. The right column
compares these same categories with our models.

Chemical reactions are induced when the electrolyte contacts the wall and hydrons can
leave the free silanol SiOH groups to enter the electrolyte thereby creating a negatively
charged SiO− site

SiOH ⇋ SiO− + H+, K− =
ΓSiO−aoH
ΓSiOH

(deprotonization), (3.12)
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where K−, ΓSiO− , aoH, and ΓSiOH is the equilibrium constant of the reaction, SiO− site
density, the activity of hydrons at the o-plane, and the SiOH site density, respectively.
Conversely, hydrons from the electrolyte can react with a free silanol SiOH site to form a
positively charged SiOH+

2 site

SiOH+
2 ⇋ SiOH + H+, K+ =

ΓSiOHa
o
H

ΓSiOH+
2

(protonization), (3.13)

where K+ and ΓSiOH+
2

is the equilibrium constant of the reaction and the SiOH+
2 site den-

sity, respectively.

Incidentally, we note that the concentration of hydrons appears in both Eq. (3.12) and
Eq. (3.13) so it should be expected that the acidity of the electrolyte indirectly determines
the surface charge density which we will show is also the case. The pH value for which
the net surface charge density on the silica wall is zero is referred to as the point of zero
charge PZC. The first model we develop considers only the chemical reactions in Eqs. (3.12)
and (3.13) and will be named the 2pK-model because it accounts for two surface reactions
each with one pK value. Fig. 3.2(a) shows the model which is based on the same principles
as the Gouy–Chapman–Stern model presented in Section 1.2. The silica surface is assumed
homogenous and immediately next to it a monoatomic layer of immobile ions will form due
to strong Coulomb interactions with the wall. In practice it cannot be controlled which
ions comprise the immobile layer so we visualize it as a blue area not drawn to scale. The
immobile layer has capacitance per unit area Cs and will not completely screen the wall so
other counterions will be attracted forming a diffusive screening layer of mobile ions. Cs was
experimentally found for an amorphous silica surface in contact with an aqueous solution
in Ref. [9] to have the same order of magnitude and be no greater than 0.2 F/m2. We will
use this value throughout the thesis unless otherwise stated. Recent studies have indicated
that Cs depends on the ionic strength Eq. (2.30) of the solution.2 We note that the po-
tential away from the immobile layer satisfies the Poisson–Boltzmann equation Eq. (2.23).

The 2pK-model can safely be used for electrolytes if the salt concentration is below ∼ 1 mM
[16]. Above this concentration a significant amount of metal ions in the solution will ad-
sorb to the silica surface similar to hydrons but physically further away from the wall.
Therefore, inspired by Ref. [16], we will use a model which we name the metal adsorption
model taking into account both Eq. (3.12), Eq. (3.13), and the additional surface reaction

SiO− +M+ ⇋ SiOM, KM =
ΓSiOM

ΓSiO− aβM
(metal adsorption), (3.14)

where M+, KM, ΓSiOM, and aβM is a singly ionized metal cation, the equilibrium constant
of the reaction, the SiOM site density, and the activity of the metal cation in the β-plane,
respectively. This model is shown in Fig. 3.2(b). Since the metal cations attach to the
surface physically further away than the hydrons a new plane inside the immobile layer is

2Mathias Bækbo Andersen, PhD student, DTU Nanotech.
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Figure 3.2: A sketch of our models of the silica surface contacting an aqueous solution of
KCl. (a) shows the 2pK-model and (b) the metal adsorption model. The silica nanochan-
nel surface is the brown area. At the bottom, four areas of main interest have been identified
on each figure: the silica wall (black arrow), the immobile layer, also known as the Stern
layer, (green arrow), the diffusive layer (purple arrow), and the bulk area (orange arrow).
The dashed lines represent planes where charge can reside. In both figures are shown the
silica surface (o-plane) and the plane where the diffusive layer begins (d-plane). Cs is the
capacitance of the immobile layer known as the Stern capacitance. For figure (b) is also
shown the center plane of the immobile layer (β-plane). C1 and C2 are the capacitances
of the inner and outer Stern layer. The surface charge density for the o-, β-, and d-plane
is denoted δo, δβ, and δd, respectively, with corresponding electric potentials φo, φβ, and
φd, respectively.
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created named the β-plane. As discussed in Section 1.2 this model can also be referred
to as a triple-layer model. The o-plane and the β-plane form a parallel plate capacitor
with capacitance per unit area C1 also known as the inner Stern capacitance in series with
a parallel plate capacitor between the β-plane and the d-plane with capacitance per unit
area C2 also known as the outer Stern capacitance. For the pH range of interest we can
safely neglect the adsorption of anions A− onto the surface since this requires a consider-
able number of SiOH+

2 sites, only present for very low pH.

In the two following sections we will develop our two models starting with the 2pK-model.

3.3 The 2pK-Model

The 2pK-model sketched in Fig. 3.2(a) accounts for the two chemical reactions in Eqs. (3.12)
and (3.13). The conservation of number of chargeable sites at the silica surface yields

Γtot = ΓSiOH + ΓSiO− + ΓSiOH+
2
. (3.15)

The site density for site state i can be expressed as a surface coverage θi

θSiOH ≡ ΓSiOH

Γtot
, (3.16a)

θSiO− ≡ ΓSiO−

Γtot
, (3.16b)

θSiOH+
2
≡

ΓSiOH+
2

Γtot
, (3.16c)

changing Eq. (3.15) to

1 = θSiOH + θSiO− + θSiOH+
2
. (3.17)

Assuming the hydrons to be Boltzmann distributed gives for the equilibrium constants in
Eqs. (3.12) and (3.13)

K− =
θSiO−

θSiOH
cbH exp

(

− e

kBT
φo

)

, (3.18a)

K+ =
θSiOH

θSiOH+
2

cbH exp

(

− e

kBT
φo

)

. (3.18b)

The surface charge density in the o-plane is determined only by the SiO− and SiOH+
2 sites

so

δo = eΓtot

(

θSiOH+
2
− θSiO−

)

. (3.19)

Global charge neutrality demands that the net charge density at the wall is balanced by
an equal amount of diffusive counterions at the d-plane so

δo + δd = 0. (3.20)
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The voltage drop between the o-plane and the d-plane is

φo − φd =
δo
Cs
. (3.21)

Throughout this thesis we take the φd potential (d for diffusive plane) to equal the ζ
potential which is justified for low concentrations see Ref. [5]. The surface charge density
at the d-plane where the diffusive layer begins can be thought of as a projection of the
charges in the diffusive layer onto the plane. The surface charge density is given by the
Gouy–Chapman expression in Eq. (2.28) with an opposite sign where φm = 0. From
Eq. (3.20) it also has to equal −δo so

δd = −δo = −sgn (φd)

{

2ǫkBT

N∑

i=1

cbi

[

exp

(

− Zie

kBT
φd

)

− 1

]}
1
2

. (3.22)

In Appendix A.5 we have developed a general expression for the surface coverages, inspired
by Ref. [5], for the metal adsorption model to be introduced and discussed in the next
section. For this current model the coverage of the ith site state takes the form

θi =
Kifi

1 +
∑

j Kjfj
, i, j = {SiOH,SiOH+

2 }, (3.23)

where

KSiOH ≡ (K−)
−1, fSiOH ≡ cbH exp

(

− e

kBT
φo

)

, (3.24a)

KSiOH+
2
≡ (K−K+)

−1, fSiOH+
2
≡
(
fSiOH

)2
. (3.24b)

Note that the conservation of total number of chargeable sites Eq. (3.17) together with
Eq. (3.23) gives

θSiO− =

(

1 +
∑

i

Kifi

)−1

, i = {SiOH,SiOH+
2 }. (3.25)

There are three nonlinear equations in the three unknowns φo, φd, and δo describing
the system: the Gouy–Chapman surface charge density Eq. (3.22), the capacitor relation
Eq. (3.21), and the surface charge density in the o-plane Eq. (3.19) with the coverages of
SiOH+

2 and SiO− sites Eqs. (3.23) and (3.25), respectively, inserted. The equations are

δo = sgn (φd)

{

2ǫkBT

N∑

i=1

cbi

[

exp

(

− Zie

kBT
φd

)

− 1

]}
1
2

, (3.26a)

φo = φd +
δo
Cs
, (3.26b)

δo = (3.26c)

Γtote




(K+)

−1
(
cbH
)2

exp
(

− 2e
kBT

φo

)

−K−

K− + cbH exp
(

− e
kBT

φo

)

+ (K+)−1
(
cbH
)2

exp
(

− 2e
kBT

φo

)



 .
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Input Output

Lab input Parameter Symbol

Parameter Symbol Potentials (φo, φd)

Channel geometry (height, width, length) (h,w, L) (o-plane, d-plane)

Temperature T Surface charge densities (δo, δd)

Formal concentrations of all species cformal (o-plane, d-plane)

Literature Input Actual concentrations cactual

Parameter Symbol of all species

pKa for the silica channel wall reaction: pK
−

Transverse concentration ci(z)

SiOH ⇋ SiO− + H+ profile for the ith ion

pKa for the silica channel wall reaction: pK+ Silica surface PZC

SiOH+
2 ⇋ SiOH + H+ point of zero charge

Stern capacitance Cs Bulk solution acidity pHb

Total number of chargeable sites SiOH Γtot Debye length λD

Charge states for all species in the bulk - Transverse potential profile φ(z)

Dissociation constant for all bulk reactions pKa

Table 3.2: Input/output parameters for the 2pK-model. The inputs are divided into values
obtained from laboratory measurements (lab input) and values obtained from the literature
(literature input).

We solve the equations in MatLab for φd using the built-in function fzero. All the plane
potentials and surface charge densities can be calculated as follows:

1 Use our modified Santiago script in Appendix C.1 to find the bulk pH and the actual
concentrations of all charge states of the species in the electrolyte see Section 3.1.

2 Use our script in Appendix C.3 to solve φd with a start guess.

3 Calculate δo by inserting φd from step 2 and the concentrations from step 1 into
Eq. (3.26a). Insert then δo into Eq. (3.26b) and thereby calculate φo.

Following this procedure we now know φo, φd, and δo. A table of all the parameters
going into the 2pK-model (input) and the most relevant parameters calculated by the
model (output) can be seen in Table 3.2. The inputs are divided into values obtained from
laboratory measurements (lab input) and values obtained from the literature (literature
input). We later investigate which input values are best fit parameters see Section 4.3.1. We
note that the concise form of the site coverages Eqs. (3.23)–(3.25) increases the numerical
stability in MatLab with respect to the start guess and its general form allows for an easy
implementation of additional surface reactions.
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3.4 The Metal Adsorption Model

The metal adsorption model sketched in Fig. 3.2(b) accounts for the chemical reactions in
Eqs. (3.12), (3.13), and (3.14). Define the surface coverage of SiOM sites

θSiOM ≡ ΓSiOM

Γtot
. (3.27)

Let φβ be the potential in the β-plane and assume that the metal cations are Boltzmann
distributed, then the equilibrium constant Eq. (3.14) can be written

KM =
θSiOM

θSiO−

1

cbM
exp

(
eφβ
kBT

)

, (3.28)

where cbM is the bulk concentration of the metal cations. The new surface site state SiOM
leads to an extension of the conservation of number of chargeable sites Eq. (3.17)

1 = θSiOH + θSiO− + θSiOH+
2
+ θSiOM. (3.29)

By defining δβ as the β-plane surface charge density, the global charge neutrality states

δo + δβ + δd = 0. (3.30)

An adsorbed metal ion M+ in the β-plane will occupy an SiO− site at the surface and
therefore, the SiOM site corresponds to a negative charge in the o-plane confer Fig. 3.2(b).
The o-plane surface charge density is therefore

δo = eΓtot

(

θSiOH+
2
− θSiO− − θSiOM

)

. (3.31)

The surface charge density in the β-plane is only determined by adsorbed metal cations

δβ = eΓtotθSiOM. (3.32)

The Gouy–Chapman surface charge density Eq. (2.28) can be thought of as the charge
density screened by the diffusive layer, i.e. δo + δβ, and hence δd becomes

δd = − (δo + δβ) = −sgn (φd)

{

2ǫkBT

N∑

i=1

cbi

[

exp

(

− Zie

kBT
φd

)

− 1

]}
1
2

. (3.33)

In the 2pK-model the region between the o-plane and the d-plane was interpreted as a
capacitor with the Stern capacitance Cs. With the additional charged β-plane the region
can now be modeled as two capacitors in series. The region from the o-plane to the β-
plane dubbed the inner immobile layer is a capacitor with surface charge density δo and
capacitance per unit area C1. The region from the β-plane to the d-plane is dubbed the
outer immobile layer and is the second capacitor with surface charge density −δd and
capacitance per unit area C2. The relation between φo and φβ becomes

φo − φβ =
δo
C1
, (3.34)
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and that between φβ and φd

φβ − φd = − δd
C2
. (3.35)

C2 is assumed independent of the type of adsorbed metal ion and is treated as an intrinsic
property of a silica surface contacting an aqueous solution. On the contrary, we can give
some qualitative arguments why C1 should change with the type of adsorbed metal ion.
In the capacitor picture C1 = ǫ1/d1, where ǫ1 and d1 is the permittivity and thickness of
the inner immobile layer, respectively. d1 can be related to the bonding length of adsorbed
metal cations to the surface and it is possible for ǫ1 to change e.g. when adsorbed metal
ions expel water molecules from the region.

The governing equations of the metal adsorption model are Eq. (3.18) and Eqs. (3.28)–
(3.35). The number of coupled equations will be reduced to effectively solve the system in
MatLab. First, Eqs. (3.18), (3.28), and (3.29) are used to derive the surface coverages on
the form

θi =
Kifi

1 +
∑

j Kjfj
, i, j = {SiOH+

2 ,SiOH,SiOM}, (3.36)

where

KSiOH ≡ (K−)
−1, fSiOH ≡ cbH exp

(

− e

kBT
φo

)

, (3.37)

KSiOM ≡ KM, fSiOM ≡ cbM exp

(

− e

kBT
φβ

)

, (3.38)

KSiOH+
2

≡ (K−K+)
−1 , fSiOH+

2
≡
(
cbH
)2

exp

(

− 2e

kBT
φo

)

=
(
fSiOH

)2
. (3.39)

This derivation can be seen in Appendix A.5. From Eq. (3.36) and the conservation of
number of chargeable sites Eq. (3.29)

θSiO− =

(

1 +
∑

i

Kifi

)−1

, i = {SiOH,SiOH+
2 ,SiOM}. (3.40)

Using Eqs. (3.36) and (3.40) in Eqs. (3.31) and (3.32) we get

δo = eΓtot

( KSiOH+
2
fSiOH+

2
−KSiOMfSiOM − 1

1 +KSiOMfSiOM +KSiOHfSiOH +KSiOH+
2
fSiOH+

2

)

, (3.41)

δβ = eΓtot

(

KSiOMfSiOM

1 +KSiOMfSiOM +KSiOHfSiOH +KSiOH+
2
fSiOH+

2

)

. (3.42)

Inserting Eq. (3.41) in Eq. (3.34) gives

C1 (φo − φβ) = eΓtot

( KSiOH+
2
fSiOH+

2
−KSiOMfSiOM − 1

1 +KSiOMfSiOM +KSiOHfSiOH +KSiOH+
2
fSiOH+

2

)

. (3.43)
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Electrolyte

NaCl KCl

C1 [F m−2] 1.07 ± 0.13 1.16± 0.14

log10K− −6.73 ± 0.11 −6.64± 0.20

log10KM −0.25 ± 0.20 0.06± 0.30

Table 3.3: Summary of the fitting parameters obtained from Ref. [16]. The authors fit the
metal adsorption model to experimental data for Γtot = 5 sites nm−2 and C2 = 0.2Fm−2.
The surface is amorpheous sillica.

Using Eqs. (3.41) and (3.42) in the equation for global charge neutrality Eq. (3.30) leads
to

δd = −eΓtot

( KSiOH+
2
fSiOH+

2
− 1

1 +KSiOMfSiOM +KSiOHfSiOH +KSiOH+
2
fSiOH+

2

)

. (3.44)

Eqs. (3.43), (3.44), and the capacitor relation (3.35) with δd given in Eq. (3.33) are solved
in MatLab for the three unknowns φo, φβ, and φd using the built-in function fsolve.
Similar to the 2pK-model all the plane potentials and surface charge densities can be
calculated as follows:

1 Use our modified Santiago script in Appendix C.1 to find the bulk pH and the actual
concentrations of all charge states of the species in the electrolyte see Section 3.1.

2 Use our script in Appendix C.4 with the fitting parameters provided in Table 3.3 to
calculate φo, φβ, and φd using start guesses.

3 Calculate δo, δβ, and δd by inserting the potentials from step 2 and concentrations
from step 1 into Eq. (3.41), Eq. (3.42), and Eq. (3.44).

Following this procedure we now know the potentials and surface charge densities in all
the planes. A table of all the parameters going into the metal adsorption model (input)
and most relevant parameters calculated by the model (output) can be seen in Table B.4
in Appendix B.

Note that the knowledge of pK− and pK+ gives the value of the point of zero charge.
We will show why using the 2pK-model: the point of zero charge is defined as

δo (pH = PZC) = 0. (3.45)

Thus, PZC is the pH value for which the net surface charge density is zero. Since in this
case no charge reside in the d-plane either, the potential does not change from the zero
bulk level to the wall, so from Eq. (3.26c) with φo = 0 we have

(

cbH

)2
= K−K+ (pH = PZC) , (3.46)
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which yields

PZC =
1

2
(pK− + pK+) . (3.47)

Eq. (3.47) can also be derived from the metal adsorption model requiring taking into
account the anion adsorption during the derivation and exploiting the experimental ob-
servation that the point of zero charge is independent of the solution salinity. To see this
derivation we refer to Ref. [5].

3.5 Modeling Coated Silica Surfaces

The surface charge of a silica surface contacting an aqueous solution depends on pH as seen
in Fig. 3.4, and will later be shown also to depend on the salt concentration of the solution
confer Fig. 4.12(a) for θamin = 0. Furthermore, as we show in Section 4.3 the surface charge
has a great impact on the conductance of a nanochannel for low salt concentrations, i.e. salt
concentrations below ∼1 mM. The ability to control the surface charge density is therefore
of great importance in electrokinetic applications and in order to get a more well-defined
surface charge density the surface is coated by flushing the nanochannels with coating solu-
tions containing the coating molecules. The kind of coatings treated here is larger molecules
adsorbing to the silica surface sites and possibly blocking nearby sites due to their large
size. A sketch of the system having been flushed with a 3-aminopropyldimethylethoxysilane
coating solution is shown in Fig. 3.3(a). This adsorbed coating molecule will through-
out the thesis be referred to as aminosilane. The coating molecules can be negative
e.g. carboxyethylsilanetriol, neutral e.g. 3-cyanopropyldimethylchlorosilane, or positive e.g.
aminosilane, so the surface can in principle be coated to have any desired charge density.3

Modeling coated silica nanochannel surfaces has not been introduced in the literature
before to our best knowledge and we will now present our way of implementing coated
surfaces in our models. The coating molecules are modeled with no spatial extend and
unable to change their charge states through any chemical reaction although we note that
the charge of the coatings in reality depends on pH [19]. A sketch of the 2pK-model with
aminosilane coating, shown as the positively charged NH+

3 group, is seen in Fig. 3.3(b).
For simplicity it is assumed that the surface is only coated with one type of coating. The
surface coverage of coated sites is defined as

θcoat ≡
Γcoat

Γtot
, (3.48)

where Γcoat is the coating site density. θcoat will be constant because the coated molecules
do not participate in any chemical reactions. The surface charge density at the silica
surface for the coated channel is

δo = eΓtot

(

θSiOH+
2
+ Zcoatθcoat − θSiO−

)

, (3.49)

3Theoretically, the maximum number of coatable sites is Γtot and as the density of coated sites increases
it becomes harder to add new coating molecules to the surface. Therefore, the maximum number of coatable
sites is expected to be lower.
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where Zcoat is the sign carrying valence of the coated site. For aminosilane we assume
Zamin
coat = 1. With the addition of coated sites the conservation of total number of chargeable

sites Eq. (3.17) becomes

1 = θSiOH+
2
+ θSiOH + θSiO− + αblθcoat, (3.50)

where αbl is a factor describing the number of blocked free silanols including the coated
site itself due to a coated molecule confer the red circle in the bottom of Fig. 3.3(a). αbl

varies along the surface and is related to the area covered by the coating molecule. For
aminosilane we assume αbl = 1. Since αblθcoat will be constant the fraction of free silanols
becomes 1 − αblθcoat = θSiOH+

2
+ θSiOH + θSiO− , and the surface coverages in Eqs. (3.23)

and (3.25) must be scaled down to

θi =
(1− αblθcoat)Kifi

1 +
∑

j Kjfj
, i, j = {SiOH+

2 ,SiOH}, (3.51)

and

θSiO− =
1− αblθcoat
1 +

∑

j Kjfj
, j = {SiOH+

2 ,SiOH}. (3.52)

A study on how aminosilane coating influences the conductance of a nanochannel will be
carried out in Section 4.3.2.
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Figure 3.3: (a) The system coated with aminosilane which is shown as the molecules
mainly composed of carbon atoms (black circles) and a charged NH+

3 end group (blue circle
with three white circles attached to it). The red circle with text box in the bottom of the
figure shows a coated molecule blocking a free silanol site. A nomenclature is provided
in the right of the figure and at the bottom, the silica wall region and immobile layer are
outlined. (b) The 2pK-model where the silica wall is coated with aminosilane (NH+

3 ).
The o-plane and d-plane with their respective potentials and surface charge densities are
shown and at the bottom, the silica wall region and immobile layer are outlined. The Stern
capacitance Cs is shown in the center of the immobile region. In both figures the diffusive
layer and bulk region has been left out for clarity.
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3.6 Metal Adsorption Model Dependence on pH

In this section we study the solution of the metal adsorption model versus the bulk pH.
By adjusting the surface dissociation constants in Eqs. (3.12), (3.13), and (3.14) we adjust
the ratio of charged sites to neutral sites and thereby the surface charge density. We will
show that the number of positive sites SiOH+

2 governed by K+ in Eq. (3.13) are orders of
magnitude lower than negative sites SiO− governed by K− in Eq. (3.12) over the pH range
of interest. The positive sites only dominate the surface for very low pH values. We choose
to include an indication of how the coverages change when adjusting the pK− value which
we expect induces a noticeable effect on the coverages. Furthermore, in the next chapter
we calculate the conductance of a nanochannel versus bulk salt concentration using the
2pK-model, and we find that the pK− value dominates the conductance curve behavior
so we are going to use pK− as a fitting parameter later.

3.6.1 Surface Dissociation Constants

The ith logarithmic surface dissociation constant pKi depends in general on thermody-
namic variables such as temperature and the heat of reaction as studied in Ref. [20]. It is
customary to use the surface dissociation constants as best fit parameters confer Table 3.3
which will also be done in our work. Henderson–Hasselbalch expressions are obtained by
taking the logarithm of the dissociation constants in Eqs. (3.12) and (3.13)

pHo = pK− + log10

(
ΓSiO−

ΓSiOH

)

⇒
d
(
Γ

SiO−

ΓSiOH

)

dpHo

= 10pHo−pK− ln(10) > 0, (3.53)

pHo = pK+ + log10

(

ΓSiOH

ΓSiOH+
2

)

⇒
d

(

ΓSiOH

Γ
SiOH

+
2

)

dpHo

= 10pHo−pK+ ln(10) > 0, (3.54)

where pHo is the pH in the o-plane. We will now discuss the qualitative trends of these
equations when changing pK− and pHo which will serve as a reference for the next section.

Consider pK− constant for a given solution. From the left equation in Eq. (3.53) We
note that if pHo is greater than pK− there must be more negative SiO− sites relative to
neutral SiOH sites. Consider now a fixed value of pHo: for a lower pK− value the ratio
of SiO− sites to SiOH sites is higher. Therefore, we can make the silica surface more
negatively charged by lowering pK−. Also, the right equation in Eq. (3.53) shows that an
increase in pHo always gives an increase in SiO− sites relative to SiOH sites. Similarly,
from the right equation in Eq. (3.54), when pHo is increased the number of neutral SiOH
sites relative to positive SiOH+

2 sites increases lowering the surface charge density.
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Figure 3.4: (a) plane potentials and (b) plane surface charge densities plotted versus bulk
pH. In both plots pH is changed by adding NaOH or HCl to a 1 mM NaCl solution. Used
model parameters are in Table 3.3.
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bulk pH. In all plots pH is changed by adding NaOH or HCl to a 1 mM NaCl solution.
Used model parameters are in Table 3.3. pKx

− means pK− = x.

3.6.2 Plots of Potentials, Surface Charge Densities, and Coverages

Plots of the potentials and surface charge densities versus the solution bulk pH is seen in
Fig. 3.4 and plots of the coverages of all site states in Fig. 3.5. All plots show results for
pK− = 6.73 and pK− = 5.80. Referring to Fig. 3.4(a) the size of the o-plane potential is
for both pK− values the highest potential as expected. Moreover, we expect the potential
to decrease in size from the o-plane to the d-plane because this corresponds to moving
away from the charged silica surface toward the bulk, which is in good agreement with the
plots.

First, we will explain the pH dependence of the system versus bulk pH. In Fig. 3.5(b)
it is seen that the density of SiO− sites increases with pH (red curves). A higher density
of negative sites on the silica surface creates more sites for metal cation adsorption so the
surface charge density in the β-plane δβ is expected to increase as well, see the green curves
in Fig. 3.4(b). In general, when more negative sites are created the charge density δo on
the silica surface must become more negative, see the blue curves in Fig. 3.4(b). Finally,
when more SiO− sites are created when increasing the bulk pH the number of positive
SiOH+

2 sites must decrease, see Fig. 3.5(c), which is in agreement with our discussion in
the previous section.
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We now explain the observed change in pH dependence of the system when pK− is lowered.
From the discussion in the previous section we know that lowering the pK− value will in
general lead to a higher density of SiO− sites and hence a more negative δo over the pH
range of interest which is seen in Fig. 3.4(b) as the blue dashed curve being more negative
than the blue full curve. A more negative wall increases the number of screening ions in
the diffusive layer so δd will increase as verified by the red dashed curve being greater than
the red full curve in the figure. With a more negative wall the number of adsorbed metal
cations in the β-layer increases so δβ will increase as verified by the green dashed curve
being greater than the green full curve in the figure. Finally, we note that a lower pK−

value leads to a more negative φd potential, i.e. ζ potential, see Fig. 3.4(a). We note that
for pK− = 6.73 and pH ≃ 8.8 there is as much charge from the adsorbed metal ions as
there is charge from the ions in the diffusive layer screening the silica surface with a surface
charge density of ∼ 16 mC m−2. The same situation occurs at pH ≃ 7.7 for pK− = 5.8
with close to the same surface charge density.

We now turn to the plots of the site densities seen in Fig. 3.5. From Fig. 3.5(a) we observe
that the density of neutral sites decreases with pK−. This is a result of the increased
number of SiO− sites, see Fig. 3.5(b), relative to SiOH sites, as expected from Eq. (3.53).
From Fig. 3.5(c) we can now confirm our statement in the beginning of Section 3.6 that the
density of positive SiOH+

2 sites is orders of magnitude lower than the other site densities.
We note that at pH = 3 the SiOH+

2 site density for pK− = 5.80 is 12 times larger than
that obtained from pK− = 6.73. Fig. 3.5(d) shows the increased metal ion adsorption with
pH which is a result of the increased SiO− site density.

3.7 pH Profiles in Silica Nanochannels

In this section we will study how the pH varies in a channel and to our best knowledge be
the first to introduce the concept of weighted pH in a channel.

As discussed in Section 3.1.2 the concentration of hydrons in an aqueous solution determine
the pH. The hydrons in the nanochannel are assumed Boltzmann distributed with respect
to the thermal energy kBT and the transverse electric potential energy eφ(z). When the
ζ potential is non-zero, φ(z) varies with z and hence the hydron concentration will vary
with z. Therefore, inside the nanochannel there will be a spatially varying pH transverse
to the channel walls given by

pH(z) = − log10
[
cH(z)

]
= pHb +

e

kBT ln (10)
φ(z), (3.55)

where pHb is the bulk pH. A plot of the transverse pH profile (red full) is seen in Fig. 3.6
with the bulk pH level (red dashed) for a 100 nm high channel with negatively charged
walls. φ(z) is solved using the ζ potential calculated from the metal adsorption model
and the procedure for solving the potential profile transverse the channel is discussed
in Appendix A.6. We have carried out a convergence study of the numerically solved
potential in Appendix A.6.2. The hydrons are counterions and spend most time near the
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Figure 3.6: Plot of the pH profile (red
full) with the bulk pH level (red dashed) in
a 100 nm high channel containing a 1 mM
NaCl solution and absorbed CO2 together
with concentration profiles of sodium (green)
and chloride (blue) ions. The ζ potential was
calculated to −49.4 mV. Used model param-
eters are in Table 3.3.

i CO2−
3 Cl−, HCO−

3 H2CO3 Na+

Zi −2 −1 0 1

〈pH〉i 5.61 5.56 5.47 5.31

pHb 5.68

Table 3.4: Weighted pH values for a 1 mM
NaCl solution with absorbed CO2 for differ-
ent ionic valences. Bulk pH is shown in the
bottom row. Zi = 0 is equivalent to the mean
pH of the channel. The channel height is 100
nm. Used model parameters are in Table 3.3.

silica surface. Hence, all counterions experience a lower pH on average. This is seen in the
figure where the counterion Na+ (green) has a high concentration in a low pH region near
the channel surface. The co-ions are expelled from the wall and in this case experience a
higher pH than counterions on average. This is seen in the figure where the co-ion Cl−

(blue) has a high concentration in a high pH region near the mid channel. Conversely, if
the channel walls are positive the hydrons are co-ions and spend more time in the center of
the channel so the pH will be higher near the wall. Consequently, on average, counter-ions
experience a higher pH than co-ions. Due to the spatially varying pH profile we cannot
assign to each particle a single pH value felt inside the nanochannel using only the classical
definition of pH in Eq. (3.55). However, by weighting each particle’s concentration with
the surrounding hydron concentration throughout the channel we are able to assign one
weighted pH to each particle describing the amount of hydrons experienced by each particle
on average:

〈pH〉i ≡ − log10

(∫ h
0 cH(z)ci(z)dz
∫ h
0 ci(z)dz

)

, (3.56)

where h is the nanochannel height. All ions are assumed Boltzmann distributed and the
channel is symmetric around z = h/2 so
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〈pH〉i = − log10







∫ h
2
0 cbH exp

[

− e
kBT

φ(z)
]

cbi exp
[

− Zie
kBT

φ(z)
]

dz

∫ h
2
0 cbi exp

[

− Zie
kBT

φ(z)
]

dz







= pHb − log10







∫ h
2
0 exp

[

− (1+Zi)e
kBT

φ(z)
]

dz

∫ h
2
0 exp

[

− Zie
kBT

φ(z)
]

dz







, (3.57)

which for a neutral particle reduces to

〈pH〉i = pHb − log10

{

2

h

∫ h
2

0
exp

[

− e

kBT
φ(z)

]

dz

}

(neutral particle). (3.58)

We note that the weighted pH is independent of the ith ion’s bulk concentration but de-
pends on its valence. In Table 3.4 we have provided values of the weighted pH for the
particles present in the system shown in Fig. 3.6 calculated from the script in Appendix
C.5. Since the particle with zero valence is evenly distributed throughout the channel it
experiences what can be thought of as an average pH which in this case is 5.47. The
negative co-ions experience a higher pH and the positive counterion a lower pH than the
average value which is expected from the previous discussion. Also, since the ion with
largest negative valence is expelled most from the wall it here experiences the highest pH.
We note that with a negatively charged wall the weighted pH of any negative ion can never
exceed that of the bulk since the hydron concentration anywhere in the channel will always
be that in the bulk or higher.

The silica nanochannel pH profile is one of the subjects of current research in the UCSB
Nanolab, where the intensity of charged fluorescent quantum dots in silica nanochannels
are being used to measure the pH using total internal reflection fluorescence.

3.8 Chapter Summary

In this chapter we started out by discussing how to calculate the solute concentrations of all
species dissolved in an aqueous solution, we introduced the concept of pH, and we discussed
how to account for CO2 absorption in our system. We moved on to discussing the system
consisting of a silica nanochannel contacting an electrolyte. We discussed the assumptions
used to simplify the system summarized in Table 3.1. We continued deriving our two models
of the system starting with the 2pK-model Eq. (3.26) with input/output parameters in
Table 3.2 followed by the metal adsorption model Eqs. (3.33), (3.35), (3.43), and (3.44)
with input/output parameters in Table B.4 in Appendix B. We then discussed coating
of silica nanochannels with aminosilane and how to implement it in the 2pK-model. We
studied how the potentials, surface charge densities, and coverages calculated from the
metal adsorption model depend on pH and pK−. By decreasing pK− the ratio of negatively
charged sites to neutral sites increased which lowered δo and the φd potential i.e. the ζ
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potential. We then studied how the pH varied transverse to negatively charged walls in a
nanochannel see Fig. 3.6 and introduced the weighted pH Eq. (3.57) in order to, with a
single value, describe the hydron concentration experienced by each particle on average.
Table 3.4 gives the weighted pH values for particles of different valences in the nanochannel.
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Chapter 4

Electrical Conductance of

Nanochannels

In this chapter we study the conductance dependence on KCl bulk concentration in a silica
nanochannel for a solution containing KCl dissolved in deionized water with absorbed CO2

from atmosphere exposure. The system can be seen with channel dimensions h×w×L =
200 nm × 5 µm × 1.2 cm and defining parameters in Fig. 4.1. The channel geometry is
chosen based on the channels used in the experiments described in Chapter 5. We will use
the 2pK-model developed in Section 3.3 to calculate the ζ potential, and from this, the
steady state potential distributions used in the conductance calculations. When calculating
the surface charge density in the diffusive layer δd for the 2pK-model in Section 3.3 the
electric potential in the center of the channel φm was assumed zero confer Eq. (2.28). In
other words, we assumed no diffuse layer overlap equivalent to assuming λD ≪ h but this
assumption will generally not hold for nanochannels containing a solution of very low bulk
concentrations1 (. 0.1 mM). In the present chapter we will calculate the conductance
for very low bulk concentrations which leads to very high Debye lengths so we need to
account for diffusive layer overlap. In Appendix A.9 we present a method of how to include
diffusive layer overlap in the 2pK-model by self-consistently calculate φm when solving the
φd potential. Due to the CO2 absorption the bulk pH is 5.68 confer Section 3.1.3. We
will show that the bulk pH becomes important for the nanochannel conductance behavior
at low salt concentrations. The conductance of a nanochannel has been reported in the
literature to plateau for low KCl bulk concentrations [21, 22]. We will show that the
2pK-model leads to the same conclusion and furthermore that it predicts a conductance
valley before the plateau which has not yet been predicted by any other model to our best
knowledge. The reason why, is that the absorption of CO2 is seldom taken into account
in the literature and most models neglect the presence of inherent hydrons and hydroxide
ions in the water, even for salt concentrations below the lowest concentration of either of
these [2, 3, 21, 22]. We will show that for low KCl bulk concentrations the presence of
hydrons in a silica nanochannel is essential in describing the plateau regime.

1A 0.1 mM KCl solution has a Debye length of about 30 nm. For deionized water with absorbed CO2

λD ∼ 211 nm (pH = 5.68). Without absorbed CO2 λD ∼ 963 nm (pH = 7.00).

39
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Figure 4.1: (a) a high aspect ratio silica rectangular nanochannel with metal electrodes
at each end containing a solution of KCl dissolved in deionized water exposed to the
atmosphere (reservoirs are not shown). Channel dimensions are defined together with the
electric field and potentials. The x-direction is shown in the left side of the channel. (b)
yz cross-section with area ∂Ω of the nanochannel showing the concentration profile along
the large channel width in the y-direction where λD ≪ w and the concentration profile
along the shallow channel height in the z-direction for a high KCl bulk concentration
where λD ≪ h. The internal potential φint(z) is shown. (c) xz cross-section showing
the potassium counterions (orange circles) and chloride co-ions (green circles) in the bulk
region and diffusive layer region. The direction of the external electric field Eext is shown
in the bottom (dark blue arrow) and the black arrows with center in each ion show the
direction of movement due to the applied field.
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4.1 Conductance of a Rectangular Nanochannel

In this section we will derive the conductance for the rectangular nanochannel shown in
Fig. 4.1. The following discussion refers to parameters shown in the figure. The channel
has a high aspect ratio h ≪ w so we assume that the ions in the channel only interact
with the two nearest walls separated by a distance h transverse to the flow direction. The
potential due to the charged channel walls therefore only depends on z and is denoted
the internal potential φint(z). Metal electrodes are positioned at each end of the channel
and when a voltage ∆V is applied between them an external electric field Eext is set
up in the longitudinal channel direction x such that the associated external potential
φext(x = 0) = ∆V at the beginning of the channel and φext(x = L) = 0 at the end.
Electrochemical processes will occur at the metal electrodes such that no screening diffusive
layers are set up around them and the current will keep flowing. We therefore assume that
the external potential φext does not affect the distribution of ions in the channel. Neglecting
fringe effects we can assume a translationally invariant ion distribution in the xy-plane.
This implies a constant ζ potential along the wall, that the charge density is given by

ρel(z) = −ǫ∂2zφint(z), (4.1)

and that the external electric field is constant along the channel and is given by

Eext = −∇φext =
∆V

L
ex. (4.2)

The conductance is the ability of a system to conduct an electric current defined by the
ratio of a current through the system to the potential difference across it

S ≡ I

∆V
. (4.3)

The external electric field yields two contributions to the electrical current in the nanochan-
nel. First, the field sets in motion the electrolyte ions creating an electric current called the
electromigration current Imig. In the neutral bulk there are on average as many ions mov-
ing in one direction as oppositely charged ions in the other, resulting in no net movement
of the bulk liquid, see Fig. 4.1(c). In the non-neutral diffusive layers more counterions are
moved in one direction as co-ions in the other. Stokes drag between the moving particles
and the liquid accelerates the diffusive layers which begin to move relative to the bulk.
The movement of the diffusive layer relative to the charged channel surface induced by
the external electric field is known as electroosmosis. Viscous forces between the liquid in
the diffusive layers and the liquid in the bulk accelerates the bulk into motion creating an
additional contribution to the current through its advection called the electric advection
current Iadv. Therefore, the total conductance is the sum of the migration conductance
Smig and the advection conductance Sadv

Stot = Smig + Sadv =
Imig

∆V
+
Iadv
∆V

. (4.4)

In the following sections we derive the migration and advection conductance contributions.
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4.1.1 Electromigration Conductance

The electromigration current is found by integrating the electromigration current density
Jmig given by Eq. (2.3d) over the cross-sectional area of the channel ∂Ω,

Imig =

∫

∂Ω
Jmig · dA =

∫ w
2

−w
2

∫ h

0
σel(z)Eext dzdy = 2∆V

w

L

∫ h
2

0
σel(z)dz, (4.5)

where the last equality follows from the electric conductivity σel(z) being symmetric around
the center of the channel at z = h/2 due to the symmetry in the internal electric potential
φint(z), see Fig. 4.1(b). The electromigration conductance contribution is then

Smig =
Imig

∆V
= 2

w

L

∫ h
2

0
σel(z) dz. (4.6)

The conductivity σel(z) of a single ion of concentration c(z), valence Z, and mobility µ is
σel(z) = |Z|eµc(z). For N ions the conductivity inside the channel is

σel(z) = e

N∑

i=1

|Zi|µici(z) = e

N∑

i=1

|Zi|µicbi exp
(

− Zie

kBT
φint(z)

)

, (4.7)

where we have assumed the ions Boltzmann distributed.

4.1.2 Advection Conductance

The resulting velocity throughout the channel due to electroosmotic effects is called the
electroosmotic velocity. The Navier–Stokes equation Eq. (2.6) can be solved in steady
state ∂tv(z) = 0 in a rectangular channel with an externally applied electric field in the x
direction and no-slip condition at the walls vx(z = 0) = 0 and vx(z = h) = 0. Due to the
high aspect ratio h ≪ w we can approximate the system as a parallel plate channel and
the electroosmotic velocity becomes

v(z) = vx(z)ex =
[
φint(z)− ζ

] ǫ

η
Eext, (4.8)

where we have used the charge density Eq. (4.1) in the electric force density and the
boundary conditions φint(0) = φint(h) = ζ. The electric advection current is

Iadv =

∫

∂Ω
Jadv · dA =

∫

∂Ω
ρel(r)v(r) · dA. (4.9)

For λD ≪ w the electroosmotic velocity for the rectangular channel is to good approxima-
tion given by Eq. (4.8). Together with the general charge density for N ions Eq. (2.21) we
get

Iadv = 2∆V
w

L

eǫ

η

∫ h
2

0

[
φint(z)− ζ

]
N∑

i=1

Zici(z) dz, λD ≪ w. (4.10)
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The advection conductance of the rectangular channel immediately follows

Sadv =
Iadv

∆V

= 2
w

L

eǫ

η

∫ h
2

0

[
φint(z)− ζ

]
N∑

i=1

Zic
b
i exp

(

− Zie

kBT
φint(z)

)

dz, λD ≪ w.

(4.11)

The total conductance Stot Eq. (4.4) for the high aspect ratio rectangular channel is the sum
of the electromigration conductance Eq. (4.6) and the advection conductance Eq. (4.11).

A script that calculates the total conductance of the rectangular channel given the ζ
potential, internal potential profile φint(z), bulk ionic concentrations, and ionic valences
can be found in Appendix C.6.

4.1.3 Conductance in the Bulk Regime

For a high concentration solution with c & 10 mM the Debye length is much smaller
than the height λD ≪ h so the diffusive layers are very thin2 and the bulk dominates
the channel. Therefore, a nanochannel containing an electrolyte of large concentration is
referred to as being in the bulk regime. In such a nanochannel the internal potential φint(z)
is approximately zero everywhere and the electromigration conductance Eq. (4.6) can be
approximated by

Smig ≈
wh

L
e

N∑

i=1

|Zi|µicbi . (4.12)

In the bulk ρel is zero due to charge neutrality confer Eq. (2.29). Therefore, from Eq. (4.9)
it follows that the advection conductance for a nanochannel with a high concentration
electrolyte is approximately zero,

Sadv ≈ 0. (4.13)

The total conductance in the bulk regime is therefore given by

Stot = Smig + Sadv =
wh

L
e

N∑

i=1

|Zi|µicbi ≡ Sbulk (bulk regime). (4.14)

The conductance in the bulk regime for a solution with KCl of high concentration is
dominated by potassium and chloride ions and is given by

SKCl
bulk =

wh

L
e
(
µK+ cbK+ + µCl− cb

Cl−
)
, (4.15)

A MatLab script calculating the bulk conductance is provided in Appendix C.7. The
mobilities of all modeled ions are found in Table B.2 in Appendix B and we assume them

2The Debye length of a 10 mM monovalent electrolyte is ≈ 3 nm, see Fig. A.8 in Appendix A.7.
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to be independent of the ionic strength which is justified for low salt concentrations. For
high salt concentrations the ionic mobilities decrease. As an example consider a KCl
solution. The assumption leads to errors in the conductivity3 of 5.4 % for 10 mM and
17 % for 100 mM confer Appendix A.8.

4.2 Conductance Characteristics of a Nanochannel

In this section we numerically calculate the nanochannel conductance versus KCl bulk con-
centration. The bulk concentraton of KCl used in the calculations range from 1 M down
to 0.1 µM. The channel is in a bulk regime from 1 M to ≈10 mM so here the surface condi-
tions of the channel do not influence the conductance. However, for lower concentrations
the channel surface begins to influence the conductance and since the salt concentration is
very low here, we can neglect the adsorption of metal cations and therefore use the simpler
2pK-model in the conductance calculation. Furthermore, we will characterize the behavior
of the conductance curve and discuss the reasons for its shape in the entire concentration
range. The nanochannel conductance for a given KCl bulk concentration is calculated by
following the steps

1 Use our modified Santiago script in Appendix C.1 to determine the bulk pH and
the actual concentrations of all charge states of the species in the electrolyte, see
Section 3.1.

2 Solve the 2pK-model self-consistently for the ζ potential using a start guess tak-
ing into account diffuse layer overlap as discussed in Appendix A.9 from which the
internal potential profile φint(z) is calculated in the channel confer Appendix A.6.

3 The channel conductance is calculated from the potential profile in step 2 using
Eqs. (4.6) and (4.11) in the total channel conductance Eq. (4.4).

The conductance versus KCl bulk concentration together with the bulk conductance of
KCl SKCl

bulk is shown in Fig. 4.2. The inset shows how the ζ potential varies over the
same concentration range. Consistent with literature the conductance of the nanochannel
plateaus for low salt concentrations. In the figure we have labeled four characteristic
regimes on the conductance curve: the bulk regime, the departure, the valley, and the
plateau. We have, for the first time in literature, defined these regimes in Fig. 4.3(f). The
bulk regime is the part of the conductance curve which follows the bulk salt conductance
curve. The departure regime begins where the channel conductance deviates more from
the bulk conductance than a specified tolerance. It ends where the conductance curve
intersects the conductance level for an infinite dilute salt solution i.e. intersects the plateau
level. The valley begins in the point where the departure ends and ends where the relative
difference between the conductance curve and plateau level is less than a specified tolerance.
Previous models in literature only show three regimes: the bulk regime, the departure, and
the plateau [21, 22].

3The conductivity of a high concentration KCl solution is σel,KCl = e
(

µK+ cK+ +µCl− cCl−

)

. The error
in conductivity originates from the changed mobilities.
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Figure 4.2: A log-log plot of nanochannel conductance versus KCl bulk concentration (red)
together with the KCl bulk conductance SKCl

bulk (black dashed) calculated by the 2pK-model
in Section 3.3 for KCl and absorbed CO2 in deionized water. Four conductance regimes
are marked: bulk regime, departure, valley, and plateau. These regimes are defined in
Fig. 4.3(f). The blue roman numerals match with those in Fig. 4.3. The inset shows how
the ζ potential and the Debye length λD varies with concentration. The mobilities and
model parameters can be seen in Table B.2 and Table B.3, respectively, in Appendix B.
The channel dimensions are h× w × L = 200 nm × 5 µm × 1.2 cm.

4.2.1 Concentration Profiles

We can explain the conductance valley and subsequent plateau region from the transverse
concentration profiles of ions in the nanochannel for different KCl bulk concentrations.
These profiles have been plotted in Fig. 4.3(a)–(e) with roman numerals matching those
in Fig. 4.2 for different concentrations. Some of the curves stated in the legend are not
visible on the graph due to too low concentrations.

Ions contribute to the conductance through their concentration, valence, and mobility.
Therefore, an ion of low concentration does not necessarily has a low influence on the con-
ductance if it has a large mobility. Furthermore, since the ζ potential becomes increasingly
negative for lower salt concentrations, confer the inset in Fig. 4.2, only the positive hydrons
and potassium ions are dominating the conductance through their elevated concentrations.
Based on this, in order to determine which ion dominates the conductance, we have added
curves in Fig. 4.3(a)–(e) showing the concentration of hydrons scaled with the ratio of
hydron mobility to potassium mobility cH µH+/µK+.
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Figure 4.3: Nanochannel ionic concentration profiles for KCl bulk concentrations of, (a)
1 M, (b) 1 mM, (c) 0.1 mM, (d) 0.01 mM, and (e) 0.1 µM. Some of the curves stated in
the legend are not visible on the graph due to too low concentrations. The dashed curve
shows the concentration of hydrons scaled with the ratio of hydron mobility to potassium
mobility. The blue roman numerals match with those in Fig. 4.2. The bulk regime,
departure, valley, and plateau match those conductance regimes defined in Fig. 4.2. The
mobilities and model parameters can be seen in Table B.2 and Table B.3, respectively,
in Appendix B. The channel has height h = 200 nm. (f) shows our definitions of the
four characteristic regimes on the conductance curve: bulk regime, departure, valley, and
plateau.
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The departure from the bulk conductance can be explained from the concentration profiles
governed by the ζ potential and the Debye length λD. The ζ potential lifts up the coun-
terion concentration mainly within a Debye length distance from the wall and the Debye
length is the distance from the wall over which the counterion concentration is elevated.
Both the ζ potential and Debye length λD increase in size with decreasing KCl bulk concen-
tration as shown in the inset in Fig. 4.2. The ζ potential becomes more negative because
a decrease in ionic bulk concentrations cbi decreases the size of the surface charge density
δo confer Eq. (3.26a). Physically this is because the same surface charge density cannot be
sustained with a lower number of screening ions. When the size of δo decreases the capac-
itor relation Eq. (3.21) states that φd and φo approach each other. Since the size of φo is
larger than φd the equation can be satisfied by increasing the size of φd i.e. the ζ poten-
tial. So, physically when the bulk concentration is reduced screening of the wall becomes
harder but the wall can counteract this by becoming less negative. This, together with
an increasingly negative ζ potential attracting more counterions makes the screening easier.

In the bulk regime the conductance is dominated by the chloride and potassium ions
as shown in Fig. 4.3(a). The conductance will here follow the KCl bulk conductance confer
Section 4.1.3 which decreases with the KCl bulk concentration. The conductance departure
from bulk occurs when the size of the ζ potential has lifted up the potassium ion concen-
tration close to the wall to counteract the decrease in potassium ion bulk concentration.
When the bulk concentration decreases the diffusive layer increases expelling chloride co-
ions leaving potasssium counterions to dominate the conductance as is seen in Fig. 4.3(b).

A further decrease in KCl bulk concentration increases the size of the ζ potential suffi-
ciently to elevate the hydron concentration as shown in Fig. 4.3(c). Now the hydrons begin
to contribute to the conductance as shown by the appearance of the graph cH µH+/µK+

(dashed line). The bulk concentration of hydrons is fixed in the solution so as the size of
the ζ potential increases the concentration of hydrons is elevated and at some point begins
to take over the dominating role in conductance increasing this from the valley to the
plateau see Fig. 4.2. As shown in Fig. 4.3(d) the hydrons and potassium ions contribute
equally to conductance at a KCl bulk concentration of ≈ 0.01 mM. For low enough KCl
bulk concentrations the decreasing potassium ion concentration becomes negligible com-
pared to the constant bulk hydron concentration and both the ζ potential and λD plateaus
see Eq. (3.26) and Eq. (2.33), respectively. At this point the conductance dominating ions
are only the hydrons as shown in Fig. 4.3(e).

We now estimate whether it is the ζ potential or Debye length λD which has the greatest
effect on the deviation from the bulk conductance. We will approximate the concentration
profiles in Fig. 4.3(a) (1 M KCl) and Fig. 4.3(b) (1 mM KCl) as rectangles shown as the
blue areas in Fig. 4.4(a) and Fig. 4.4(b), respectively. The roman numerals in the top
of the figure match those in Fig. 4.2. The bottom rectangle (dark blue) represents the
bulk concentration and the top rectangle (light blue) delineated with a red dashed line is
the elevated concentration of counterions above the bulk. In Fig. 4.4(a) the bulk area is
multiplied by a factor of 2 because it is the concentration of both potassium and chloride
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ions. Note that we are only interested in orders of magnitude so we have approximated the
chloride concentration to equal its bulk value throughout the channel. The area of each
rectangle area can be related to its contribution to the conductance. The top level of the
light blue rectangle

cKCl exp

(

− e

kBT
ζ

)

, (4.16)

representing the elevated counterion concentration is governed by the KCl bulk concentra-
tion4 and ζ potential, and its width by the Debye length λD ∝ (cKCl)

−1/2 illustrated by
the green arrows in Fig. 4.4(b). When decreasing the KCl bulk concentration 3 orders of
magnitude from 1 M Fig. 4.4(a) to 1 mM Fig. 4.4(b) the Debye length increases with a
factor of 30 from 0.3 nm to 10 nm. It is seen that the elevated concentration level is reduced
with one order of magnitude from 2000 to 200. All things being equal, a downscaling of
the KCl bulk concentration by 3 orders of magnitude would reduce the level from 2000 to 2
so the ζ potential has opposed the concentration reduction with a factor of 100. The area
of the elevated concentration rectangle is related to the deviation of the conductance from
the bulk so we have thereby demonstrated that the increasingly negative ζ potential has
a greater effect (a factor of 100 here) on the conductance curve deviation from the bulk
than the increased Debye length (a factor of 30 here).

Finally, we compare the ratio of the conductance contribution from the elevated concen-
tration to that of the bulk concentration at 1 M to the same ratio at 1 mM by calculating
the areas of the rectangles. At 1 M Fig. 4.4(a) the ratio is

1000 mM× 0.3 nm

2× 1000 mM× 100 nm
= 1.5× 10−3, (4.17)

and at 1 mM Fig. 4.4(b) it is

200 mM× 10 nm

1 mM× 100 nm
= 20. (4.18)

The conductance contribution from the elevated concentration is 3 orders of magnitude
lower than the bulk contribution at 1 M and at 1 mM it is one order of magnitude higher
than the bulk contribution. This verifies that at high KCl bulk concentrations the con-
ductance is dominated by the bulk concentration and at low KCl bulk concentrations it is
dominated by the elevated counterion concentrations.

4We have cKCl = cK+ under the assumption that KCl dissociates completely.



4.2 Conductance Characteristics of a Nanochannel 49

c
KCl

 =1 M 

Bulk regime

0 100
0

1000

 

z [nm]

x2

cKCl =1 mM 

Departure

0 100
0

z [nm]

c
[m

M
]

 

Conductance contribution
from elevated concentration

I II

(a) (b)

1

Conductance contribution
from elevated concentration

c
[m

M
]

Figure 4.4: Nanochannel concentration profiles for (a) 1 M KCl bulk concentration and
(b) 1 mM KCl bulk concentration approximated by rectangles. The actual concentration
profiles for (a) and (b) are seen in Fig. 4.3(a) and Fig. 4.3(b), respectively. The roman
numerals in the top of the figure match those in Fig. 4.2. The bottom rectangle (dark blue)
represents the bulk concentration and the top rectangle (light blue) delineated with a red
dashed line is the elevated concentration of counterions above the bulk. The top level of
the light blue rectangle is governed by the KCl bulk concentration and ζ potential, and its
width by the Debye length λD (green arrows in (b)). The figure is not drawn to scale.

4.2.2 Measuring the Conductance Valley

To experimentally measure the conductance valley seen in Fig. 4.2 data must be obtained
requiring the ability to measure the conductance for very low concentrations. When the
salt concentrations become sufficiently low the Debye length becomes so large that the con-
centration of counterions throughout the channel becomes very high. Outside the channel,
in the bulk, the metal electrode is positioned and here the concentration of counterions is
low equal to their bulk value. Therefore, a boundary is created at each end of the channel
where one side of each boundary contains counterions of high concentration (counterions
inside the channel) and the other side contains ions of low concentration (counterions in the
reservoir). This gives rise to a Gibbs–Donnan effect creating an electric potential between
the two concentration regions, i.e. from the reservoir to the channel. This interferes with
the externally applied electric field through the nanochannel and impedes experimental
measurements of the current. One way of avoiding this limitation would be by incorporat-
ing the metal electrodes inside the nanochannels which is the topic of current research in
the UCSB Nanolab.
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Figure 4.5: A log-log plot of the channel conductance versus KCl bulk concentration for
different added concentrations of HCl together with the bulk conductance of KCl. The
orange arrow with text box shows the displacement of the conductance curve when in-
creasing the formal concentration of HCl and hence decreasing the bulk pH. The mobilities
and model parameters can be seen in Table B.2 and Table B.3, respectively, in Appendix
B. The channel has height h = 200 nm.

We will propose and carry out an experiment which moves the valley toward higher KCl
bulk concentrations. The valley occurs because the dominating contribution to the con-
ductance is shifted from the potassium ions with decreasing concentration to the elevated
hydrons having a fixed bulk concentration. By increasing the bulk concentration of hy-
drons they will dominate the conductance earlier shifting the valley and plateau toward
higher concentrations. Increasing the bulk hydron concentration is done by adding an
acid. We choose HCl since it best resemblances the existing electrolyte composition. The
effect on the conductance curve by adding HCl is shown in Fig. 4.5. Incidentally, the
graph has been generated with a pK− value of 2.8 due to early fitting results of our model
to experimental data from the UCSB Nanolab. We later show that a more correct pK−

value for a bare silica nanochannel is near the literature value of 6.64 and in Section 5.4
we discuss possible reasons for the low pK− value initially determined. Nevertheless, as
expected the conductance valley shifts toward higher KCl concentrations when increasing
the solution acidity but we see that the conductance valley becomes more shallow which
is primarily due to the generally increased conductance from the additional hydrons. Fi-
nally, the plateau level increases slightly with acidity due to the extra added hydrons. In
Section 5.2.2 we present data from a conductance measurement on a 165 nm high channel5

5The experiment was carried out in the UCSB Nanolab by Andrew Crumrine (May 2010).



4.3 Conductance Dependence on Parameters 51

with a KCl solution containing 0.1 mM HCl. The experimental data is found in Tables B.8
and B.9 in Appendix B.5.

4.3 Conductance Dependence on Parameters

For high salt bulk concentrations the Debye length is negligible compared to the channel
height and the wall does not have any effect on the ions in the channel, see Section 4.1.3.
Therefore, the model must as a first thing predict the right conductance in the bulk regime.
The channel parameters affecting the conductance curve in the bulk regime are purely ge-
ometrical which can be seen directly from Eq. (4.14). However, discrepancies in the bulk
regime between the calculated and the experimentally measured conductance can arise due
to channel fabrication errors. We later have to fit the channel width to match the bulk
conductance in the data set found in Table B.7, Table B.8, and Table B.9 in Appendix B.5.

In Appendix A.10 we study how the conductance curve behaves when separately neglect-
ing CO2 absorption, diffusive layer overlap, the advection conductance contribution, and
removing the immobile layer all in the 2pK-model. From this study we find that the ab-
sorbed CO2 and the Stern capacitance Cs are the most important model features when
calculating the conductance.

4.3.1 Identifying the Relevant Fitting Parameters

We have been supplied with experimental data for the conductance of different silica
nanochannels containing KCl solutions which can be found in Appendix B.5. In order
to fit our conductance curve to these data we carry out a preliminary investigation of how
the different parameters in the 2pK-model affect the shape and position of the curve. As-
suming the channel dimensions together with the actual concentrations of particles in the
bulk to be known quantities we are left with the following surface related input parame-
ters to fit in our model confer Table 3.2: the Stern capacitance Cs, the total number of
chargeable sites Γtot, pK+, and pK−.

Stern Capacitance Cs

First, the Stern capacitance Cs is varied. The conductance versus KCl bulk concentration
for different values of the Stern capacitance is shown in Fig. 4.6. Recall that the literature
value of the Stern capacitance is Cs = 0.2 Fm−2, and it is seen that increasing the Stern
capacitance generally elevates the conductance for concentrations below the beginning of
the departure regime. For increasing Stern capacitances the beginning of the departure
regime itself shifts toward higher concentrations. We can explain this general increase
from the capacitor relation Eq. (3.21). When Cs increases the difference between φo and
φd decreases if δo is assumed constant. The elevated conductance can be explained by
an increase in the size of φd towards φo. The largest possible value of φd is obtained
with Cs = ∞ where φd = φo corresponding to removing the immobile layer. This marks
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Figure 4.6: A log-log plot of the channel conductance versus KCl bulk concentration for
different Stern capacitances Cs together with the bulk conductance of KCl. The orange
arrow with text box indicates the displacement of the conductance curve when increasing
the Stern capacitance. The mobilities and model parameters can be seen in Table B.2 and
Table B.3, respectively, in Appendix B. The channel has height h = 200 nm

an upper bound for how much the φd potential can elevate the conductance. The Stern
capacitance has a large effect on the conductance so we will use it as a best fit parameter.

Total Number of Chargeable Sites Γtot

We now vary the total number of chargeable sites Γtot around the literature value of
5 sites nm−2 [16]. The conductance versus KCl bulk concentration for different values of
Γtot is shown in Fig. 4.7. By increasing Γtot the conductance curve is generally elevated
from the beginning of the departure regime. This is because a general upscaling of the
total number of chargeable sites increases the number of all site states SiOH, SiO−, and
SiOH+

2 which increases the size of the surface charge density, see Eq. (3.19). This attracts
more screening counterions to the surface including hydrons. Therefore, the hydron con-

centration at the o-plane cbH exp
(

− e
kBT

φo

)

increases in the equilibrium relations for the

surface reactions Eq. (3.18). This induces shifts in the equilibria resulting in a reduction
of the ratios θSiO−/θSiOH and θSiOH/θSiOH+

2
. In other words, more neutral SiOH sites are

created relative to negative SiO− sites and more positive SiOH+
2 sites are created relative

to neutral SiOH sites. Therefore, the increase in size of δo is opposed on the negative sil-
ica surface which opposes the increase in conductance. This opposing effect explains why
the distance between successive conductance curves on the log scale in Fig. 4.7 decreases
for increasing Γtot. As a numerical example consider the conductances at a concentration
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The channel has height h = 200 nm.

of 10−7 M. The distance between the conductance curves for Γtot = 0.01 sites nm−2 and
Γtot = 0.1 sites nm−2 is 2.89 whereas the distance between the conductance curves for
Γtot = 1 sites nm−2 and Γtot = 10 sites nm−2 is 1.62. Γtot is typically used in the literature
as either 5 sites nm−2 or 8 sites nm−2 [23] and since we see from Fig. 4.7 that the conduc-
tance curve largely remains constant when varying Γtot around these values we will not
use it as a fitting parameter for the conductance curve.

pK+: The Number of SiOH+
2 Sites

A plot of the conductance versus KCl bulk concentration for different values of pK+ is
shown in Fig. 4.8. The point of zero charge is the average of pK+ and pK−, Eq. (3.47).
When decreasing pK+ more neutral SiOH sites are created relative to positively charged
SiOH+

2 sites confer Eq. (3.54) which increases the size of the surface charge density δo on
the negative silica surface. When the size of δo increases more counterions are needed for
screening increasing the elevated concentrations and thereby increasing the conductance.
Qualitatively, as seen in the figure, the valley and plateau level increases slightly when
reducing the pK+ with the rest of the curve remaining unchanged. The small effect on the
conductance is explained by θSiOH+

2
being orders of magnitude lower than θSiO− and θSiOH

at pH = 5.68 similar to our analysis using the metal adsorption model in Fig. 3.5. We will
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Figure 4.8: A log-log plot of the channel conductance versus KCl bulk concentration
for different values of pK+ together with the bulk conductance of KCl. The point of
zero charge is calculated from Eq. (3.47). The orange arrow with text box indicates the
displacement of the conductance curve when decreasing pK+. The mobilities and model
parameters can be seen in Table B.2 and Table B.3, respectively, in Appendix B. The
channel has height h = 200 nm.

therefore not use pK+ as a relevant fitting parameter for the conductance measurements.

pK−: The Number of SiO− Sites

The conductance is plotted versus KCl bulk concentration for different values of pK− in
Fig. 4.9. The conductance below the bulk regime is seen to increase for a decreasing pK−.
Lowering pK− increases the ratio θSiO−/θSiOH according to Eq. (3.53). Therefore, more
SiO− sites are created relative to SiOH sites and the size of the surface charge density δo
increases on the negative silica surface. The conductance increases below the bulk regime
because more counterions are needed for screening increasing the elevated concentrations.
We will use pK− as a best fit parameter.

In summary, the most relevant fitting parameters are the Stern capacitance Cs and the
logarithmic dissociation constant governing the deprotonization of the silica surface pK−.
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Figure 4.9: A log-log plot of the channel conductance versus KCl bulk concentration
for different values of pK− together with the bulk conductance of KCl. The point of
zero charge is calculated from Eq. (3.47). The orange arrow with text box indicates the
displacement of the conductance curve when decreasing pK−. The mobilities and model
parameters can be seen in Table B.2 and Table B.3, respectively, in Appendix B. The
channel has height h = 200 nm.
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Figure 4.10: A log-log plot of the channel conductance versus KCl bulk concentration for
different aminosilane coverages θamin together with the bulk conductance (dashed black
curve) Eq. (4.14). In (a) the silica surface is net negative δo < 0 and in (b) it is net positive
δo > 0. The orange arrows with text boxes indicate the conductance curve displacement
when the coverage is increased. The mobilities and model parameters can be seen in
Table B.2 and Table B.3, respectively, in Appendix B. The channel height is 200 nm.
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Figure 4.11: A lin-log plot of the φd potential versus KCl bulk concentration for different
aminosilane coverages. In (a) the silica surface is net negative δo < 0 and in (b) it is
net positive δo > 0. The orange arrows with text boxes indicate the conductance curve
displacement when the coverage is increased. The mobilities and model parameters can be
seen in Table B.2 and Table B.3, respectively, in Appendix B. The channel height is 200
nm.
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Figure 4.12: A lin-log plot of the surface charge density δo versus KCl bulk concentration
for different aminosilane coverages. The mobilities and model parameters can be seen in
Table B.2 and Table B.3, respectively, in Appendix B. The channel height is 200 nm.
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4.3.2 Conductance Dependence on Aminosilane Coating

In Section 3.5 we derived the modified equations for the 2pK-model taking into account
coating on the silica surface. We now study how the conductance curve depends on different
coating coverages of aminosilane θamin. The conductance is plotted versus KCl bulk con-
centration for different values of θamin in Fig. 4.10. In Fig. 4.11 and Fig. 4.12 corresponding
φd potentials and surface charge densities δo are plotted, respectively. In Fig. 4.10(a) it is
seen that the conductance decreases below the bulk regime for increasing coating coverages
until the surface becomes neutral i.e. δo = 0 at θamin ≈ 49.967%. For neutral walls the
concentration of each ion equal its bulk value throughout the channel so the conductance
follows the bulk conductance curve Eq. (4.14). Furthermore, the φd potential is expected
to be zero which is confirmed by the yellow curve in Fig. 4.11(a). Fig. 4.11(a) shows that
the size of φd increases with decreasing KCl bulk concentration, and Fig. 4.12(a) that the
size of δo decreases with decreasing KCl bulk concentration. This is in agreement with our
discussion in Section 4.2.1 where we argued that ζ became more negative when the size of
δo decreased. We note that an increased positive coverage increases both the φd potential
Fig. 4.11 and the surface charge density δo Fig. 4.12.

When the surface is neutral

θSiO− = θSiOH+
2
+ θamin (neutral surface), (4.19)

and since θSiOH+
2

is many orders of magnitude lower than θamin we have that θSiO− ≈
49.967% confer Fig. A.12 in Appendix A.11. Furthermore, since θSiOH is also many orders
of magnitude lower than θSiO− the neutral surface is dominated by the coating coverage
and negatively charged SiO− sites. When θamin is increased above 49.967% the silica sur-
face becomes positively charged verified by Fig. 4.12(b). In the following discussion we
will refer to θamin < 49.967% as the low coverage regime (negative silica surface) and
θamin > 49.967% as the high coverage regime (positive silica surface).

In Section 4.2.1 we argued that when the bulk salt concentration is reduced screening of
the wall becomes harder. The charged surface counteracted this by becoming less charged
resulting in easier screening. However, in the high coverage regime the surface only has a
fixed amount of coated sites and SiO− sites and is unable to create more negative sites to
reduce its charge. Therefore, δo becomes independent of the KCl bulk concentration, see
Fig. 4.12(b). It follows that the φd potential must increase even more to attract counterions
to sustain screening of the wall. δo increases rapidly with coating coverage in the high cov-
erage regime see Fig. 4.12(b). Moreover, since it is constant throughout the concentration
range more counterions are present in the diffusive layers even for the lowest concentrations
as compared to Fig. 4.12(a). This results in the conductance increasing rapidly with the
aminosilane coating coverage below the bulk regime, see Fig. 4.10. Finally, we note that
when the wall becomes positive the counterions change from potassium (K+) and hydrons
(H+) to chloride (Cl−), hydroxide (OH−), carbonate (CO2−

3 ), and bicarbonate (HCO−
3 ).
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4.4 Chapter Summary

In this chapter we derived the conductance for a rectangular nanochannel, see Eqs. (4.4),
(4.6), and (4.11), and calculated it numerically using the 2pK-model, see Fig. 4.2. We
characterized the conductance curve by four regimes: the bulk regime, departure, valley,
and plateau defined in Fig. 4.3(f). We then explained the conductance curve by using
the concentration profiles in Fig. 4.3(a)–(e). We introduced a box model of the concen-
tration profiles Fig. 4.4 and found that the increasing ζ potential is the main reason for
the conductance curve deviation from the bulk conductance as compared to the effect of
the increasing Debye length λD. We further estimated the contribution to the conduc-
tance from the elevated counterion concentration and the bulk concentration in the end
of Section 4.2.1. We found that at high KCl bulk concentrations the elevated counterion
concentrations had negligible effect on the conductance as compared to the bulk concen-
trations whereas for low KCl bulk concentrations the elevated counterion concentrations
dominated the conductance over the bulk concentrations. We carried out an investigation
of which surface related parameters in the 2pK-model had a main influence on the shape
of the conductance curve with respect to being used as fitting parameters and found that
the Stern capacitance Cs and logarithmic dissociation constant governing the negative sites
pK− are most suited, see Section 4.3. Finally, we studied how aminosilane coating of the
silica surface changed the conductance curve.



Chapter 5

Characterization of the Silica

Nanochannel Surface by

Conductance Measurements

In this chapter we start out by describing how the conductance of a nanochannel is mea-
sured experimentally. We present conductance data of nanochannels measured in the
UCSB Nanolab and fit our 2pK-model to the data using the fitting parameters found
in Section 4.3.1. Our goal is to characterize the nanochannel surface in terms of these
parameters. Finally, we discuss our results.

5.1 Nanochannel Conductance Experiments at the UCSB Nanolab

To experimentally measure the conductance Eq. (4.4)

S ≡ I

∆V
(5.1)

of nanochannels a voltage ∆V can be applied over two electrodes in each end of the
channel and the current I can be recorded. The system setup accomplishing this is shown
in Fig. 5.1. When fabricating the nanochannels used in experiments the length and width
are first defined by a photolithographic process [21]. Then, a directional plasma etches
the height of the channel through the amorphous silica. The final height is controlled by
the etching time and the experiments are carried out for nanochannels with heights of 165
nm and 200 nm. The electrolyte is potassium chloride (KCl) dissolved in deionized water
at different concentrations. Besides measuring the conductance in the regimes where it
deviates from its bulk value we are also interested in measuring the bulk regime conductance
so concentrations up to 100 mM are used. In this way we can verify the channel dimensions
used as input parameters in the 2pK-model.

59
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Figure 5.1: Experimental setup for measuring the conductance of a silica nanochannel.
Top: a real photo of the setup. Bottom: a sketch of the same system defining the geometry
of the nanochannel and elements in the setup. A nomenclature is provided in the right of
the figure. The yellow circles show the electrodes just before entering the electrolyte. The
green dashed box indicates the voltage supply and amperemeter both part of a Keithley
2410 1100 V SourceMeter used in the experiments. The reservoirs are shown connected
through the nanochannel which serves as a channel for electric current when a voltage
is applied over the two electrodes. The right reservoir is shown in a cross-section with
enlarged electrolyte particles. Data from the current meter (black full circle) and the
voltage source allows the calculation of conductance S through the channel. The channel
has dimensions h× w × L = 200 nm × 5 µm × 1.2 cm.
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5.1.1 Procedure

Before each current measurement the channel is rinsed with deionized water for 30 minutes.
The channel is then rinsed with the KCl solution until reaching a stabile current readout.
The voltage is sourced 100 to 500 V in steps of 100 V. The stabilized current is recorded
averaged over 300 samples for each voltage. The result is thus an average conductance
calculated over 5 voltage steps. This procedure is repeated for all concentrations.

5.1.2 Data

We will fit our model to two sets of data from each of two experimentalists: David A.
Herrick and Andrew Crumrine both having followed the procedure stated above. The
completion of one such procedure will be dubbed one trial. David A. Herrick has one trial
for each concentration whereas Andrew Crumrine has multiple trials per concentration.

Dataset 1 and 2 from David A. Herrick can be seen in Table B.5 and Table B.6, respec-
tively, in Appendix B.5. Dataset 1 and 2 from Andrew Crumrine can be seen in Table B.7
and Table B.8-B.9, respectively, in Appendix B.5.

5.2 Fitting the Conductance Data for Bare Silica Nanochan-
nels

When fitting the 2pK-model to the experimental conductance data we use the same proce-
dure to calculate the conductance as in Section 4.2. We use the built-in MatLab function
lsqcurvefit around our model to fit the data in two different fitting approaches. In fitting
approach 1 (fit 1) we only fit pK− and set Cs = 0.2. In fitting approach 2 (fit 2) we fit
both pK− and Cs. All other model parameters are found in Table B.2 and Table B.3 in
Appendix B. The script used for fitting the conductance data can be found in Appendix C.8

For each data set the fitting statistics are provided in corresponding tables containing
the coefficient of determination R2 and the 2-norm of the residual given by

P∑

i=1

(Sdata,i − Sfit,i)
2 , (5.2)

where P, Sdata,i, and Sfit,i are the number of experimental data points, the experimentally
measured conductance at point i, and the calculated conductance from the fitted model at
point i, respectively. The last column in each table contains the absolute relative difference
between the fitted pK− value and the literature value pK− = 6.64 [16], which we will refer
to as the deviation.

5.2.1 Data Sets from David A. Herrick

For the data sets of David A. Herrick the channel dimensions are h×w×L = 200 nm× 5
µm × 1.2 cm.
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Figure 5.2: Fit to conductance data set 1 from David A. Herrick. A log-log plot of
conductance versus KCl bulk concentration. Fitting approach 1 (Fit 1, red) and fitting
approach 2 (Fit 2, dashed green) are plotted with experimental data (blue) and bulk KCl
conductance (dashed black).

Data Set 1

The experimental data are found in Table B.5 in Appendix B.5. Our best fit to the model
is seen for both fitting approaches in Fig. 5.2. The fitting statistics are found in Table 5.1.

David A. Herrick - data set 1 - UCSB Nanolab

Fitting Approach Fitting Parameter R2 2-Norm of Residual Deviation

Fit 1 pK− = 2.55 0.941 0.320 62%

Fit 2 pK− = -1.07 0.801 0.246 116%

Cs = 0.0828 F m−2

Table 5.1: Fitting results from experimental data set 1 from David A. Herrick. Coefficient
of determination R2 is in the third column. Absolute relative difference between the found
pK− value and the literature value of 6.64 in the rightmost column.
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Figure 5.3: Fit to conductance data set 2 from David A. Herrick. A log-log plot of
conductance versus KCl bulk concentration. Fitting approach 1 (Fit 1, red) and fitting
approach 2 (Fit 2, dashed green) are plotted with experimental data (blue) and bulk KCl
conductance (dashed black).

Data Set 2

The experimental data are found in Table B.6 in Appendix B.5. Our best fit to the model
is seen for both fitting approaches in Fig. 5.3. The fitting statistics are found in Table 5.2.

David A. Herrick - data set 2 - UCSB Nanolab

Fitting Approach Fitting Parameter R2 2-Norm of Residual Deviation

Fit 1 pK− = 2.81 0.802 0.218 58%

Fit 2 pK− = -0.918 0.801 0.198 114%

Cs = 0.0696 F m−2

Table 5.2: Fitting results from experimental data set 2 from David A. Herrick. Coefficient
of determination R2 is in the third column. Absolute relative difference between the found
pK− value and the literature value of 6.64 in the rightmost column.
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5.2.2 Data Sets from Andrew Crumrine

Preliminary investigation of the data sets from Andrew Crumrine showed measured con-
ductances around a factor of 1.5 higher than predicted from theory in the bulk regime. The
Kohlrausch law cannot explain this since it predicts lower conductances for high concen-
trations, see Appendix A.8. Therefore, we suggested that the channel dimensions stated
in the first place could be off due to fabrication errors or wear. The channel dimensions
were measured1 using CVD imaging and the width was found to be 8 µm up to 2 µm less
because a 4×4 binning was used. This confirmed that at least the width of the channel did
not fit the initially given value of 5 µm and that it could explain the discrepancy factor of
1.5. Therefore, we chose two bulk conductance measurements from data set 2 from Andrew
Crumrine and fitted the channel width to it. By hindsight we choose 50 mM and 100 mM
to be the bulk points. Using the width as fitting parameter we get that the channel should
be 7.09 µm wide for the bulk data points to best fit experiments in the bulk regime. The
fitting results are summarized in Table 5.3.

Fitting Channel Width

Fitting Parameter R2 2-Norm of Residual

w = 7.09 × 10−6 m 0.990 0.00312

Table 5.3: Fitting channel width to the bulk data points from data set 2 from Andrew
Crumrine. Coefficient of determination R2 is in the second column.

1The measurements were carried out by Mariateresa Napoli at the UCSB Nanolab (May 2010).
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Figure 5.4: Fit to conductance data set 1 from Andrew Crumrine. A log-log plot of
conductance versus KCl bulk concentration. Fitting approach 1 (Fit 1, red) and fitting
approach 2 (Fit 2, dashed green) are plotted with experimental data (blue) and bulk KCl
conductance (dashed black).

Data Set 1

The experimental data are found in Table B.7 in Appendix B.5. Our best fit to the model
is seen for both fitting approaches in Fig. 5.4. The fitting statistics are found in Table 5.4.

Andrew Crumrine - data set 1 - UCSB Nanolab

Fitting Approach Fitting Parameter R2 2-Norm of Residual Deviation

Fit 1 pK− = 6.23 0.985 0.195 6%

Fit 2 pK− = 5.82 0.984 0.194 20%

Cs = 0.0914 F m−2

Table 5.4: Fitting results from experimental data set 1 from Andrew Crumrine. Coefficient
of determination R2 is in the third column. Absolute relative difference between the found
pK− value and the literature value of 6.64 in the rightmost column.
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Figure 5.5: Fit to conductance data set 2 from Andrew Crumrine. A log-log plot of
conductance versus KCl bulk concentration. Fitting approach 1 (Fit 1, red) is plotted
with experimental data (blue) and bulk KCl conductance (dashed black).

Data Set 2

When fitting to data set 2 we add 0.1 mM HCl in the model. For this data set we were
unable to use the second fitting approach due to numerical problems and the timeframe of
the project. The experimental data are found in Table B.8 in Appendix B.5. Our best fit
to the model is seen for both fitting approaches in Fig. 5.5. The fitting statistics are found
in Table 5.5.

Andrew Crumrine - data set 2 - UCSB Nanolab

Fitting Approach Fitting Parameter R2 2-Norm of Residual Deviation

Fit 1 pK− = 6.84 0.998 0.256 3%

Table 5.5: Fitting results from experimental data set 2 from Andrew Crumrine. Coefficient
of determination R2 is in the third column. Absolute relative difference between the found
pK− value and the literature value of 6.64 in the rightmost column.
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5.3 Fitting the Conductance Data for Coated Silica Nanochan-
nels

One application of our models is to determine the percentage coverage of silica nanochan-
nels flushed with a coating solution. This can be done by finding the pK− value for a
bare channel from conductance measurements. Then, we can assume that pK− stays in-
dependent of the surface coating and fit the coverage of coated molecules θcoat to get the
percentage coverage. To our best knowledge this has not been done in the literature before
and in collaboration with UCSB Nanolab we are planning to publish a paper presenting
our models and results from characterizing bare and coated silica nanochannel surfaces by
conductance measurements.

5.4 Discussion of Results

When fitting our model to the experimental data we generally saw that fitting pK− to-
gether with a concentration independent Stern capacitance (fit 2) generally led to a worse
fit than when fitting pK− alone (fit 1) with respect to the coefficient of determination and
correlation with the literature value. Taking into account all fitting approaches we get that
the fitted pK− for the data sets from David A. Herrick deviates between 58 and 116 % from
literature and that the data sets from Andrew Crumrine deviates between 3 and 20% from
literature. Considering only fit 1 the data sets from David A. Herrick deviates between 58
and 62% from literature and the data sets from Andrew Crumrine deviates between 3 and
6 % from literature. Therefore, between the two fitting approaches considered here fit 1 is
the most optimal. The higher R2 values and lower deviations for Andrew Crumrine’s data
are also partly explained by the fact that we fitted the channel width to conductances in
the bulk regime.

Both experimental data sets from David A. Herrick is generally one order of magnitude
higher than what is calculated from the 2pK-model when using the literature value for
pK−. Before receiving the data sets from Andrew Crumrine, only fitting the data from
David A. Herrick, we believed that the pK− value valid for the metal adsorption model
at high KCl concentrations was lower due to the very low KCl concentrations. However,
this did not seem like a satisfactory explanation for the large discrepancy between the
fitted value of pK− and the literature value. Then, we fitted the model to the data sets
from Andrew Crumrine which should be the same surface as the one in David A. Herrick’s
experiments and the model calculated a value of pK− within 6% of the literature value
for both data sets. Andrew Crumrine used a more precise amperemeter than David A.
Herrick so the discrepancy can be due to the experimental measuring apparatus.

Assume now that the channel surface in David A. Herrick’s experiments had a pK− value
near the literature value as expected. The discrepancy in the data sets from David A.
Herrick can then be explained by asserting that his channel was coated with a positive
coating molecule and was in the high coverage regime δo > 0. We know from Section 4.3.2
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that the conductance of a silica nanochannel which has been coated to become positively
charged increases with increasing coating coverage see Fig. 4.10(b) on the order of magni-
tude needed to explain the discrepancy.

Turning now to data set 2 from Andrew Crumrine a conductance valley in Fig. 5.5 should
be visible in the experimentally measured regime because 0.1 mM HCl has been added to
the solution as discussed in Section 4.2.2. However, our preliminary investigation of how
to move the valley shown in Fig. 4.5 was based on a pK− value of 2.8 and a channel height
of 200 nm which we had obtained from fitting our model to the data sets from David A.
Herrick. Meanwhile, we have shown that a pK− value near the literature value 6.64 fits
the data sets from Andrew Crumrine and moreover his channel height is 165 nm. This
does not mean that our proposal of moving the valley is wrong it was just not applicable
for the channel used by Andrew Crumrine.

If the conductance calculated from the 2pK model fits in the bulk regime for a given
channel we can primarily adjust the plateau level through pK− but the detailed shape of
the conductance curve between the bulk regime and the plateau level is model predictions.
In Figs. (5.2)–(5.5) we see that the conductance curve correlates with data points over
the entire concentration range. Our theoretical models are therefore able to predict con-
ductance behavior due to the solid/liquid interface of different nanochannels and we can
characterize the nanochannel surfaces through pK−.



Chapter 6

Conclusion and Outlook

In the first part of the thesis we discussed how to calculate the actual concentrations of all
solutes in an aqueous bulk solution which was needed before the electrolyte in the reservoirs
enters the nanochannel. Using this method the absorption of CO2 from the atmosphere
was a straightforward task to include in the calculations.

When deriving the governing equations for the solid/liquid interface reactions we stated
them in a general compact form increasing the stability in MatLab. We derived two models
each valid in a particular concentration regime. The 2pK-model was only valid for low salt
concentrations in the channel whereas the metal adsorption model was also valid for high
salt concentrations. We expanded our models to account for coated silica surfaces which
has not been done before.

We then moved on to calculate the conductance for low KCl bulk concentrations using
the 2pK-model and we characterized its behavior. Our model predicted novel regimes
not encountered in literature before. We defined the theoretically predicted regimes and
dubbed them: the bulk regime, departure, valley, and plateau. We explained the origin of
each regime from the transverse concentration profiles in the nanochannel elevated by the
ζ potential. We found that for low KCl bulk concentrations in a bare silica nanochannel
the elevation of the fixed bulk concentration of inherent hydrons dominated the conduc-
tance. Therefore, we stress that the hydrons cannot be neglected when modeling the
conductance of a bare silica nanohannel for low salt concentrations. Since absorbed CO2

changes the inherent hydron concentration it must be included in the model as well. This
has not been considered in any surface/liquid interface model before to our best knowledge.

We studied how the conductance of a nanochannel depended on the aminosilane coat-
ing of the surface and found that if the charge density of the coated silica surface was
negative an increased coating coverage lowered the conductance. Conversely, if the charge
density of the coated silica surface was positive an increased coating coverages led to an
increase in conductance.

69



70 Conclusion and Outlook

Finally, we fitted our model to experimental data for a bare silica nanochannel and calcu-
lated a value of pK− within 3% of the literature value. We found that fitting a concen-
tration independent Stern capacitance together with the pK− value did not lead to better
correlation with experiments compared to fitting pK− alone.

Our models provide a fundament for future work in characterizing silica/liquid interfaces.
The next step is to provide experimental data for very low salt concentrations which could
verify the theoretical prediction of the conductance valley and be a very important step in
verifying this first theoretical proposal with respect to conductance measurements. Fur-
thermore, current studies indicate that the Stern capacitance depends on the salt concen-
tration. By experimentally determining the ζ potential for each measured concentration it
could be made a given input parameter. Then it could be possible to determine if our mod-
els agree with a concentration dependent Stern capacitance. With the fitted pK− value for
a bare silica nanochannel we are now able to calculate conductances of a coated channel.
This allows us to carry out a systematic study of the surface coverage obtained for a given
coating solution concentration. From this, the model could predict whether the surface is
net negative or positive for a given coating solution. It is possible to verify this theoretical
prediction by an independent experiment where the direction of the electro-osmotic flow
can determine the sign of the surface.

Finally, our theoretical work is an important step towards predicting the electrokinetic
properties of silica nanochannels and thereby optimizing its use for example in biological
engineering applications and in energy harvesting devices.



Appendix A

A.1 The Diffusive Layer for Multiple valences

In micro- and nanochannel experiments the sample electrolyte coexists with a buffer so-
lution e.g. tris, borate, acetate or potassium phosphate, a flourescent, and/or a titrate
solution. We therefore turn to the case where the electrolyte contacting the wall contains
many different ions with multiple valences. A general expression for the Debye length
where the fluid consists of N electrolyte pairs will be derived. Let the valence of the cation
and anion of the ith electrolyte pair be N+,i and N−,i, respectively, with both valences
being positive integers treating the anion with an explicit sign as in Eq. (2.8).

A.1.1 Ionic Concentrations and Ion Pairs

A sketch of the system parameters discussed in this section can be seen in Fig. A.1. Turning
to the ith electrolyte it consists of a certain concentration of cations and anions given by
c+,i(r) and c−,i(r), respectively. If the wall is assumed neutral before any electrolyte
contacts it far away from the wall the ζ potential cannot be felt by any ion, and the system
has arranged itself in such a way that charge neutrality preserves here. The ith ion pair is
overall neutral in the bulk and by denoting the bulk concentrations of the ith cation and
anion cb+,i and cb−,i, respectively, we have

cb+,iN+,i = cb−,iN−,i, i ∈ {1, ...,N}, (A.1)

so the total charge density ρel satisfies

ρel(∞) = e

N∑

i=1

[

cb+,iN+,i − cb−,iN−,i

]

= 0. (A.2)

Along with the charge neutrality it is useful to define a charge molarity cb∗ which is the
number of charges of the same sign in a given volume in the bulk. Note that this definition
is independent of how the charges are distributed. The charge molarity of the ions cb∗ is
defined as

cb∗ ≡
N∑

i=1

cb+,iN+,i =

N∑

i=1

cb−,iN−,i. (A.3)

The ionic strength I will be used later and is here given as

I ≡ 1

2

N∑

i=1

[

cb+,iN
2
+,i + cb−,iN

2
−,i

]

. (A.4)
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Figure A.1: (a) a sketch of a system showing a reservoir, microchannel, and nanochannel
all placed on a silica substrate. In the left side of the figure the definition of charge molarity,
discussed in Section A.1.1, has been exemplified. The xy-plane is defined in the far right
of the figure and for each channel the origin of the third co-ordinate z, transverse to the
flow direction, is taken to be symmetrically placed midways between the lower and upper
bounding channel walls. Two cross-sections: sec. A-A and sec. B-B of the microchannel
and nanochannel, respectively, have been highlighted. (b) shows the cross-section for the
microchannel (left, sec. A-A) and the nanochannel (right, sec. B-B). For each channel a
cross-section of typical concentration profiles (top) for co-ions (red) and counterions (green)
have been shown together with the electric potential profile (bottom). The figure shows
the parameters: c±(z), c

b
±, λD, δ, ζ, and φm.
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A.1.2 Debye Length for Constant Charge Molarity

We now derive an expression for the Debye length of a system containing only one type of
cation and anion with valences N+ and N−, respectively. The ith ion concentration in the
bulk, which will be useful later, can be expressed from Eq. (A.3) as

cb±,i =
1

N±,i



cb∗ −
N∑

j 6=i

N±,jc
b
±,j



 . (A.5)

An expression for the ith ion concentration as a function of the electric potential was
derived in Eq. (2.11) for one electrolyte and is here stated on the form

c±,i(r) = cb±,i exp

(

∓N±,ie

kBT
φ(r)

)

. (A.6)

The charge density ρel(r) can then be expressed as

ρel(r) = e
N∑

i=1

[
N+,ic+,i(r)−N−,ic−,i(r)

]
. (A.7)

Inserting Eq. (A.7) into the Poisson equation Eq. (2.5) and using Eq. (A.6) leads to

∇2φ(r) = −e
ǫ

N∑

i=1

[

N+,ic
b
+,i exp

(

−N+,ie

kBT
φ(r)

)

−N−,ic
b
−,i exp

(
N−,ie

kBT
φ(r)

)]

, (A.8)

which is the Poisson–Boltzmann equation for the multiple ion electrolyte. In the Debye–
Hückel limit we have

∇2φ(r) = −e
ǫ

N∑

i=1

[

N+,ic
b
+,i

(

1− N+,ie

kBT
φ(r)

)

−N−,ic
b
−,i

(

1 +
N−,ie

kBT
φ(r)

)]

. (A.9)

Exploiting the charge neutrality in the bulk, Eq. (A.2), Eq. (A.9) simplifies to

∇2φ(r) =
e2

ǫkBT

N∑

i=1

[

cb+,iN
2
+,i + cb−,iN

2
−,i

]

φ(r) =
1

{λD (I)}2
φ(r), (A.10)

where the Debye length in terms of the ionic strength Eq. (A.4) is

λD
(
I
)
=

√

ǫkBT

2e2

√
2

(
N∑

i=1

[

cb+,iN
2
+,i + cb−,iN

2
−,i

]
)− 1

2

=

√

ǫkBT

2Ie2 . (A.11)

By using Eq. (A.5) the Debye length in Eq. (A.11) can be expressed in terms of the charge
molarity as

λD =
√
2λ∗D







N∑

i=1



N+,i



1−
∑

j 6=i

N+,jc
b
+,j

cb∗



+N−,i



1−
∑

j 6=i

N−,jc
b
−,j

cb∗















− 1
2

, (A.12)
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Figure A.2: A log-lin plot of the potential φ(z) (full lines) for 0 < z < 1.2λ∗D near an
infinite planar surface placed at z = 0 for different valences in an electrolyte at fixed charge
molarity (and hence fixed λ∗D) containing only one ion pair. The dashed lines represent
the corresponding Debye lengths.

where

λ∗D ≡
√

ǫkBT

2e2cb∗
, (A.13)

is the standard Debye length introduced in Eq. (2.17) with co = cb∗ . The Debye length
for a system containing only one type of cation and anion, corresponding to N = 1 in
Eq. (A.12), with valences N+ and N−, respectively, is

λD
(
I
)
= λ∗D

(
cb∗
)

√

2

N+ +N−
. (A.14)

Now let the two types of ions have the same valence N . The Debye length then reduces
to Eq. (2.17) as expected.

The charge molarity is very advantegous since the form of the Debye length as given
in Eq. (A.13) provides comparability of systems with ions of high valence to systems with
ions of low valence by keeping the total charge molarity, that is, the total number of charges
per unit volume in the bulk constant. This allows for the following analysis of the change
in the screening ability of the ions when e.g. collecting more charge on fewer particles.
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A.1.3 The Electric Potential for Constant Charge Molarity

The potential at a distance z away from the wall for arbitrary combinations of valences in
a specie consisting of one ion pair can be found by inserting Eq. (A.14) into Eq. (A.10).
Impose the boundary conditions that the potential must be ζ at the wall and decay to zero
at infinity, and solve for the potential as a function of z. The result is

φ(z) = ζ exp

(

− z

λD(N+, N−)

)

, (A.15)

and is plotted for a constant charge molarity cb∗ in Fig. A.2 for different valence combina-
tions. We have assumed that the ζ potential is independent of the ionic strength which
we show in later chapters is not the case confer Fig. 4.11. Since the Debye length is inde-
pendent of the ζ potential the assumption will not affect our results in this section. Note
that Eq. (A.15) is symmetric in N+ and N− which is a result of Eq. (A.8) being invariant
to interchanging the signs of the ions. Furthermore, all combinations with the same sum
of N+ and N− yield the same result. The abscissa is the distance from the wall in units
of the standard Debye length defined in Eq. (A.13), and the logarithmic ordinate is the
potential in units of the ζ potential always present at the wall. The semilogarithmic plot

turns Eq. (A.15) into straight lines each with slope −
{
1
2 (N+,i +N−,i)

} 1
2 . Since the ζ

potential is assumed independent of the species present in the fluid the potential should
be unity for all graphs when z/λ∗D = 0, which is also seen to be the case. The vertical lines
represent the Debye length of the graph with matching color.

The results suggest that distributing a certain fixed amount of charge on fewer ions, that
is, increasing the valence number of each individual ion and at the same time reducing
the molar concentration to keep cb∗ fixed, decreases the Debye length. On the contrary,
distributing a certain fixed amount of charges such that each ion gets as few as possible
(unity being the lower limit) increases the Debye length. These effects can be understood
by going back to the expression for the chemical potential, Eq. (2.8), here given for the
counterion with the third term having the same sign as the charge of the counterion

µ(z) = µ0,± + kBT ln

(
c(z)

co

)

︸ ︷︷ ︸

Entropy contribution

±Neφ(z).
︸ ︷︷ ︸

Electric potential contribution

(A.16)

As indicated in Eq. (A.16) the diffusive layer can be thought of as the result of two oppos-
ing energies in equilibrium, namely the entropy energy and the electric potential energy.
Assume now that an electrolyte of concentration co contacts a neutral wall. The counteri-
ons will distribute themselves homogeneously throughout space and the chemical potential
is µ(z) = µ0,+. Let now µ0,+ = 0.1 At time t0 = 0+ a negative wall potential is suddenly
switched on and the chemical potential in this instant becomes

µ(z) = −Ne|φa| (z <∞), (A.17)

1or equivalently define a new chemical potential µscaled(z) which is zero when the electric potential is
zero.
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Figure A.3: Illustration supporting chemical potential arguments of why ions of higher
valence lead to a lower Debye length. The brown area is the wall with white negative wall
ions. The counterions are the blue circles. In each figure the chemical potential and its
sign is stated (green equation). (a) is the system at time t0 = 0+, (b) the system at time
t1 > t0, and (c) the system at time t2 > t1. The orange arrows indicate the temporal
development of the system.

see Fig. A.3(a). Since µ(z) < 0 the system will spontaneously begin adding particles from
the bulk (infinite reservoir) to different points in space. Consider specifically one such point
z1. When adding an extra particle to z1 the concentration becomes c(z1) and since this is
greater than co a positive entropy term arises in the chemical potential and the potential
energy changes

µ(z1) = kBT ln

(
cb
ca

)

−Ne|φb|. (A.18)

If µ(z1) < 0 after this particle addition the particle will be moved, see Fig. A.3(b). Adding
another particle to z1 increases the concentration to cc and changes the potential so

µ(z1) = kBT ln

(
cc
ca

)

−Ne|φc|. (A.19)

This time though, the entropy term becomes larger than the negative potential term which
makes the chemical potential positive µ(z1) > 0 if the particle is moved see Fig. A.3(c).
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Since this is equivalent to a positive change in Gibbs free energy confer Eq. (2.7) it is not
favorable for the system to move the particle and the concentration at z1 has reached its
equilibrium value c(z1). Finally, the potential term in µ(z) becomes increasingly negative
with the counterion valence allowing the concentration of ions everywhere to increase for
higher valence counterions. A higher concentration of counterions each with more charge
screens the wall more effectively and the Debye length will decrease. When the co-ions
have higher valence they are expelled more from the wall leaving the counterions in the
diffusive layer only having to screen the wall which is more effective decreasing the Debye
length.

A.2 Debye Length for a Double Pair Electrolyte

We move on to study an electrolyte containing two ion pairs in thermal equilibrium with
a wall. The first electrolyte is assumed to dissociate into monovalent ions as is the case
with e.g. the salt KCl splitting into K+ and Cl−. The second electrolyte dissociates into
one divalent cation and two monovalent anions as could be the case for e.g. the salt CaI2
splitting into one Ca2+ ion and two I− ions. From Eq. (A.5) the bulk concentration of one
electrolyte’s cation can be expressed in terms of the other

cCa2+ =
1

NCa2+

(

cb∗ −NK+cbK+

)

, and cK+ =
1

NK+

(

cb∗ −NCa2+c
b
Ca2+

)

. (A.20)

The ratio of the Debye length λD to λ∗D is found from Eq. (A.12) with N = 2 and using
Eq. (A.1)

λD
λ∗D

=
√
2

[

(NK+ +NCl−)

(

1−
NCa2+c

b
Ca2+

cb∗

)

+ (NCa2+ +NI−)

(

1−
NK+cb

K+

cb∗

)]− 1
2

.

Inserting NK+ = NCl− = NI− = 1, NCa2+ = 2, and using Eq. (A.20) to eliminate cCa2+ the
ratio becomes a function of cb

K+

λD
λ∗D

(
cb
K+

)
=

√
2

[

2

(

1−
2cb

Ca2+

cb∗

)

+ 3

(

1−
cb
K+

cb∗

)]− 1
2

=
√
2

(

3−
cb
K+

cb∗

)− 1
2

, cb
Ca2+

=
1

2

(

cb∗ − cb
K+

)

. (A.21)

Similarly

λD
λ∗D

(
cb
Ca2+

)
=

(

1 +
cb
Ca2+

cb∗

)− 1
2

, cb
K+ = cb∗ − 2cb

Ca2+
. (A.22)

Eq. (A.21) should be understood as follows: given a concentration of K+ the concentration
of Ca2+ is immediately determined because the charge molarity is constant. If instead
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Figure A.4: The relative Debye length λD/λ
∗
D plotted versus the bulk concentration for

electrolytes consisting of different pairs. The charge molarity cb∗ is kept constant which
couples the two graphs: when a cation concentration has been determined on the blue
(black) graph, the intersection of a horizontal line from this point with the black (blue)
graph, determines the concentration of the other cation. The dashed lines indicate the
Debye length when only one of the electrolytes is present. The drawings in the far right
shows a simplified picture of the general trend in the position of ions with different valences.

the concentration of Ca2+ is known Eq. (A.22) determines the concentration of K+ in a
similar way. A plot of Eqs. (A.21) and (A.22) is seen in Fig. A.4. For a given Debye length
ratio λD/λ

∗
D the concentration of each cation can be found by reading the graph horizon-

tally. E.g. for λD/λ
∗
D = 0.9 in the plot the concentration ratio for K+: cb

K+/c
b,max

K+ ≃ 0.53,

and for Ca2+: cb
Ca2+

/cb,max

K+ ≃ 0.24. Note that in this specific example cb,max

K+ = cb∗ . It

is seen that when only KCl is present, that is, when cb
Ca2+

= 0 the concentration ratio

cb
K+/c

b,max

K+ becomes unity because it is normalized to its own maximum. Since KCl is
a monovalent electrolyte, a solution only containing KCl should give the standard Debye
length per definition, and this is also seen to be the case. Likewise it is seen that when
only CaI2 is present, i.e. when cb

K+ = 0, the Debye length becomes
√

2/3 ≃ 0.816. This
follows immediately from Eq. (A.21). It is also seen that in this case the concentration

ratio cb
Ca2+

/cb,max

K+ is only 1/2. This is because Ca2+ has double the valence as K+ and the
charge molarity must be constant. A special case arises when the concentrations of the
cations are equal. The Debye length ratio λD/λ

∗
D here can be found from e.g. Eq. (A.22)

to be
√

3/4 ≃ 0.866. This is seen at the intersection of the two curves.

It is observed that the Debye length ratio for equal cation concentrations is closer to that
obtained in a solution only consisting of the higher valence electrolyte. This is a result of
the requirement of constant molarity. To see why, one must refer to the cartoon drawings
of the screening counterions near the negatively charged wall in Fig. A.4 to the far right.
The top drawing represents a system (a) where the solution contains only KCl, the middle
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drawing a system (b) where the cation concentrations of KCl and CaI2 are equal and the
bottom drawing a system (c) where the solution contains only CaI2. The distribution of
the ions is of course continuous, assuming point particles, but the Debye length can be
thought of as the distance at which the wall is effectively screened by the counterions as in
the early Helmholtz model. Systems (a) and (c) show a Helmholtz model of the system by
placing all the screening charge in a one Debye length distance from the wall. System (b)
shows the general trend that ions with higher positive valence will statistically be closer to
the wall confer Eq. (2.8). In system (b) the cation concentrations are equal and shows that
the charge distribution resembles system (c) more than system (a). The drawings suggest
that system (b) can loosely be thought of as a mix between 2/3 of system (c) and 1/3 of
system (a). Therefore it should be expected that the Debye length in system (b) will be
closer to that in system (c) than that in system (a) which is also seen in the graph.

A.3 Actual Concentrations in the Bulk

In this section we discuss how to calculate the actual concentrations of all ions in an elec-
trolyte in the bulk. When the electrolyte is created by the experimentalist in macroscopic
containers and when it enters the reservoirs both are on a length scale where the ions are
not affected by the potential from the walls. Therefore, everywhere in the reservoir the
concentrations are considered bulk concentrations. The concentrations in the middle of the
nanochannel are also bulk concentrations when there is no diffusive layer overlap, λD ≪ h.

The Santiago group provides a MatLab script in Ref. [14] referred to as the Santiago
script which calculates the actual concentrations of acids and bases from the pK values of
all dissociation reactions and formal concentrations of all added solutes. We have modified
this script and use it to calculate the actual bulk concentrations of the ions in our solutions.
The modified script can be seen in Appendix C.1.

The script is build upon the idea that the dissociation reactions of acids, bases, and salts
can be formulated in equivalent acid dissociation reactions. A thorough description of the
underlying theory behind the script is found in Ref. [6] and in the following section we
will state the governing equations for the actual concentrations in the bulk solution.

Governing Equations

The general form of the dissociation reaction of an acid HA is

HA ⇋ A− +H+, (A.23)

where A− is the conjugate base. Naturally, all acids and bases are on this acid dissociation
form. As examples take the dissociation reactions of the strong acid HCl and the strong
base KOH dissolved in water

HCl(s) ⇋ H+
(aq) +Cl−(aq), (A.24)

KOH(s) ⇋ OH−
(aq) +K+

(aq). (A.25)
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However, in order to model dissolved salts the dissociation reaction must be divided into
equivalent acid dissociation forms. Consider as an example the dissociation of the salt KCl

KCl(s) ⇋ Cl−(aq) +K+
(aq). (A.26)

1 mM KCl is mathematically equivalent to mixing 1 mM HCl with 1 mM KOH. Therefore,
instead of writing salt dissociations on the form Eq. (A.26) they can be written on acid
dissociaton forms as Eqs. (A.24) and (A.25).

Now let X denote a general acid. We omit the H in front of X for notational reasons.
The dissociation reactions of X into charge states Xz with valence z can be generalized as

XpX ⇋ XpX−1 +H+, KX,pX−1
, (A.27)

XpX−1 ⇋ XpX−2 +H+, KX,pX−2
, (A.28)

...

XnX+1 ⇋ XnX +H+, KX,nX
, (A.29)

where nX and pX are the minimum and maximum possible valence of the zth state, re-
spectively. The general dissociation constant for each acid reaction in Eqs. (A.27)–(A.29)
is on the form

KX,z =
cX,z cH
cX,z+1

, (A.30)

where cX,z is the concentration of the charge state Xz . The total number of dissociation
reactions each with a dissociation constant KX,z is rX = pX−nX. The set of charge states
Xz with z ∈ [nX, pX] is dubbed a family. The sum over the concentrations in the family is
the formal concentration of the acid X,

cX =

pX∑

z=nX

cX,z (mass-conservation). (A.31)

This is a conservation-of-mass relation for each family. The concentrations of dissociated
states including the hydrons and the hydroxide ions must satisfy charge neutrality in the
bulk,

∑

X

pX∑

z=nX

zcX,z + cH − cOH = 0 (bulk charge neutrality). (A.32)

The last equation needed is the autoprotolysis of water

H2O ⇋ H+ +OH−, (A.33)

with the hydron and hydroxide ion concentrations satisfying

Kw = cH cOH, (A.34)

where Kw is the self-ionization constant of water.
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The concentrations cX,z from each family X together with cH and cOH are unknowns.
The formal concentration of each family cX, information on which charge states are cre-
ated for each family, and the dissociation constant for each of these dissociation reactions
must be known. Counting the unknowns in the above equations we get

2
︸︷︷︸

cH, cOH

+
∑

X

(1 + rX)
︸ ︷︷ ︸

cX,z

. (A.35)

The number of available equations are

2
︸︷︷︸

Eqs. (A.32),(A.34)

+
∑

X

(1
︸︷︷︸

Eq. (A.31)

+ rX)
︸︷︷︸

Eq. (A.30)

, (A.36)

and is seen to be sufficient to determine the actual bulk concentrations of the system.
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Figure A.5: (a) a lin-log plot of the critical ζ potential ζc for bulk concentrations cb

between 10 µM and 1 M of the ions modeled in this thesis. The critical concentrations
have been determined from Ref. [25]. (b) solutions of the modified Poisson–Boltzmann
equation using the concentrations in Eq. (A.37) plotted at room temperature for different
ζ potentials for KCl with cb = 0.1 mM and hydrated radius 0.125 nm. For the black graph
c(0) = 5.30 × 1028 m−3, for the blue graph c(0) = 6.37 × 1028 m−3, and for the red graph
c(0) = 6.40 × 1028 m−3.

A.4 Steric Effects

The Boltzmann distribution of ions Eq. (2.11) can predict infinitely large concentrations
for sufficiently high voltages. For example, consider 1 mM NaCl at room temperature
kBT=25.9 mV and let the wall be negatively charged by an external potential source
with ζ = −1 V.2 The concentration of Na+ ions at the wall predicted by the Boltzmann
distribution is 5.86 × 1013 M = 3.5 × 1040 m−3. This correspond to an ionic center-to-

center distance of
(
3.5× 1040 m−3

)−1/3 ≃ 3× 10−14 m. The radius of the sodium atom is
approximately 0.17 nm, so the distribution clearly predicts unphysical results, and since
the Poisson–Boltzmann equation Eq. (2.23) is based on the Boltzmann distribution it
means that for sufficiently high voltages neither equation is valid. The modified Poisson–
Boltzmann equation takes into account the finite size of the ions and uses the concentration
expression Eq. (A.37) instead of Eq. (2.11). It puts an upper bound on the number of
ions able to fit into a given volume when assuming a certain way they pack together. For
a binary symmetric electrolyte the concentrations ci are [24]

ci(r) =
cbi exp

(

− Zie
kBT

φ(r)
)

1 + 2ν sinh2
(

Zie
2kBT

φ(r)
) , (A.37)

where ν = 2α3
ionc

b is the packing parameter, αion the effective ion size considered here as
the diameter of the hydrated ion but need not be, cb = cb+ = cb− in the case of a binary
electrolyte, cbi , Zi the concentration in the bulk and sign-carrying valence of the ith ion
respectively, e the elementary charge, and φ(r) is the potential at the spatial point r. The

2Normally |ζ| . 100 mV without external sources.



A.4 Steric Effects 83

atoms are assumed to pack in a face centered cubic model each atom occupying a volume
of α3

ion. The authors of Ref. [25] provide a table with values for the hydrated ion radius for
some of the most modeled ions. The maximum allowed potential at the wall before the ith
counterion concentration becomes too large can be found by isolating φ(r) in Eq. (2.11)
and evaluating it at the wall where it equals ζ per definition

ζc =
kBT

Zie

[
ln
(
cbi
)
− ln

(
cmax
i

)]
, (A.38)

where cmax
i is the largest physically possible concentration assuming the face centered cubic

packing and that the ions have the hydrated radii as given in Ref. [25].

In Fig. A.5(a) ζc is plotted versus the bulk ionic concentration for different ions mod-
eled in this thesis. A plot of solutions to the modified Poisson–Boltzmann equation using
the concentrations Eq. (A.37) for KCl of bulk concentration 0.1 mM at room temperature
with a negatively charged wall at three different potentials -0.4, -0.5, and -0.6 V can be seen
in Fig. A.5(b). The concentration at the most critical place closest to the wall is seen to
be less than its maximum allowed value. This is a consequence of the minimization of the
Helmholtz free energy. The higher the voltage the more nonlinear the problem becomes,
and this creates difficulties when simulating the concentrations. For high enough voltages
the concentration will attain its maximum value. It is also seen how the concentrations
increase in a distance further away from the wall when the potential increases.
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A.5 Derivation of Surface Coverages for the Metal Adsorp-
tion Model

In this section the expression

θi =
Kifi

1 +
∑

j Kjfj
, i, j = {SiOH+

2 ,SiOH,SiOM}, (A.39)

for the ith surface coverage will be derived. The starting point is Eqs. (3.18), (3.28), and
(3.29) also stated below

K− =
θSiO−

θSiOH
cbH exp

(

− e

kBT
φo

)

, (A.40)

K+ =
θSiOH

θSiOH+
2

cbH exp

(

− e

kBT
φo

)

, (A.41)

KM =
θSiOM

θSiO−

(
cbM
)−1

exp

(
e

kBT
φβ

)

, (A.42)

1 = θSiOH + θSiOH+
2
+ θSiO− + θSiOM. (A.43)

First, an expression for the surface coverage θSiOH+
2

will be derived. Rewriting

Eqs. (A.40)–(A.43) gives

θSiOH+
2

= θSiOH(K+)
−1cbH exp

(

− e

kBT
φo

)

, (A.44)

θSiOH = θSiO−(K−)
−1cbH exp

(

− e

kBT
φo

)

, (A.45)

θSiOM = θSiO−KM cbM exp

(

− e

kBT
φβ

)

, (A.46)

θSiO− = 1− θSiOH − θSiOH+
2
− θSiOM. (A.47)

Insert Eq. (A.45) into Eq. (A.44) to get

θSiOH+
2
= θSiO−

(
K−K+

)−1(
cbH
)2

exp

(

− 2e

kBT
φo

)

. (A.48)

Insert Eqs. (A.45) and (A.46) in Eq. (A.47) and isolate θSiO−

θSiO− =
1− θSiOH+

2

1 +KMc
b
M exp

(

− e

kBT
φβ

)

+
(
K−

)−1
cbH exp

(

− e

kBT
φo

) . (A.49)

This is inserted in Eq. (A.48) and θSiOH+
2

is isolated

θSiOH+
2
=

KSiOH+
2
fSiOH+

2

1 +KSiOMfSiOM +KSiOHfSiOH +KSiOH+
2
fSiOH+

2

, (A.50)
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where

KSiOH ≡
(
K−

)−1
, fSiOH ≡ cbH exp

(

− e

kBT
φo

)

, (A.51)

KSiOM ≡ KM, fSiOM ≡ cbM exp

(

− e

kBT
φβ

)

, (A.52)

KSiOH+
2

≡
(
K−K+

)−1
, fSiOH+

2
≡
(
cbH
)2

exp

(

− 2e

kBT
φo

)

=
(
fSiOH

)2
. (A.53)

Next, the surface coverage θSiOH will be derived. Inserting Eqs. (A.44) and (A.46) in
Eq. (A.47) and isolating θSiO− leads to

θSiO− =

1− θSiOH

[

1 +
(
K+

)−1
cbH exp

(

− e

kBT
φo

)]

1 +KMcbM exp

(

− e

kBT
φβ

) . (A.54)

Insert this in Eq. (A.45) and isolate θSiOH to get

θSiOH =
KSiOHfSiOH

1 +KSiOMfSiOM +KSiOHfSiOH +KSiOH+
2
fSiOH+

2

, (A.55)

where the definitions in Eqs. (A.51)–(A.53) have been used. Finally the surface coverage
θSiOM will be derived. By inserting Eqs. (A.45) and (A.48) in Eq. (A.47) and isolating
θSiO− gives

θSiO− =
1− θSiOM

1 +K−1
− cbH exp

(

− e

kBT
φo

)

+
(
K−K+

)−1(
cbH
)2

exp

(

− e

kBT
2φo

) . (A.56)

This is inserted in Eq. (A.46) and θSiOM is isolated leading to

θSiOM =
KSiOMfSiOM

1 +KSiOMfSiOM +KSiOHfSiOH +KSiOH+
2
fSiOH+

2

. (A.57)

By using Eq. (A.47) with the results for the three surface coverages Eqs. (A.50), (A.55),
and (A.57) the surface coverage θSiO− is

θSiO− =
(

1 +KSiOMfSiOM +KSiOHfSiOH +KSiOH+
2
fSiOH+

2

)−1
. (A.58)
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A.6 Numerical Solution of the Poisson–Boltzmann Equation

The electric potential is an essential physical quantity when studying electrokinetics in
nanofludic systems. The channels used in our work are rectangular and have a much
larger width than height w ≫ h. Therefore, we solve the Poisson–Boltzmann equation
numerically in an infinite parallel plate channel. To increase accuracy in the numerical
calculations avoiding truncation errors we make the equation dimensionless and thereby
on the order of unity.

In an infinite parallel plate channel the Poisson–Boltzmann equation Eq. (2.23) becomes
one-dimensional with z as the co-ordinate between the bounding plates

∂2zφ(z) = −e
ǫ

N∑

i=1

Zic
b
i exp

(

− Zie

kBT
φ(z)

)

. (A.59)

There are two boundary conditions for this second order ordinary differential equation.
First, the potential is ζ at the wall and second, the spatial derivative of the potential in
the mid channel is zero since the electric potential must be spatially symmetric. Place
the origin on a bounding plate parallel to its surface normal then the boundary conditions
become

φ(0) = ζ, ∂zφ

(
h

2

)

= 0. (A.60)

Define a dimensionless potential

φ̂(z) ≡ e

kBT
φ(z), (A.61)

in terms of the ratio of electric potential energy to thermal energy. Define also a dimen-
sionless position co-ordinate

ẑ ≡ z

λD
, (A.62)

in terms of the characteristic length over which the potential changes namely the Debye
length. Eq. (A.59) on dimensionless form becomes

∂̂2ẑ φ̂(ẑ) = −
N∑

i=1

Zic
b
i

2I exp
(

−Ziφ̂(ẑ)
)

, (A.63)

where the definition of the ionic strength Eq. (2.30) has been used. On dimensionless form
the boundary conditions in Eq. (A.60) become

φ̂(0) =
e

kBT
ζ, ∂̂ẑφ̂

(
h

2λD

)

= 0. (A.64)

To numerically solve Eq. (A.63) using the built-in MatLab function bvp4c the second
order ordinary differential equation must be transformed to a system of first order ordinary
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Figure A.6: (a) numerical solution of the electric potential in a parallel plate channel
versus distance from the channel wall together with the Debye–Hückel and Gouy–Chapman
solution. The number of equidistant logarithmic mesh points is 2000. The concentration
of the monovalent salt is 1 mM. The channel height is 50 nm and the ζ potential is set
to −20 mV. (b) numerical solution of the electric potential in a parallel plate channel
versus distance from channel wall together with the Debye–Hückel and Gouy–Chapman
solution. The number of equidistant logarithmic mesh points is 2000. The concentration
of the monovalent salt is 1 mM. The channel height is 100 nm and the ζ potential is set
to −120 mV. The Debye length λD is 10 nm.

differential equations. This can be done by defining

[
f1(ẑ)
f2(ẑ)

]

≡
[

φ̂(ẑ)

∂̂ẑφ̂(ẑ)

]

. (A.65)

The system of first order ordinary differential equations can then be written as

[
∂̂ẑf1(ẑ)

∂̂ẑf2(ẑ)

]

=

[
f2(ẑ)

−∑N
i=1

Zic
b
i

2I exp
(

−Ziφ̂(ẑ)
)

]

. (A.66)

The size of the electric potential is expected to decrease with an exponential behavior
away from the surface. Therefore, we set the distance between the mesh points to increase
exponentially away from the surface. We use the built-in MatLab function logspace which
distributes the points equidistant on a logarithmic scale. We lay points from 10−15 m to h/2
including zero.3 The position of the mesh points are then scaled according to Eq. (A.62).

3The Debye length of a monovalent 1 M electrolyte is about 0.3 nm. Comparing this to the distance
between the first mesh point at 0 m and the second mesh point at 10−15 m the potential decay should be
well resolved.
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Figure A.7: (a) a lin-log plot of the mean absolute relative difference MARD between
the numerical solution of the potential and the analytical Gouy–Chapman solution versus
number of mesh points. We observe convergence and from the plot choose 1000 mesh
points giving an accuracy of 0.32%. The channel height is 200 nm. The concentration of
the monovalent salt is 1 mM and the ζ potential is set to −120 mV. (b) numerical solutions
of the electric potential in parallel plate channel versus distance from the channel wall for
3585 (blue) and 3586 (red) equally logarithmic distributed mesh points. The analytical
Gouy–Chapman solution (green dashed) is plotted together with the numerical solutions.
The concentration of the monovalent salt is 1 mM. The channel height is 200 nm and the
ζ potential is set to −120 mV.

A.6.1 Comparing Numerical and Analytical Solutions

We now numerically solve the potential in a parallel plate channel for different channel
heights and ζ potentials using the MatLab script in Section C.2. In all calculations with
the bvp4c solver we use a real tolerance and absolute tolerance of 10−7. We compare
our numerical solution to the Gouy–Chapman solution Eq. (2.15) valid in parallel plate
channels for λD ≪ h and to the analytical solution in a parallel plate channel in the
Debye–Hückel limit |ζ| ≤ 26 mV Eq. (2.18).

Numerical solutions are plotted in Fig. A.6 together with the analytical Gouy–Chapman
solution Eq. (2.15) and the analytical solution valid in the Debye–Hückel limit Eq. (2.18)
for channels of different heights containing a 1 mM monovalent electrolyte. In Fig. A.6(a)
the ζ potential is set low at −20 mV and it is seen that the numerical solution follows the
analytical Debye–Hückel solution as expected. We note that the Gouy–Chapman solution
deviates from the other solutions due to the narrow channel height of 50 nm compared
to the Debye length of 10 nm. The non-zero potential in the mid channel is caused by
diffusive layer overlap. In Fig. A.6(b) the height is increased to 100 nm and the numeri-
cal solution coincides with the Gouy–Chapman solution. In the same figure we have set
ζ = −120 mV which is outside the Debye–Hückel limit so the Debye–Hückel approximated
solution in this case deviates from the other solutions. Fig. A.6 verify that our numerical
solution coincides with analytical solutions in their respective limits. At the same time we
have shown the analytical solutions outside their valid limits.
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A.6.2 Convergence Study

The number of mesh points needed to achieve a desired accuracy will be now be investi-
gated. As a measure of having achieved convergence we use the mean absolute relative
difference MARD between the numerical solution φnum and the analytical solution φanalytic

MARD =
1

P
P∑

p=1

∣
∣
∣
∣

φnum(zp)− φanalytic(zp)

φanalytic(zp)

∣
∣
∣
∣
, (A.67)

where P and zp are the number of logarithmically equidistant mesh points and the pth
mesh point, respectively. When plotting the mean absolute relative difference versus num-
ber of mesh points P the Gouy–Chapman solution is chosen as the analytical solution since
the ζ potentials treated in this thesis are generally outside the Debye–Hückel range. We
choose a 200 nm high channel containing a monovalent electrolyte of concentration 1 mM
and the ζ potential is −120 mV. The mean absolute relative difference difference is plotted
versus number of mesh points in Fig. A.7(a). The range of mesh points spans from 7 to
3500. The solver cannot solve the problem below 7 mesh points. For 1000 and 2000 mesh
points the mean absolute relative difference is about 0.32% and 0.30%, respectively. We
want as few mesh points as possible with the highest possible accuracy so we choose 1000
mesh points in our thesis.

We have plotted the numerical solution of the potential for two different number of mesh
points together with the analytical Gouy–Chapman solution in Fig. A.7(b). We note that
the solver returns a solution deviating significantly from the expected analytical solution
when the number of mesh points exceeds 3585 in the case presented here. We observe
a noticeable characteristic sharp break off in the incorrect solution. Therefore, when we
solve the potential in the channel we plot it together with the Gouy–Chapman solution
which will reveal any errors when solving the potential.
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A.7 The Debye Length versus KCl Bulk Concentration
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Figure A.8: A log-log plot of the Debye length versus KCl bulk concentration.
11.8 × 10−2 µM CO2 is added to the KCl solution so pH = 5.68.
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Figure A.9: (a) the equivalent conductivity of KCl ΛKCl plotted versus
√
cKCl together

with a linear fit of the Kohlrausch law Eq. (A.69). The correlation coefficient of the fit
R2 is 0.993. Experimental data is from Table A.1. (b) a log-log plot of the Kohlrausch
conductivity Eq. (A.70) plotted versus KCl concentration together with the conductivity
assuming the ionic mobilities to be independent of ionic strength. The relative error be-
tween the two conductivities versus KCl concentration is shown in the inset. The mobilities
are found in Table B.2 in Appendix B, Λo = 14.88 Sm−1 M−1, and kK = 6.65 Sm−1 M−3/2.

A.8 The Kohlrausch Law

The mobility of ions in a solution depends on the ionic strength of the solution. For high
ionic strengths the ions will be surrounded by screening clouds of counterions of thickness
λD. When the ions move these screening clouds exert drag forces on the ions. Furthermore,
the screening cloud of counterions around each ion will be polarized due to the external
electric field reducing the local electric field experienced by the ion [26]. Therefore, the
mobility is reduced for high ionic strengths.

For an electrolyte define the equivalent conductivity as [27]

Λ ≡ σ

c
, (A.68)

where σ is its conductivity and c its concentration. The Kohlrausch law states

Λ = Λo − kK
√
c, (A.69)

where Λo is the equivalent conductivity at infinite dilution and kK is the Kohlrausch coef-
ficient. For low electrolyte concentrations Λ ≈ Λo and the conductivity scales as σ = Λoc.
From the Kohlrausch law the conductivity of an electrolyte is

σ = Λoc− kKc
3/2. (A.70)

We will determine Λo and kK for a KCl solution. Experimental data from Ref. [28] giving
the equivalent conductivity of KCl for various KCl concentrations is given in Table A.1.
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The Kohlrausch law has been fitted to the experimental data in Fig. A.9(a). For KCl we
find that Λo = 14.88 Sm−1 M−1 and kK = 6.65 Sm−1 M−3/2. Using these values the pre-
dicted Kohlrausch conductivity for KCl is plotted versus KCl concentration in Fig. A.9(b)
together with the uncorrected conductivities calculated from the mobilities of K+ and Cl−

in Table B.2 in Appendix B. The relative error between the two conductivities is seen
in the inset of Fig. A.9(b). At KCl concentrations of 100 mM, 10 mM, and 1.0 mM the
relative errors between uncorrected and corrected conductivities are 17%, 5.4%, and 2.1%,
respectively.

cKCl [M] 0 0.0005 0.001 0.005 0.01 0.02 0.05 0.1

ΛKCl [S m−1 M−1] 14.99 14.78 14.70 14.36 14.13 13.83 13.34 12.90

Table A.1: The equivalent conductivity of KCl for different KCl concentrations. The data
is from Ref. [28].
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Figure A.10: φd plotted versus number of iterations for two different nanochannel heights
h. The nanochannel contains deionized water with absorbed CO2. Model parameters are
found in Table B.3 in Appendix B except pK− which is 6.64 confer Table 3.3.

A.9 Surface Charge Density Dependence on Diffusive Layer
Overlap

When calculating the surface charge density in the diffusive layer δd for the 2pK-model
in Section 3.3 and the metal adsorption model in Section 3.4 the electric potential in the
center of the channel φm was assumed zero confer Eq. (2.28). In other words we assume no
diffuse layer overlap equivalent to assuming λD ≪ h but this assumption will generally not
hold for nanochannels containing a solution of very low bulk concentrations4 (. 0.1 mM).

In order to solve the models taking into account diffusive layer overlap the surface charge
density in Eq. (2.28) of the silica surface must be replaced by the more general expression
Eq. (2.27), i.e.

δd = −sgn (φd)

{

2ǫkBT
N∑

i

cbi

[

exp

(

− Zie

kBT
φd

)

− exp

(

− Zie

kBT
φm

)]}
1
2

. (A.71)

It is seen that the surface charge density in the diffusive layer δd changes with φm. The
implementation of the diffusive layer overlap is identical for both models so we will here
only describe how to implement it in the 2pK-model. We incorporate the calculation of
φm self-consistently in our way of solving the φd potential. The implementation is inspired
by Ref. [16] and described in the following procedure

1) Assume φm = 0 and solve Eq. (3.26) for φd

4A 0.1 mM KCl solution has a Debye length of about 30 nm. For deionized water with absorbed CO2

λD ∼ 211 nm (pH = 5.68). Without absorbed CO2 λD ∼ 963 nm (pH = 7.00).
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2) Solve the potential profile and determine φm, confer Appendix A.6

3) Eqs. (3.26b) and (3.26c) are solved for φd using Eq. (A.71) with φm from step 2

4) Steps 2 and 3 are repeated until φm converges5

φm depends on the channel height which leads to a channel height dependent δd potential.
The electric potential φd is plotted in Fig. A.10 versus the number of iterations for two
different channel heights h. The channel contains deionized water with absorbed CO2.
The dependence of φd on channel height is observed in the figure. In iteration step 1 the
mid potential is assumed zero for both heights so the potentials are expected to coincide
which is verified in the figure but for the following iterations the potentials deviate from
each other since the mid potential φm depends on height. We observe that the changes
in φd due to the non-zero mid potential φm are about −2.0 mV and −2.7 mV for the 200
nm and 165 nm high channel, respectively. As expected, the change in the φd potential is
greatest for the channel of smallest height where the diffusive layer overlap is greatest.

5φm has converged when the absolute relative difference between the new value and the previous is
below a specified threshold value. We use a threshold value of 10−4.
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A.10 Features of the Conductance Calculation

In this section we investigate how the conductance curve in Fig. 4.2 changes when we leave
out a features of the system while keeping the rest. The features we choose to leave out of
the model one by one are

1 CO2 absorption

2 Diffusive layer overlap i.e. a non-zero φm

3 Advection conductance contribution

4 The immobile layer

1 Leaving out CO2 Absorption

Leaving out the absorption of CO2 brings the pH of the KCl solution to 7 instead of 5.68
and slightly modifies the ionic strength. The result is the blue curve in Fig. A.11. Without
absorbed CO2 the valley moves toward lower concentrations. The conductance curve is
generally higher than when taking into account absorbed CO2 which can be explained
by the reduced ionic strength increasing the Debye length and hence the concentration
elevation throughout the channel. Furthermore, fewer ions are present in the channel to
screen the wall so size of the ζ potential increases elevating more counterions and thereby
increases the conductance. The reason why the valley moves toward lower concentrations
is that fewer hydrons are present so the KCl bulk concentration has to decrease even more
before the hydrons begin to dominate as compared to a channel with a large hydron bulk
concentration.

2 Neglecting Diffusive Layer Overlap

We neglect the diffusive layer overlap when calculating the surface charge density confer
Appendix A.9 by assuming that the mid potential φm is zero. The result is the green
dashed curve in Fig. A.11 on top of the full black curve. From Fig. A.10 we estimate that
for a 200 nm high channel at infinite dilution (no KCl salt) the change in φd by accounting
for diffusive layer overlap is less than 2%. We see that this is not enough to affect the
conductance curve.

3 Leaving out the Advection Conductance Contribution

Since the advection conductance is a positive addition to the total conductance we expect
a general decrease in conductance when leaving out this contribution. This is also seen to
be the case in Fig. A.11 where the conductance without advection contribution (red curve)
is below the full calculation (black curve).
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Figure A.11: A log-log plot of channel conductance versus KCl bulk concentration with
the KCl bulk conductance (black dashed line) when taking out different model features:
all features (black full curve), no absorbed CO2 (blue curve), assuming zero mid potential
(green dashed curve), no advection conductance (red curve), no immobile layer (light blue
curve). The mobilities and model parameters can be seen in Table B.2 and Table B.3,
respectively, in Appendix B. The channel has height 200 nm.

4 Removing the Immobile Layer

We remove the immobile layer by letting the Stern capacitance Cs become infinite. The
effect on the conductance curve can be seen in Fig. A.11. Removing the immobile layer
increases the size of φd to the size of φo and the 2pK-model changes from being based
on the Gouy–Chapman–Stern picture to the Gouy–Chapman picture confer the models in
Fig. 1.1. The conductance is increased considerably over the entire concentration range
and it moves the bulk regime to higher KCl bulk concentrations. The reason is that the
higher φd value increases the elevation of counterions which increases the conductance. We
note that at high concentrations the Debye length is very small compared to the height but
the large potential is still able to elevate the counterion concentrations in the thin diffusive
layers enough for them to dominate the conductance over the bulk region in the channel.
Recall that the Stern capacitance was originally introduced because the models predicted
too large ζ potentials when compared to experiments [9].

Summary

The absorbed CO2 and the Stern capacitance Cs are the most important features when
calculating the conductance for various KCl bulk concentrations.
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Figure A.12: Site coverages versus KCl bulk concentration for different values of aminosi-
lane coverage. The mobilities and model parameters can be seen in Table B.2 and Ta-
ble B.3, respectively, in Appendix B. The channel height is 200 nm. (a) a lin-log plot of
SiO− site coverage. (b) a log-log plot of SiOH site coverage. (c) a log-log plot of SiOH+

2

site coverage.
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Appendix B

Various Tables

B.1 Nature Constants

e [C] ǫ0 [F m−1] ǫwater
r [29] kBT [J] NA [mol−1] F [C mol−1] Kw [M2] η [Pa s]

1.602× 10−19 8.85× 10−12 78 0.0259 e 6.022× 1023 9.65× 104 10−14 1.0× 103

Table B.1: Nature constants. From left to right: elementary charge, permittivity of
vacuum, relative permittivity of water (T = 25◦C), thermal energy (T = 25◦C), Avo-
gadro’s number, Faraday’s constant, self-ionization constant of water, and viscosity of
water (T = 20◦C).

B.2 Ion Mobilities

H+ [30] OH− [30] K+ [30] Cl− [30] HCO−

3 [6] CO2−
3 [6]

Mobility [m2 V−1 s−1] 3.62× 10−7 2.05× 10−7 7.62× 10−8 7.91× 10−8 4.61× 10−8 7.18× 10−8

Table B.2: Ion mobilities at T = 25◦C. From left to right: hydron, hydroxide ion, potassium
ion, chloride ion, bicarbonate ion, and carbonate ion.
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B.3 Parameters for Conductance Calculation Using the 2pK-
model

w [m] L [m] Γtot [sites nm−2] pK
−
[M] pK+ [M] cH2CO3

[M] Cs [F m−2]

5× 10−6 1.2× 10−2 5 2.8 -1.64 1.18× 10−5 0.2

Table B.3: Channel parameters for the 2pK-model: channel width, channel length, total
number of chargeable sites, logarithmic surface dissociation constants related to the neg-
ative SiO− sites and positive SiOH+

2 sites, respectively, formal concentration of H2CO3,
and Stern capacitance.

B.4 Input/Output Parameters for the Metal Adsorption Model

Input Output

Lab input Parameter Symbol

Parameter Symbol Potentials (φo, φβ, φd)

Channel geometry (height, width, length) (h,w, L) (o-plane, β-plane, d-plane)

Temperature T Surface charge densities (δo, δβ, δd)

Formal concentrations of all species cformal (o-plane, β-plane, d-plane)

Literature Input Actual concentrations cactual

Parameter Symbol of all species

pKa for the silica channel wall reaction: pK
−

Transverse concentration ci(z)

SiOH ⇋ SiO− + H+ profile for the ith ion

pKa for the silica channel wall reaction: pK+ Silica surface PZC

SiOH+
2 ⇋ SiOH + H+ point of zero charge

Stern capacitances (inner, outer) (C1, C2) Bulk solution acidity pHb

Total number of chargeable sites SiOH Γtot Debye length λD

Charge states for all species in the bulk - Transverse potential profile φ(z)

Dissociation constant for all bulk reactions pKa

pKa for the silica channel wall reaction: pKM

SiOM ⇋ SiO− + M+

Table B.4: Input/output parameters for the metal adsorption model. The inputs are
divided into values obtained from laboratory measurements (lab input) and values obtained
from the literature (literature input).
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B.5 Experimental Data

In this section we provide the experimental conductance data used in this thesis. The data
is recorded in the Pennathur Laboratory at the University of California, Santa Barbara in
the fall 2009 and the spring 2010. The data sets of experimentalist David A. Herrick can
be seen in Tables B.5 and B.6. The data sets of experimentalist Andrew Crumrine are in
Tables B.7–B.9



102 Various Tables

David A. Herrick - data set 1 - UCSB Nanolab

Concentration [mM] Voltage [V] Current [A] Conductance [S] Mean [S]/Std. dev. [S]

100 100 1.72 × 10−8 1.72× 10−10 1.67 × 10−10/3.25 × 10−12

200 3.39 × 10−8 1.70× 10−10

300 4.98 × 10−8 1.66× 10−10

400 6.60 × 10−8 1.65× 10−10

500 8.24 × 10−8 1.65× 10−10

10 100 1.49 × 10−9 1.49× 10−11 1.66 × 10−11/9.89 × 10−13

200 3.32 × 10−9 1.66× 10−11

300 5.20 × 10−9 1.73× 10−11

400 6.79 × 10−9 1.70× 10−11

500 8.63 × 10−9 1.73× 10−11

1 100 3.72 × 10−10 3.72× 10−12 4.24 × 10−12/3.02 × 10−13

200 8.65 × 10−10 4.33× 10−12

300 1.29 × 10−9 4.29× 10−12

400 1.75 × 10−9 4.37× 10−12

500 2.25 × 10−9 4.50× 10−12

0.5 100 1.80 × 10−10 1.80× 10−12 2.78 × 10−12/5.95 × 10−13

200 5.41 × 10−10 2.71× 10−12

300 8.85 × 10−10 2.95× 10−12

400 1.26 × 10−9 3.16× 10−12

500 1.65 × 10−9 3.31× 10−12

0.1 100 (*) 2.69 × 10−12/3.75 × 10−13

200 4.39 × 10−10 2.20× 10−12

300 7.86 × 10−10 2.62× 10−12

400 1.15 × 10−9 2.88× 10−12

500 1.53 × 10−9 3.06× 10−12

0.05 100 1.85 × 10−10 1.85× 10−12 2.79 × 10−12/5.79 × 10−13

200 5.35 × 10−10 2.68× 10−12

300 8.91 × 10−10 2.97× 10−12

400 1.26 × 10−9 3.16× 10−12

500 1.66 × 10−9 3.32× 10−12

0.01 100 (*) 2.44 × 10−12/3.34 × 10−13

200 3.96 × 10−10 1.98× 10−12

300 7.23 × 10−10 2.41× 10−12

400 1.07 × 10−9 2.68× 10−12

500 1.35 × 10−9 2.70× 10−12

Table B.5: Experimental data set 1 from David A. Herrick. First column shows the
concentrations, second column the source voltage, third column the current for each voltage
step, fourth column the conductance for each voltage, and the fifth column shows the mean
conductance and standard deviation for the concentration. (*): data point excluded by
experimentalist.
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David A. Herrick - data set 2 - UCSB Nanolab

Concentration [mM] Voltage [V] Current [A] Conductance [S] Mean [S]/Std. dev. [S]

500 100 (*) 7.10 × 10−10/3.38 × 10−10

200 1.34 × 10−7 3.21× 10−10

300 2.00 × 10−7 5.73× 10−10

400 2.65 × 10−7 8.44× 10−10

500 3.27 × 10−7 1.10× 10−9

0.1 100 (*) 1.96 × 10−12/2.66 × 10−13

200 3.21 × 10−10 1.61× 10−12

300 5.73 × 10−10 1.91× 10−12

400 8.44 × 10−10 2.11× 10−12

500 1.10 × 10−9 2.21× 10−12

0.05 100 (*) 2.07 × 10−12/2.59 × 10−13

200 3.44 × 10−10 1.72× 10−12

300 6.09 × 10−10 2.03× 10−12

400 8.76 × 10−10 2.19× 10−12

500 1.16 × 10−9 2.32× 10−12

0.01 100 (*) 2.12 × 10−12/2.94 × 10−13

200 3.47 × 10−10 1.74× 10−12

300 6.14 × 10−10 2.05× 10−12

400 9.16 × 10−10 2.29× 10−12

500 1.20 × 10−9 2.40× 10−12

Table B.6: Experimental data set 2 from David A. Herrick. First column shows the
concentrations, second column the source voltage, third column the current for each voltage
step, fourth column the conductance for each voltage, and the fifth column shows the mean
conductance and standard deviation for the concentration. (*): data point excluded by
experimentalist.
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Andrew Crumrine - data set 1 - UCSB Nanolab

Conc. [mM] Trial Avg. cond. [S] Std. dev. [S] Overall cond./Std. dev. [S]

100 1 1.70× 10−10 6.50 × 10−12 1.62 × 10−10/1.13 × 10−11

2 1.54× 10−10 9.86 × 10−12

10 1 1.96× 10−11 6.28 × 10−14 2.02 × 10−11/5.21 × 10−13

2 2.05× 10−11 1.25 × 10−13

3 2.05× 10−11 1.31 × 10−12

1 1-7 (*) 1.46 × 10−12/2.29 × 10−13

8 1.26× 10−12 2.45 × 10−13

9 1.48× 10−12 2.50 × 10−13

10 1.40× 10−12 3.77 × 10−13

11 1.84× 10−12 2.56 × 10−13

12 1.33× 10−12 2.78 × 10−13

0.5 1-4 (*) 1.54 × 10−12/1.54 × 10−13

5 1.71× 10−12 3.20 × 10−13

6 1.40× 10−12 1.69 × 10−13

7 1.51× 10−12 1.11 × 10−13

0.1 1 4.38× 10−13 8.18 × 10−14 4.93 × 10−13/5.08 × 10−14

2 5.03× 10−13 8.04 × 10−15

3 5.38× 10−13 7.69 × 10−15

Table B.7: Experimental data set 1 from Andrew Crumrine. First column shows the
concentrations, second column the trial number, third column the average conductance for
each trial, fourth column the standard deviation on each average conductance, and the
fifth column shows the overall conductance and standard deviation for the concentration.
(*): data point excluded by experimentalist.
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Andrew Crumrine - data set 2 (0.1 mM HCl added) - UCSB Nanolab

[Table 1/2]

Conc. [mM] Trial Avg. cond. [S] Std. dev. [S] Overall cond./Std. dev. [S]

100 1 (*) 1.50× 10−10/2.65 × 10−12

2 1.51× 10−10 9.53 × 10−12

3 1.54× 10−10 4.31 × 10−12

4 1.49× 10−10 1.21 × 10−12

5 1.51× 10−10 2.31 × 10−12

6 1.47× 10−10 1.02 × 10−12

50 1 (*) 7.15× 10−11/3.23 × 10−12

2 6.69× 10−11 2.24 × 10−12

3 7.09× 10−11 4.00 × 10−13

4 7.53× 10−11 4.24 × 10−12

5 7.39× 10−11 5.52 × 10−12

6 7.07× 10−11 2.69 × 10−12

10 1 (*) 1.67× 10−11/2.19 × 10−13

2 1.64× 10−11 4.24 × 10−13

3 1.65× 10−11 5.59 × 10−13

4 1.69× 10−11 5.16 × 10−13

5 1.67× 10−11 7.73 × 10−13

6 1.69× 10−11 5.32 × 10−13

5 1 (*) 7.81× 10−12/3.02 × 10−13

2 8.16× 10−12 1.07 × 10−13

3 7.52× 10−12 1.58 × 10−13

4 8.03× 10−12 1.18 × 10−13

5 7.49× 10−12 3.22 × 10−13

6 7.88× 10−12 1.52 × 10−13

1 1 1.33× 10−12 2.45 × 10−14 1.42× 10−12/9.45 × 10−14

2 1.35× 10−12 5.27 × 10−14

3 1.34× 10−12 1.10 × 10−13

4 1.48× 10−12 3.44 × 10−14

5 1.50× 10−12 3.87 × 10−14

6 1.54× 10−12 3.94 × 10−14

Table B.8: [Table 1/2] Experimental data set 2 from Andrew Crumrine. First column shows
the concentrations, second column the trial number, third column the average conductance
for each trial, fourth column the standard deviation on each average conductance, and the
fifth column shows the overall conductance and standard deviation for the concentration.
(*): data point excluded by experimentalist.
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Andrew Crumrine - data set 2 (0.1 mM HCl added) - UCSB Nanolab

[Table 2/2]

Conc. [mM] Trial Avg. cond. [S] Std. dev. [S] Overall cond./Std. dev. [S]

0.5 1 9.06× 10−13 9.56 × 10−14 8.90 × 10−13/1.44 × 10−14

2 8.88× 10−13 1.28 × 10−14

3 8.37× 10−13 4.25 × 10−14

4 8.71× 10−13 2.55 × 10−14

5 8.93× 10−13 3.06 × 10−14

6 9.70× 10−13 5.40 × 10−14

0.1 1 (*) 5.09 × 10−13/1.67 × 10−13

2 5.38× 10−13 1.04 × 10−14

3 5.48× 10−13 8.65 × 10−15

4 5.36× 10−13 1.01 × 10−14

5 5.57× 10−13 8.50 × 10−15

6 5.61× 10−13 6.42 × 10−15

7 5.58× 10−13 7.16 × 10−15

8 5.63× 10−13 6.07 × 10−15

9 5.72× 10−13 1.04 × 10−14

10 5.74× 10−13 9.90 × 10−15

11 5.69× 10−13 8.17 × 10−15

12 5.74× 10−13 8.67 × 10−15

0.05 1-2 (*) 6.35 × 10−13/7.53 × 10−15

3 6.23× 10−13 5.66 × 10−15

4 (*)

5 6.37× 10−13 6.00 × 10−15

6 6.35× 10−13 1.46 × 10−15

7 6.36× 10−13 4.34 × 10−15

8 6.44× 10−13 5.25 × 10−15

0.02 1 6.07× 10−13 9.70 × 10−15 6.10 × 10−13/8.95 × 10−15

2 6.00× 10−13 2.74 × 10−14

3 6.20× 10−13 1.20 × 10−14

4 6.07× 10−13 2.49 × 10−14

5-6 (*)

7 6.21× 10−13 2.92 × 10−14

8 6.02× 10−13 2.28 × 10−14

Table B.9: [Table 2/2] Experimental data set 2 from Andrew Crumrine. (*): data point
excluded by experimentalist.
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MatLab Scripts

C.1 The Modified Santiago Script

1 function [pHb,zMat,cizMat] = Santiago(INP,cTot,Kw)
2 % The modified Santiago Script calculates the bulk pH and ana lytical
3 % concentration of each specie in the solution.
4 % Input: Matrix containing the pKa value and valence of each
5 % possible valence state of the specie to be created in the sol ution,
6 % vector containing the formal concentration of each added s pecie,
7 % and the dissociation constant for water.
8 % Output: The bulk pH in the reservoir, a matrix containing al l valence
9 % states of the species, and a matrix containing all

10 % analytical concentrations of the species.
11

12 Nspecies=size(INP,1); %Number of species added.
13 % PREPARE L Matrix
14 %−−−−−−−−−−−−−−−−−−
15 % Calculate the number of columns required for the matrix.
16 % this is determined by the maximum value of (p_i − n_i) for all species
17 % p_i − n_i = difference between most positive and most negative val ence.
18 MaxCol=−Inf;
19 for j=1:size(INP,1)
20 MaxCol=max([MaxCol,max(INP{j}(1:2: end)) −min(INP{j}(1:2: end))+1]);
21 end
22

23 % Initialize matrices to zero
24 LMat=zeros(size(INP,1),MaxCol);
25 KaMat=LMat;
26

27 % Loop on species
28 for j=1:Nspecies
29 zList=INP{j}(1:2: end ); % Get list of valences
30 pKaList=INP{j}(2:2: end); % Get list of pKa
31 KaList=10.̂ ( −pKaList); % Create list of Ka
32 % Sort the valence in increasing order, and get indices
33 [zList,Index]=sort(zList);
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34 %Use indices to sort the other list in a consistent order
35 KaList=KaList(Index);
36

37

38 % Find indices where the valence value is +1 and −1
39 % (at least one of these valences must always for any species u sed):
40 Ip1=find(zList==1); Im1=find(zList== −1);
41 % Add the neutral state to the list of valence, between negati ve
42 % and positive values
43 zList = [zList(1:Im1),0,zList(Ip1: end )];
44 % 1 added to the list of Ka values for math reasons
45 % (see formulation for 'L' matrix)
46 KaList = [KaList(1:Im1),1,KaList(Ip1: end)];
47 % Put all lists into corresponding matrices.
48 zMat(j,1:length(zList))=zList;
49 KaMat(j,1:length(KaList))=zList;
50

51 zListArranged{j}=zList;
52 % Get minimum and maximum valences for this species
53 % and construct the matrix L
54

55 nj=min(zList); pj=max(zList);
56 for z=zList
57 if z<0
58 LMat(j,z −nj+1)=prod(KaList(z −nj+1: −nj));
59 elseif z>0
60 LMat(j,z −nj+1)=1/prod(KaList( −nj+2:z −nj+1));
61 elseif z==0
62 LMat(j,z −nj+1)=1;
63 end %if
64 end % for z
65

66 end %for ij
67

68 % CONSTRUCT POLYNOMIALS
69 %−−−−−−−−−−−−−−−−−−−−
70 % Construct the polynomial Q by multiplying all the polynomi als in the
71 % matrix L (all rows). Multiplying polynomials is equivalen t to convolving
72 % their vectors of coefficients
73 Q1=1;
74 for j=1:size(LMat,1)
75 Q1=conv(Q1,LMat(j,:));
76 end %for j
77 Q2=[−Kw 0 1];
78 Q=conv(Q1,Q2);
79

80 % Construct the polynomials Pi
81 % Loop on all species
82 for i=1:Nspecies
83 LMatMod=LMat; % Defined Modified L Matrix, initially identical
84 % to L Matrix
85 LMatMod(i,:)=LMat(i,:). * zMat(i,:); % Modify just the row i
86

87 % convolve all rows in the LMatMod to construct the polynomia l
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88 Pi=1;
89 for kl=1:size(LMatMod,1)
90 Pi=conv(Pi,LMatMod(kl,:));
91 end %for j
92 Pi=conv([0 1],Pi);
93 PMat(i,:)=Pi; % Insert all polynomials Pi as rows in the matrix PMat
94 end %for i
95

96 % All the enries in each row are identical and equal to the tota l
97 % concentration of that specie:
98 cTotMat=repmat(cTot',1,size(PMat,2));
99 P=sum(cTotMat. * PMat,1); % The polynomial P is the sum of c_i * P_i

100

101 % Construct the final polynomial as the sum of P and Q
102 Poly=PolSum(P,Q);
103 roo=roots(fliplr(Poly)); % Find all roots of the polynomial
104 roo=roo(imag(roo)==0); % Eliminate complex solutions
105 cH=roo(roo>0); % Choose the positive solution.
106 % Note that cH is in mol/lit
107

108 pHb = −log10(cH); %pH in bulk.
109

110 PolDeg=size(LMat,2); % Polynomial degree
111 % Create vector of cH Powers (cH^0, cH^1, ... , cH^(PolDeg −1)):
112 cHPolVec=[1;cumprod(ones(PolDeg −1,1) * cH,1)];
113 % Replicate powers vector to create matrix:
114 cHMatPower=repmat(cHPolVec',[Nspecies,1]);
115 % Temporarty matrix (see formulation for c_i_z):
116 M1Mat=repmat(cTot'./(LMat * cHPolVec),[1,PolDeg]);
117 % Calculate concentration of each ionic state (valence) of e ach species:
118 cizMat=LMat. * cHMatPower. * M1Mat;
119

120 % Sum arbitrary length polynomials:
121 function out=PolSum(P1,P2)
122 % This essentially pads the shorter vecotr with zeros, and th en sums the
123 % two vectors
124 % get the length of the largest polynomial
125 Psize=max(length(P1),length(P2));
126 % Set temporary vectors of size Psize to zero.
127 P1out=zeros(1,Psize); P2out=P1out;
128 P1out(1:length(P1))=P1; % Inject P1 values into temporar vector
129 P2out(1:length(P2))=P2; % Inject P2 values into temporar vector
130 out=P1out+P2out; % sum both vectors
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C.2 MatLab Script for Solving the Poisson–Boltzmann Equa-
tion

1 function [zpos,phi] = potential2ndOrderSolverBVP4C(zetap,pHb,z Mat,cizMat, ...
2 h,lD,IS,constant)
3 % Solves the Poison −Boltzman Eq. in a infinite parallel −plate channel
4 % in the region from the wall z = 0 to mid channel z = h/2.
5 % Input: The zeta potential, the bulk pH, ionic valence matri x, bulk conc.
6 % matrix, channel height, Debye length, ionic strength
7 % vector of constants
8 % Output: zpos − grid positions
9 % phi − the electrical potential and it's derivative

10 el = constant(2); % Elementary charge (coulomb)
11 kT = constant(3); % Thermal energy (J)
12 BulkParam = [pHb , IS];
13

14 zpos = [0,logspace( −15,log10(h/2),2e3)] * 1/lD; % Exponential distributed
15 % mesh grid
16 %zpos = linspace(0,h/2,1e3); % Evenly distributed
17 % mesh grid
18

19 solinit = bvpinit(zpos,[zetap/(kT/el) 0]); % Initial mesh
20

21 options = bvpset( 'RelTol' ,1e −7, 'AbsTol' ,1e −7); % Tolerance options
22

23 phi = bvp4c(@potential2ndOrder,@potential2ndOrderBC,s olinit,options, ...
24 zetap,BulkParam,zMat,cizMat,constant);
25

26 function dphi = potential2ndOrder(z,phi,zetap,BulkParam,zMat,c izMat, ...
27 constant)
28 % The Poison −Boltzman Eq.
29 NA = constant(5); % Avogadro's number (particles/mol)
30 pHb = BulkParam(1); % Bulk pH
31 IS = BulkParam(2); % Ionic strength (m^ −3)
32

33 cHb = 10^( −pHb) * 1e3* NA; % Hydron conc. (H+) (m^ −3)
34 cOHb = 10^( −14+pHb) * 1e3* NA; % Hydroxide (OH −) conc. (m^ −3)
35 cizMat = cizMat * 1e3* NA; % Bulk conc. of species (m^ −3)
36

37 B = sum(sum(zMat. * cizMat. * exp( −zMat * phi(1)) ));
38 B = B + (1) * cHb* exp( −(1) * phi(1)) + ( −1) * cOHb* exp( −(−1) * phi(1));
39 % 1st oder ODE system (normalized)
40 dphi = [phi(2),
41 −B/(2 * IS)];
42

43 function BV = potential2ndOrderBC(phia,phib,zetap,BulkParam,zM at,cizMat, ...
44 constant)
45 el = constant(2); % Elementary charge (coulomb)
46 kT = constant(3); % Thermal energy (J)
47 BV = [phia(1) −zetap/(kT/el),phib(2)]; % Boundary condition:
48 % @ wall, phi = zeta
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49 % @ mid channel, dphi/dz = 0

C.3 MatLab Script for the 2pK-Model

1 function [sol2,delta0] = Find_zeta_2pKmodel(x01,phiMidChan,ciz Mat,zMat, ...
2 pHb,constant)
3 % Calculates the zeta potential in the channel by using fsolv e
4 % Input: Start guess on the zeta −potential, mid potential,
5 % bulk conc. of species,ionic valence of species
6 % bulk pH, constants.
7 options = optimset( 'Display' , 'iter' , 'TolFun' ,eps, 'TolX' ,eps, ...
8 'MaxFunEvals' ,1e25, 'MaxIter' ,1e3, 'Diagnostics' , 'off' , ...
9 'LevenbergMarquardt' , 'on' , 'LargeScale' , 'off' );

10

11 sol2 = fzero(@(x01)Model2pK(x01,phiMidChan,zMat,cizMa t,pHb, ...
12 constant),x01,options);
13

14 %% Find surface charge:
15 phid = sol2;
16 epsl = constant(1); % Permittivity for water. (F/m)
17 el = constant(2); % Elementary charge (coulomb)
18 kT = constant(3); % Thermal energy (J)
19 GamTot = constant(4); % Total number of chargeable sites (m^ −2)
20 NA = constant(5); % Avogadro's number (particles/mol)
21 Kpl = constant(6); % Equilibrium constant
22 % for SiOH2+< −> SiOH + H+ (Molar)
23 Kmi = constant(7); % Equilibrium constant for
24 % SiOH <−> SiO− + H+ (Molar)
25 CTot = constant(11); % Stern capacitance (F/m^2)
26 thetaAS = constant(16); % Amino silane coverage
27

28 cHb = 10^( −pHb) * 1e3* NA; % Bulk concentration of H+ (m^ −3)
29 cOHb = 10^( −14+pHb) * 1e3* NA; % Bulk concentration of OH − (m^−3)
30 cizMat = cizMat * 1e3* NA; % Concentration of electrolytes (m^ −3)
31

32 C = exp( −zMat * el/kT * phiMidChan); % Constant for non zero mid potential.
33 % Contribution of electrolytes to the sum in delta0:
34 B = sum(sum( cizMat. * (exp( −zMat * el/kT * phid) −C) ));
35 % Add contribution of H+ and OH − to the sum in delta0:
36 B = B + cHb* (exp( −(1) * el/kT * phid) −exp( −(1) * el/kT * phiMidChan)) ...
37 +cOHb* (exp( −(−1) * el/kT * phid) −exp( −(−1) * el/kT * phiMidChan));
38 % Surface charge density in 0 −plane:
39 delta0 = sign(phid) * sqrt(2 * epsl * kT) * (B)^(1/2);
40 %%
41 phi0 = phid + delta0/CTot; % Stern capacitance relation
42 cHb = cHb/(1e3 * NA); % −> (Molar)
43

44 KSiOH = Kmi^( −1);
45 fSiOH = cHb * exp( −el/kT * phi0);
46 KSiOH2 = (Kpl * Kmi)^( −1);
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47 fSiOH2 = fSiOH^2;
48

49 % SiO coverage:
50 thetaSiO = (1 −thetaAS)/(1 + KSiOH * fSiOH + KSiOH2 * fSiOH2);
51 % SiOH2 coverage:
52 thetaSiOH2 = (1 −thetaAS) * KSiOH2* fSiOH2/(1 + KSiOH * fSiOH + KSiOH2 * fSiOH2);
53 % Surface charge density in 0 −plane:
54 delta0 = el * GamTot* (thetaSiOH2 + thetaAS − thetaSiO);
55

56 function F = Model2pK(phid,phiMidChan,zMat,cizMat,pHb,constant )
57 % Calculates the zeta potential in the channel
58 % Input: Start guess on the zeta −potential, mid potential,
59 % ionic valence of species, bulk conc. of species, bulk pH,
60 % constants.
61 %% Constants:
62 epsl = constant(1); % Permittivity for water. (F/m)
63 el = constant(2); % Elementary charge (coulomb)
64 kT = constant(3); % Thermal energy (J)
65 GamTot = constant(4); % Total number of chargeable sites (m^ −2)
66 NA = constant(5); % Avogadro's number (particles/mol)
67 Kpl = constant(6); % Equilibrium constant
68 % for SiOH2+< −> SiOH + H+ (Molar)
69 Kmi = constant(7); % Equilibrium constant for
70 % SiOH <−> SiO− + H+ (Molar)
71 CTot = constant(11); % Stern capacitance (F/m^2)
72 thetaAS = constant(16); % Amino silane coverage
73

74 %% Find surface charge:
75 cHb = 10^( −pHb) * 1e3* NA; % Bulk concentration of H+ (m^ −3)
76 cOHb = 10^( −14+pHb) * 1e3* NA; % Bulk concentration of OH − (m^−3)
77 cizMat = cizMat * 1e3* NA; % Concentration of electrolytes (m^ −3)
78

79 C = exp( −zMat * el/kT * phiMidChan); % Constant for non zero mid potential.
80 % Contribution of electrolytes to the sum in delta0:
81 B = sum(sum( cizMat. * (exp( −zMat * el/kT * phid) −C) ));
82 % Add contribution of H+ and OH − to the sum in delta0:
83 B = B + cHb* (exp( −(1) * el/kT * phid) −exp( −(1) * el/kT * phiMidChan)) ...
84 +cOHb* (exp( −(−1) * el/kT * phid) −exp( −(−1) * el/kT * phiMidChan));
85 % Surface charge density in 0 −plane:
86 delta0 = sign(phid) * sqrt(2 * epsl * kT) * (B)^(1/2);
87 %%
88 phi0 = phid + delta0/CTot; % Stern capacitance relation
89

90 cHb = cHb/(1e3 * NA); % −> (Molar)
91

92 KSiOH = Kmi^( −1);
93 fSiOH = cHb * exp( −el/kT * phi0);
94 KSiOH2 = (Kpl * Kmi)^( −1);
95 fSiOH2 = fSiOH^2;
96

97 % SiO coverage:
98 thetaSiO = (1 −thetaAS)/(1 + KSiOH * fSiOH + KSiOH2 * fSiOH2);
99 % SiOH2 coverage:

100 thetaSiOH2 = (1 −thetaAS) * KSiOH2* fSiOH2/(1 + KSiOH * fSiOH + KSiOH2 * fSiOH2);
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101 % SiOH coverage:
102 thetaSiOH = (1 −thetaAS) * KSiOH* fSiOH/(1 + KSiOH * fSiOH + KSiOH2 * fSiOH2);
103

104 % The surface charge density expressed by the coverages.
105 % On the form f(zeta) = 0 to be used in fzero:
106 F = delta0 − el * GamTot* (thetaSiOH2 + thetaAS − thetaSiO);

C.4 MatLab Script for the Metal Adsorption Model

1 function sol = FindZetaMetalModel(x0,zMat,cizMat,pHb,constant)
2 % Calculates the zeta potential in the channel by using fsolv e
3 % Input: Start guess on the 2 potentials (phi0,phid),
4 % ionic valence of species, bulk conc. of species,
5 % the bulk pH, constants.
6 options = optimset( 'Display' , 'iter' , 'TolFun' ,1e −10, 'TolX' ,1e −10, ...
7 'MaxFunEvals' ,1e25, 'MaxIter' ,1e5, 'Diagnostics' , 'off' , ...
8 'LevenbergMarquardt' , 'on' , 'LargeScale' , 'off' );
9 sol = fsolve(@(x0)MetalModel(x0,zMat,cizMat,pHb,const ant),x0,options);

10

11 function F = MetalModel(x0,zMat,cizMat,pHb,constant)
12 % Calculates the zeta potential in the channel
13 % Input: Start guess on the 2 potentials (phi0,phid),
14 % ionic valence of species, bulk conc. of species,
15 % the bulk pH, constants.
16 %% Constants:
17 epsl = constant(1); % Permittivity for water. (F/m)
18 el = constant(2); % Elementary charge (coulomb)
19 kT = constant(3); % Thermal energy (J)
20 GamTot = constant(4); % Total number of chargeable sites (m^ −2)
21 NA = constant(5); % Avogadro's number (particles/mol)
22 Kpl = constant(6); % Equilibrium constant
23 % for SiOH2+< −> SiOH + H+ (Molar)
24 Kmi = constant(7); % Equilibrium constant for
25 % SiOH <−> SiO− + H+ (Molar)
26 KM = constant(8); % Equilibrium constant for
27 % SiO− + M+ <−> SiOM (Molar^ −1)
28 C1 = constant(10); % Inner Stern capacitance (F/m^2)
29 C2 = constant(11); % Outer Stern capacitance (F/m^2)
30

31 %% Startguess
32 phi0 = x0(1); % phi_0
33 phid = x0(2); % phi_d
34

35 %% Find surface charge density of the diffusion layer:
36 cHb = 10^( −pHb) * 1e3* NA; % Bulk concentration of H+ (m^ −3)
37 cOHb = 10^( −14+pHb) * 1e3* NA; % Bulk concentration of OH − (m^−3)
38 cizMat2 = cizMat * 1e3* NA; % Concentration of electrolytes (m^ −3)
39 % Contribution of electrolytes to the sum in deltad:
40 B = sum(sum( cizMat2. * (exp( −zMat * el/kT * phid) −1) ));
41 % Add contribution of H+ and OH − to the sum in deltad:
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42 B = B + cHb* (exp( −(1) * el/kT * phid) −1)+cOHb * (exp( −(−1) * el/kT * phid) −1);
43 % Surface charge density in d −plane:
44 deltad = sqrt(2 * epsl * kT) * (B)^(1/2);
45 %%
46 phib = phid − deltad/C2; % Capacitor relation
47

48 cHb = cHb/(1e3 * NA); % Bulk concentration of H+ (Molar)
49 cMb = cizMat2(1,2)/(1e3 * NA); % Bulk concentration of M+ (Molar)
50

51 KSiOH = Kmi^( −1);
52 fSiOH = cHb * exp( −el/kT * phi0);
53 KSiOM = KM;
54 fSiOM = cMb * exp( −el/kT * phib);
55 KSiOH2 = (Kpl * Kmi)^( −1);
56 fSiOH2 = fSiOH^2;
57

58 % The equations to be solved:
59 F = [ el * GamTot* (KSiOH2 * fSiOH2 − 1 − KSiOM* fSiOM)/ ... %(Eq. 1)
60 (1 + KSiOM * fSiOM + KSiOH * fSiOH + KSiOH2 * fSiOH2) −C1* (phi0 −phib), ...
61 deltad + el * GamTot* (KSiOH2 * fSiOH2 − 1)/ ... %(Eq. 2)
62 (1 + KSiOM * fSiOM + KSiOH * fSiOH + KSiOH2 * fSiOH2)];

C.5 MatLab Script for Calculating the Weighted pH

1 function [pHcWeight] = Find_pHweighted(zetap,pHb,zMat,cizMat,h , ...
2 lD,IS,constant)
3 % Calculates the weighted pH for the ionic species and plots t he
4 % Input: The zeta potential, the bulk pH, ionic valence matri x, bulk conc.
5 % matrix, channel height, Debye length,
6 % ionic strength, vector of constants
7 % Output: Weighted pH in matrix corresponding to the structu re of cizMat
8 el = constant(2); % Elementary charge (coulomb)
9 kT = constant(3); % Thermal energy (J)

10

11 %phiDH = zetap * cosh((z −h/2)/lD)/cosh(h/(2 * lD)); % (V)
12

13 % Solve the electric potential in the channel:
14 [zpos,phi1_struct] = potential2ndOrderSolverBVP4C(zet ap,pHb,zMat,cizMat, ...
15 h,lD,IS,constant);
16

17 % Evaluate potential at positions zpos:
18 phi = deval(phi1_struct,zpos,1) * (kT/el);
19

20 zpos = lD * zpos; % Rescale z position (m)
21 % Define potential as a function:
22 phiF = @(z) deval(phi1_struct,z/lD,1) * (kT/el);
23

24 Z = 1; % Ionic valence
25 % Gouy−Chapman solution of electric potential:
26 phiGC = 4 * kT/(el * Z) * atanh(tanh(Z * el * zetap/(4 * kT)) * exp( −zpos/lD));
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27

28 figure(1) % Check solved potential with Gouy −Chapman solution
29 plot(zpos,phi, 'r.' )
30 hold on
31 plot(zpos,phiGC, 'g.' )
32 hold off
33

34 pHcF = @(z) pHb + el * phiF(z)/(kT * log(10));
35

36 zMatv=zMat(:);
37 for k = 1:length(zMatv)
38 pHcWeight_vec(k) = pHb − ...
39 log10(quad(@(z) exp( −el/kT * (1+zMatv(k)) * phiF(z)),0,h/2)./ ...
40 quad(@(z)exp( −el/kT * zMatv(k) * phiF(z)),0,h/2));
41 end
42 pHcWeight = reshape(pHcWeight_vec,size(zMat,1),size(z Mat,2));
43 pHcWeight([cizMat==0]) = NaN;
44

45 plot(zpos,pHcF(zpos), ' −r' )

C.6 MatLab Script for Calculating the Conductance of

a Rectangular Nanochannel

1 function [phiMidChan, S] = Find_channel_conductance(zetap,pHb, ...
2 zMat,cizMat,muMat,h,lD,IS,constant)
3 % Solves the potential profile, determines mid channel pote ntial, and
4 % calculates the channel conductance.
5 % Input: The zeta potential, the bulk pH, ionic valence matri x, bulk conc.
6 % matrix, mobility matrix, channel height, Debye length,
7 % ionic strength, vector of constants
8 % Output: phiMidChan − mid channel potential
9 % S− channel conductance

10 epsl = constant(1); % Permittivity of water (F/m)
11 el = constant(2); % Elementary charge (coulomb)
12 kT = constant(3); % Thermal energy (J)
13 NA = constant(5); % Avogadro's number (particles/mol)
14 w = constant(14); % Channel width in [m]
15 L = constant(15); % Channel length in [m]
16 muH=362E−9; % Mobility of H+ (m^2 V^ −1 s^ −1)
17 muOH=205E−9; % Mobility of OH − (m^2 V^−1 s^ −1)
18 eta = 1e −3; % Dynamic viscosity (Pa s)
19

20 % Solve the electric potential in the channel:
21 [zpos,phi1_struct] = potential2ndOrderSolverBVP4C(zet ap,pHb,zMat,cizMat, ...
22 h,lD,IS,constant);
23

24 % Evaluate potential at positions zpos:
25 phi = deval(phi1_struct,zpos,1) * (kT/el);
26

27 zpos = lD * zpos; % Rescale z position (m)
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28 % Define potential as a function:
29 phiF = @(z) deval(phi1_struct,z/lD,1) * (kT/el);
30 phiMidChan = phi( end); % Get mid channel potential (V)
31

32 Z = 1; % Ionic valence
33 % Gouy−Chapman solution of electric potential:
34 phiGC = 4 * kT/(el * Z) * atanh(tanh(Z * el * zetap/(4 * kT)) * exp( −zpos/lD));
35

36 figure(1) % Check solved potential with Gouy −Chapman solution
37 plot(zpos,phi, 'r.' )
38 hold on
39 plot(zpos,phiGC, 'g.' )
40 hold off
41

42 cHb = 10^( −pHb) * 1e3* NA; % Hydron conc. (H+) (m^3)
43 cOHb = 10^( −14+pHb) * 1e3* NA; % Hydroxide (OH −) (m^3)
44 cizMat = cizMat * 1e3* NA; % Bulk conc. of species (m^3)
45

46 muv = muMat(:); % Mobilities of species (m^2 V^ −1 s^ −1)
47 cizMatv = cizMat(:); % Bulk conc. of species (m^3)
48 zMatv = zMat(:); % Valence of species
49

50 B =@(z) 0;
51 D =@(z) 0;
52 % Summation over all species:
53 for k = 1:length(muv)
54 B = @(z) B(z) + ...
55 abs(zMatv(k) * el * muv(k)) * cizMatv(k) * exp( −zMatv(k) * el * phiF(z)/kT);
56 D = @(z) D(z) + ...
57 zMatv(k) * el * cizMatv(k) * exp( −zMatv(k) * el * phiF(z)/kT). * (phiF(z) −zetap);
58 end
59

60 % Contribution from H+ and OH −:
61 B = @(z) B(z) + abs((1) * el * muH)* cHb* exp( −(1) * el * phiF(z)/kT);
62 B = @(z) B(z) + abs(( −1) * el * muOH)* cOHb* exp( −(−1) * el * phiF(z)/kT);
63 D = @(z) D(z) + (1) * el * cHb* exp( −(1) * el * phiF(z)/kT). * (phiF(z) −zetap);
64 D = @(z) D(z) + ( −1) * el * cOHb* exp( −(−1) * el * phiF(z)/kT). * (phiF(z) −zetap);
65

66 sigmaCond = @(z) B(z); % Conductivity (S/m)
67 sigmaAdv = @(z) epsl/eta * D(z); % Advection contribution (S/m)
68

69 S = 2* w/L * quad(@(z) sigmaCond(z),0,h/2);
70 S = S + 2* w/L * quad(@(z) sigmaAdv(z),0,h/2); % Channel conductance (S)

C.7 MatLab Script for Calculating the Bulk Conductance

1 function [SBulk,SBulkKCl] = BulkConductance(h,pHb,mu,muH,zMat, cizMat, ...
2 constant)
3 % Calculates the bulk conductance and the KCl bulk conductan ce
4 % Input: Channel height, bulk pH, mobilities, mobilities of H+ and OH−,
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5 % ionic valence matrix, bulk conc. matrix, vector of constan ts
6

7 el = constant(2); % Elementary charge (coulomb)
8 kT = constant(3); % Thermal energy (J)
9 NA = constant(5); % Avogadro's number (particles/mol)

10 w = constant(14); % Channel width (m).
11 L = constant(15); % Channel length (m).
12

13 cHb = 10^( −pHb) * 1e3* NA; % Hydronium conc. (H+) (m^ −3)
14 cOHb = 10^( −14+pHb) * 1e3* NA; % Hydroxide (OH −) conc. (m^ −3)
15 cizMat = cizMat * 1e3* NA; % Bulk conc. of species (m^ −3)
16

17 cizMatv = cizMat(:);
18 zMatv = zMat(:);
19 muv = mu(:);
20 B = 0;
21 for k = 1:length(muv)
22 B = B + abs(zMatv(k) * el * muv(k)) * cizMatv(k);
23 end
24 B = B + abs((1) * el * muH(1)) * cHb;
25 B = B + abs(( −1) * el * muH(2)) * cOHb;
26 sigma = B; % Bulk conductivity (S/m)
27 SBulk = h * w/L * sigma; % Bulk conductance (S)
28

29 F = 0;
30 F = F + abs((1) * el * muv(4)) * cizMatv(4); % Potassium
31 F = F + abs(( −1) * el * muv(2)) * cizMatv(2); % Chloride
32 % Bulk conductivity due to potassium chloride (S/m):
33 sigmaKCl = F;
34 % Bulk conductance due to potassium chloride (S):
35 SBulkKCl = h * w/L * sigmaKCl;

C.8 Script for Fitting the 2pK-Model to Conductance Data

1 clc
2 clear all
3 close all
4 format long e
5

6 global JJJ dt save_str experimentalist_str xfit_str C2
7 JJJ = 0; % Initilize iteration counter
8 dt = datestr(now, 'yyyy −mm−dd_HH−MM');
9

10 save_str = 'uncoat' ; % String appended to saved data file
11 % save_str = 'coat'; % String appended to saved data file
12 % save_str4 = 'Dataset1_165nm';
13 save_str4 = 'Dataset2_165nm_HCl' ;
14 % save_str4 = 'Dataset2_200nm';
15 % save_str4 = 'Fitte_width_165nm';
16 % experimentalist_str = '_Dherrick';
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17 experimentalist_str = '_Andrew' ;
18

19 [C, S] = NCS_fit_exp_inputuncoated; % Import experimental data
20 xdata = C; % Salt concentrations (Molar)
21 ydata = S; % Conductances (S)
22 %%
23 xfit_str = { '_pKminus' '_C2' };
24 %xfit_str = {'_pKminus'};
25 %xfit_str = {'_width'};
26 %xfit_str = {'_C2'};
27

28 %param0 = [6.64]; % Fitting pKminus
29 param0 = [6.64 0.2]; % Fitting pKminus and Cs
30

31 %lb = [ −inf]; % Lower bounds on fit parameters (Fitting pKminus)
32 lb = [ −inf 0]; % Lower bounds on fit parameters (Fitting pKminus and Cs)
33

34 %ub = [inf]; % Upper bounds on fit parameters (Fitting pKminu s)
35 ub = [inf inf]; % Upper bounds on fit parameters (Fitting pKminus and Cs)
36 %%
37

38 % Definition of fitting function:
39 model2pKfit = @(param,xdata)Func2pKmodel(param,xdata, ydata);
40 % Func2pKmodel calculates the conductances from the 2pK −model
41 % The returned conductances are scaled down with log10.
42

43 % Options for fitting function:
44 options = optimset( 'MaxFunEvals' , 2e4, 'MaxIter' ,1e3, 'display' , 'iter' , ...
45 'TolFun' , 1e −8, 'TolX' , 1e −8, 'Diagnostics' , 'off' );
46

47

48 tic;
49 % Fit parameters with lsqcurvefit (fitting in log −space) :
50 [paramfit,resnorm] = lsqcurvefit(model2pKfit,param0,l og10(xdata), ...
51 log10(ydata),lb,ub,options)
52 tiden = toc;
53 hold off
54

55 % Calculate the 2pK −model with the optimal values of the fitting parameters
56 [Snum,parammat,JJJ] = Func2pKmodel(paramfit,log10(xda ta),ydata);
57 Snum = 10.^(Snum); % Rescale to conductance from log10(conductance)
58

59 %% Calculate "goodness" of fit
60 SStot_Cond = sum((ydata −mean(ydata)).^2); % Total sum of squares
61 SSerr_Cond = sum((ydata −Snum).^2); % Residual sum of squares
62 Rsqua_Cond = 1 − SSerr_Cond/SStot_Cond; % Coefficient of determination
63 %%
64 save([ 'Matfiles/' datestr(now, 'yyyy −mm−dd_HH−MM') '_' ...
65 save_str experimentalist_str xfit_str{:} '_' save_str4]);
66

67 figure(98)
68 loglog(xdata,Snum, ' −b' )
69 hold on
70 loglog(xdata,ydata, '.r' )
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71 hold off
72 saveas(gcf,[ 'Figs/' datestr(now, 'yyyy −mm−dd_HH−MM') '_' ...
73 save_str experimentalist_str xfit_str{:} '_Figure.fig' ])

C.9 Main Script for the 2pK-Model

1 % Main script for the 2pK −model:
2 % Calling the function ElecKinFunctions which returns the z eta potential,
3 % the mid channel potential, the surface charge density, the bulk pH,
4 % and the channel conductance.
5 clear all;
6 close all;
7 clc;
8 format long e
9

10 %% INPUT DATA
11 % (ionic valence, mobility, pKa, ionic valence, Mobility, p Ka, ...)
12 INP={
13 [ 1 76.2E −9 13.7 ]; % Potasium (KOH)
14 %[ 1 51.9E −9 13.7 ]; % Sodium (NaOH)
15 [ −1 79.1E −9 −7 ]; % HCl
16 [ −1 46.1E −9 6.352 −2 71.8E −9 10.33 ]; % CO2
17 };
18

19 %% CONSTANTS
20 eps0 = 8.85e −12; % Permittivity of vacuum (F/m)
21 epsr = 78; % Relative permittivity of water
22 epsl = epsr * eps0; % Permittivity of water (F/m)
23 el = 1.602e −19; % Elementary charge (coulomb)
24 kT = 0.0259 * el; % Thermal energy (J)
25 GamTot = 5/(1e −9)^2; % Total number of chargeable sites (m^ −2)
26 NA = 6.022e23; % Avogadro's number (particles/mol)
27 Kw=1E−14; % Self −ionization constant of water (Molar^2)
28 Kpl = 10^(1.64); % Equilibrium constant
29 % for SiOH2+< −> SiOH + H+ (Molar)
30 Kmi = 10^( −6.64); % Equilibrium constant for
31 % SiOH <−> SiO− + H+ (Molar)
32 pHpzc = −1/2 * (log10(Kpl)+log10(Kmi)); % Point of zero charge
33 Cs = 0.2; % Stern capacitance (F m^ −2)
34 thetaAS = 0.0; % Aminosilane coverage
35 %%
36

37 %% Channel dimensions:
38 h = 200e−9; % Channel height in [m]
39 L = 1.2e −2; % Channel length in [m]
40 w = 5e−6; % Channel width in [m]
41

42 constant = [epsl, el, kT, ...
43 GamTot, NA, Kpl, ...
44 Kmi, NaN, NaN, ...
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45 NaN, Cs, Kw, ...
46 pHpzc,w,L,thetaAS];
47

48 c_CO2 = 1.18 * 10^( −5); % Formal concentration of H2CO3 at 25 degrees C
49 % at normal atm. pressure (Molar)
50 cHCl = 0; % HCl conc. added (Molar)
51 cvec = logspace( −7,0,50); % KCl conc. vector (Molar)
52

53 cvec = flipdim(cvec,2); % Reverse conc. vector
54 Svec = zeros(length(cvec),1); % Init conductance vector
55 Zetavec = zeros(length(cvec),1); % Init zeta portential vector
56

57 %% Optimal guess for model 2pK model for 1 M KCl:
58 zetap0 = −1.94e −02; %
59

60 for g = 1:length(cvec);
61 cTot = [cvec(g) (cvec(g)+cHCl) c_CO2]; % Solutes conc. vector (Molar)
62

63 % Calculate the zeta potential assuming phi_m = 0
64 [zetap0 ,phiMidChan, delta0, pHb ,S] = ...
65 ElecKinFunctions(INP,cTot,constant,h,zetap0,0);
66

67 zetap = zetap0;
68 % Debye Overlap correction:
69 phiMidChanB = 100; % Initial dummy value of phi_m (V)
70 tole = 1e −4; % Tolerance for convergence of phi_m
71 while abs((phiMidChan −phiMidChanB)) > tole
72 phiMidChanB = phiMidChan;
73 [zetap ,phiMidChan, delta0, pHb ,S] = ...
74 ElecKinFunctions(INP,cTot,constant,h,zetap,phiMidCh an);
75 end
76

77 Zetavec(g) = zetap; % Store solved zeta potential (V)
78 Delta0vec(g) = delta0; % Store solved surface charge density (C m^2)
79 Svec(g) = S; % Store calc. channel conductance (S)
80 end
81

82 function [zetap ,phiMidChan, delta0, pHb, S] = ElecKinFunctions( ...
83 INP,cTot,constant,h,x01,phiMidChan)
84

85 % Calling the (original) Santiago script:
86 [cH,zMat,muMat,muEffVec,cizMat] = Santiago(INP,cTot);
87

88 pHb = −log10(cH);
89 F=9.65E4;
90 muMat = muMat* F;
91 % Calculating the Debye length:
92 [lD IS] = DebyeLength(pHb,zMat,cizMat,constant);
93

94 % Solving for the zeta potential in the 2pK −model:
95 [zetap, delta0] = Find_zeta_2pKmodel(x01,phiMidChan,ci zMat,zMat, ...
96 pHb,constant);
97 % Calculate channel conductance:
98 [phiMidChan, S] = Find_channel_conductance(zetap,pHb,z Mat,cizMat, ...
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99 muMat,h,lD,IS,constant);
100

101 function [lD IS] = DebyeLength(pHb,zMat,cizMat,constant)
102 % Calculates the Debye length
103 % Input: bulk pH, ionic valence of species, bulk conc. of spec ies,constants
104 epsl = constant(1); % Permittivity for water (F/m).
105 el = constant(2); % Elementary charge (coulomb)
106 kT = constant(3); % Thermal energy (J)
107 NA = constant(5); % Avogadro's number (particles/mol)
108

109 % Hydron (H+) and hydroxide (OH −) conc. in reservoir
110 cHb = 10^( −pHb) * 1e3* NA; % (m −̂3)
111 cOHb = 10^( −14+pHb) * 1e3* NA; % (m −̂3)
112

113 cizMat = cizMat * 1e3* NA; % Bulk conc. of species (m^ −3)
114 ISd = sum(sum( cizMat. * zMat.^2 ));
115 ISd = ISd + cHb * (1)^2 + cOHb * (1)^2;
116

117 IS =ISd/2; % Ionic strength (m^ −3)
118

119 lD = sqrt(epsl * kT/(2 * el^2 * IS)); % Debye length (m)

C.10 Main Script for the Metal Adsorption Model

1 % Main script for the Metal Absorbtion Model:
2 % Calling the function ElecKinFunctions which returns the z eta potential,
3 % the bulk pH, and the Weighted pH for the species.
4 clear all;
5 close all;
6 clc;
7 format long e
8

9 %% INPUT DATA
10 % (ionic valence, pKa, ionic valence, pKa, ...)
11 INP={
12 [ 1 13.7 ]; % NaOH
13 %[ −1 −7 ]; % HCl
14 [ −1 6.352 −2 10.33 ]; % CO2
15 [ −1 9.24 −2 12.74 −3 13.8 ]; % Borate
16 % [ 1 8.076 ]; % TRIS
17 };
18

19 c_CO2 = 1.18 * 10^( −5); % Formal concentration of H2CO3 at 25 degrees C
20 % at normal atm. pressure (Molar)
21 c_Titration = 23.3e −3; % Formal concentration of titrate (Molar)
22 c_Buffer = 50e −3; % Formal concentration of buffer (Molar)
23

24 %% CONSTANTS
25 eps0 = 8.85e −12; % Permittivity of vacuum (F/m)
26 epsr = 78; % Relative permittivity of water
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27 epsl = epsr * eps0; % Permittivity of water (F/m)
28 el = 1.602e −19; % Elementary charge (coulomb)
29 kT = 0.0259 * el; % Thermal energy (J)
30 GamTot = 5/(1e −9)^2; % Total number of chargeable sites (m^ −2)
31 NA = 6.022e23; % Avogadro's number (particles/mol)
32 pHpzc = 2.5; % Point of zero charge
33 Kmi = 10^( −6.73); % Equilibrium constant for
34 % SiOH <−> SiO− + H+ (Molar)
35 Kpl = 10^( −2* pHpzc)/Kmi; % Equilibrium constant
36 % for SiOH2+< −> SiOH + H+ (Molar)
37 KM = 10^(−0.25); % Equilibrium constant for
38 % SiO− + M+ <−> SiOM (Molar^ −1)
39 KW = 1e−14; % Water equilibrium constant
40 C1 = 1.07; % Inner Stern capacitance (F m^ −2)
41 C2 = 0.2; % Outer Stern capacitance (F m^ −2)
42

43 %% Channel dimensions:
44 h = 100e−9; % Channel height in [m]
45

46 %% Formal concentrations of species(Molar)
47 cTot = [c_Titration c_CO2 c_Buffer];
48

49 cMb = cTot(1); % Formal concetration of the solute dissociating into
50 % metal cations e.g. NaOH −> Na+ or KCl −> K+
51

52 constant = [epsl, el, kT, ...
53 GamTot, NA, Kpl, ...
54 Kmi, KM, cMb, ...
55 C1, C2, KW, ...
56 pHpzc]; %Entry 9: cMb = cTot(1)
57

58 if size(INP,1) 6= length(cTot)
59 error( 'Concentrations for exact number of species must be given.' )
60 % Error when INP and cTot do have the same number of species.
61 end
62

63 %% Optimal guess for Metal Absorbtion Model:
64 x0 = [ −2.620366645735209e −001 −1.188386998748549e −001]; %psi0, psid
65

66 [zetap, pHb, pHcWeight] = ElecKinFunctions(INP,cTot,con stant,h,x0);
67

68 function [zetap, pHb, pHcWeight] = ...
69 ElecKinFunctions(INP,cTot,constant,h,x0)
70

71 % Calling the modified Santiago script:
72 [pHb,zMat,cizMat] = Santiago_pHb(INP,cTot,constant(12 ))
73

74 % Calculating the Debye length:
75 [lD, IS] = DebyeLength(pHb,zMat,cizMat,constant);
76

77 % Solving for the phi0 and phid potential in the metal adsorpt ion model:
78 sol = FindZetaMetalModel(x0,zMat,cizMat,pHb,constant)
79

80 zetap = sol(2); % zeta potential (V)
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81

82 % Calculating the Weighted pH for the species:
83 pHcWeight = Find_pHweighted(zetap,pHb,zMat,cizMat,h,l D,IS,constant)
84

85 function [zetap, pHb, pHcWeight] = ...
86 ElecKinFunctions(INP,cTot,constant,h,x0)
87

88 % Calling the modified Santiago script:
89 [pHb,zMat,cizMat] = SantiagoMADS(INP,cTot,constant(12 ));
90

91 % Calculating the Debye length:
92 [lD, IS] = DebyeLength(pHb,zMat,cizMat,constant);
93

94 % Solving for the phi0 and phid potential in the metal absorbt ion model:
95 sol = FindZetaMetalModel(x0,zMat,cizMat,pHb,constant)
96

97 zetap = sol(2); % Zeta potential (V)
98

99 % Calculating the Weighted pH for the species:
100 pHcWeight = Find_pHweighted(zetap,pHb,zMat,cizMat,h,l D,IS,constant)
101 end
102

103 function [lD IS] = DebyeLength(pHb,zMat,cizMat,constant)
104 % Calculates the Debye length
105 % Input: bulk pH, ionic valence of species, bulk conc. of spec ies,constants
106 epsl = constant(1); % Permittivity for water (F/m).
107 el = constant(2); % Elementary charge (coulomb)
108 kT = constant(3); % Thermal energy (J)
109 NA = constant(5); % Avogadro's number (particles/mol)
110

111 % Hydron (H+) and hydroxide (OH −) conc. in reservoir
112 cHb = 10^( −pHb) * 1e3* NA; % (m −̂3)
113 cOHb = 10^( −14+pHb) * 1e3* NA; % (m −̂3)
114

115 cizMat = cizMat * 1e3* NA; % Bulk conc. of species (m^ −3)
116 ISd = sum(sum( cizMat. * zMat.^2 ));
117 ISd = ISd + cHb * (1)^2 + cOHb * (1)^2;
118

119 IS =ISd/2; % Ionic strength (m^ −3)
120

121 lD = sqrt(epsl * kT/(2 * el^2 * IS)); % Debye length (m)
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