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Abstract i

Abstract

Handling microparticles in lab-on-a-chip systems can be very difficult using traditional
mechanical approaches. Acoustofluidics presents a method to manipulate the particles by
attaching a piezo-actuator to the chip, where the vibrations cause the particles to move
towards the (anti-)nodes of the applied pressure field.

In this thesis we describe the governing equations for acoustofluidics and resonance ef-
fects, and with the non-linear Navier–Stokes equation as a starting point we use a second-
order perturbation scheme to derive the time-independent acoustic pressure force on spher-
ical, compressible particles in a standing wave. We focus on deriving the acoustic pressure
force in details following a classical article by Gor’kov, [14], and look at its applications in
three designs proposed by different research groups: Separation of lipid particles from red
blood cells, separation of red and white blood cells, and finally how to separate large lipid
particles from raw milk. We found that it theoretically was possible to create microchannel
systems where these separations were possible using the pressure force. Furthermore we
discussed how to optimize the designs to achieve good separation and/or high throughput
of the test sample.

An important point in the optimization was to use channels with varying widths to get
different patterns of standing waves in the channel, i.e. using the first part of the channel
to focus the particles in one beam and next leading them into a channel with a different
width where the separation is taking place.

Finally we discuss some of the neglected effects in our model. When considering longi-
tudinal modes in standard separation setups, the particle trajectories can be approximated
very well by the trajectories in a system neglecting longitudinal modes with half the acous-
tic energy density. For separation of smaller particles with radii < 1 µm, the acoustic
streaming is shown to have a greater importance in the description of the particle move-
ment, and for larger particles with radii > 20 µm the interparticle interaction described by
the secondary Bjerknes force must be taken into consideration.
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Resumé

Håndtering af mikropartikler i lab-on-a-chip-systemer kan være meget besværligt ved hjælp
af traditionelle mekaniske fremgangsmåder. Akustofluidik tilbyder en metode til at ma-
nipulere partikler på ved at fastgøre en piezo-aktuator på chippen, så vibrationerne får
partiklerne til at bevæge sig imod (anti-)knudepunkter for den påtrykte trykbølge.

I denne afhandling beskriver vi de grundlæggende ligninger for akustofluidik og reso-
nanseffekter, og med udgangspunkt i den ikke-lineære Navier–Stokes-ligning benytter vi
anden-ordens perturbation til at udlede den tidsuafhængige akustiske trykkraft på sfæriske,
kompressible partikler i en stående bølge. Vi vil lægge vægt på at udlede den akustiske
trykkraft i detaljer med udgangspunkt i en klassisk artikel af Gor’kov, [14], og kigge på dens
anvendelsesmuligheder i tre forskellige designs foreslået af forskellige forskningsgrupper:
Separation af fedtpartikler fra røde blodlegemer, separation af røde og hvide blodlegemer
og til sidst hvordan store fedtpartikler kan separeres fra råmælk. Vi fandt, at det teoretisk
set var muligt at lave mikrokanalsystemer, hvor disse separationer var mulige ved hjælp af
trykkraften. Endvidere diskuterede vi, hvorledes designene skulle optimeres for at få god
separation og/eller højt gennemløb af prøvematerialet.

En vigtig pointe med hensyn til optimeringen var at benytte kanaler med varierende
bredde for at få forskellige stående bølger i kanalen, det vil sige at udnytte den første del
af kanalen til at fokusere partiklerne i en stråle og dernæst lede dem ind i en kanal med en
anden bredde, hvor selve separationen finder sted.

Til sidst diskuterer vi nogen af de negligerede effekter i vores model. Når vi be-
tragter longitudinale modes i standardkanaler for partikelseparation, kan partikelbanerne
tilnærmes meget godt med partikelbanerne i et system, hvor longitudinale modes negliceres,
men hvor den akustiske energi er halvt så stor. For separation af mindre partikler med
radius < 1 µm er det vist, at den akustiske strømning får større betydning for beskrivelsen
af partikelbevægelsen, og for større partikler med radius > 25 µm, må der tages hensyn til
påvirkningen mellem partiklerne beskrevet ved den sekundære Bjerknes-kraft.
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Chapter 1

Introduction

1.1 Background for Lab-on-a-chip Systems

A lab-on-a-chip (LOC) is a device that seeks to integrate several laboratory functions on a
single (often silicon) chip in the µm-scale. The complex nature of the LOC-systems leads
to combination of research areas including microelectronics, fluid mechanics, optics, and
biotechnology. The advantage of scaling down is the obvious reduction of required sample
size, along with the possibility of analyzing samples considerably faster and simpler than in
conventional laboratories. This might make it possible to eliminate the need for specialized
human operators. Furthermore the LOC-systems could make way for a mass production
of cheap single-use chips which are suitable for field use, thus reducing the need for large
and specialized laboratorial facilities.

However, the LOC-systems cannot be made by simple scaling down, as the surface
forces for example have a far greater importance due to significantly increased surface area
compared to volume size. This means that surface forces like viscosity, surface tension etc.
dominate body forces like gravity and buoyancy. The LOC-systems therefore call for an
understanding of these microscopic effects leading to manipulation of liquids and particles
in the µm-scale. This thesis will deal with the manipulation of particles in µm-channels in
a LOC-system.

The manipulation can be carried out by many different processes including magne-
tophoresis, electrophoresis, or dielectrophoresis depending on the specific system. Although
these methods are well documented experimentally, they all have some common disadvan-
tages. First of all they often demand integrated micro-structured electrodes or magnetic
materials which complicate and add costs to the fabrication of the chips. Secondly they
require the samples to have specific electric or magnetic properties to work. As an example,
electrophoresis exploits the different charge of the sample particles to accelerate them in
an electric field [35], [36]. Dielectrophoresis requires a noticeable difference in the dielectric
constant of the particle and the surrounding fluid [40], and magnetophoresis uses coated
magnetic beads which bind to the sample particles [13], [19]. These requirements may not
always be fulfilled by the sample particles, and furthermore there is a risk that the electric
or magnetic field could damage the sample which often is biological material or cells.
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(a) (b) (b)

Figure 1.1: (a) A principle sketch of the system used to create the resonant standing wave
in a microchannel, taken from [24]. (b) The front of a the silicon based microchip produced in
the Laurell group at Lund University, taking from [42]. (c) The back of the microchip shown in
Fig. 1.1b, taken from [42].

1.2 Acoustophoresis

The limitations of the other particle separation methods mentioned above is the reason for
the increasing interest for finding other ways of separation. Acoustophoresis is a recently
considered method allowing separation of all types of particles as long as they differ from
the surrounding medium with regard to their acoustic properties.

Acoustophoresis is a unifying term for all effects influencing particles in a fluid due
to an acoustic field which in the experimental setup becomes a standing acoustic wave in
the channel. Spatial control, manipulation, and separation of particles in fluids by means
of ultrasonic standing waves have received re-newed interest in the past decade due to
its application in the emerging field of microfluidics. In this thesis we will investigate an
example of acoustophoresis — namely the pressure force. The pressure force is a non-linear
effect due to particles or other solid objects being present in the sound-field in the fluid
leading to a time-independent pressure force acting on the particles.

The pressure force originating from a standing wave produced by a resonator was at
first theoretically described for incompressible spheres by King in 1934 [15]. The theory
was later extended by Yosioka and Kawasima in 1962 to include compressible spheres [43].
Their work was summarized in a short paper by Gor’kov, [14].

1.3 Experimental Motivation

Several groups have used the theoretical results mentioned in Section 1.2 later on for various
particle manipulations and sorting applications [27], [29], [30], [32], [37], and [41]. In this
thesis we will focus on systems like the ones proposed by the Thomas Laurell group at
Lund University [28], [29]; some of the systems are sketched in Fig. 1.1. They work with a
silicon chip with a lid of Pyrex in which a microfluidic channel system is etched as shown
in Fig. 1.1b. The sample solution is fed into a separation channel (the main channel) in
a laminar flow. In the channel, the solution is exposed to a standing wave excited by
a piezo-electrical actuator glued to the back of the silicon chip [24], see Fig. 1.1c. The
standing wave created by resonance will in both the transverse and longitudinal direction
of the channel give rise to a pressure force. The fundamental transverse mode results in
a pressure nodal plane along the center of the channel and an anti-nodal plane along the
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(a) (b)

Figure 1.2: (a) A sketch of the standing wave in the channel, and how it is separating the
particles in the nodal and anti-nodal planes of the channel, taken from [28] (b) The three-outlet
system proposed as a mean to particle separation by the Thomas Laurell group at Lund University,
from [28].

edges of the channel when using a channel with a width of half the wavelength of the
standing wave as shown in Fig. 1.2a. The particles will move either towards the nodal or
anti-nodal plane depending on their density and compressibility compared to those of the
fluid. The laminar flow ensures that the particles are moving forward in the channel and
the separation is achieved when the particles are leaving the channel in one of the outlets
as shown in Fig. 1.2b.

The advantage of this system is first-of-all, that we by resonance are able to build up
a considerable acoustic energy density in the channel without a perfect coupling between
channel and actuator. Secondly, the acoustic forces have been shown not to be harmful to
biological samples and this system is therefore very suitable as a tool in bio-analysis [31].

1.4 Outline of the Thesis

We have divided the thesis into three parts. In Part I we go through the required theory to
be able to understand the particle movement described in a simple model. Part II concerns
possible applications of the pressure force, and in Part III we discuss the neglected effects
which we did not consider in the previous parts.

Part I, Chapter 2: Governing Equations and Perturbation Theory

First of all we will be treating the general theoretical background of microfluidics. We will
investigate how the governing equations lead to a formulation suitable for the treatment
of the time-independent effects based on a second-order perturbation scheme.

Part I, Chapter 3: Acoustic Waves in Fluids

We will use the governing equations as a starting point for a treatment of acoustic waves in
both the inviscid and viscid case. In the first-order inviscid case it leads to the formulation
of the velocity potential for irrotational first-order velocity, and the spatial field amplitudes
are shown to fulfill the lossless Helmholtz equations. We will discuss how small viscid terms
together with harmonic time-dependence give rise to the lossy Helmholtz equation.

In the last part of the general theory we derive expressions for the second-order time-
averaged acoustic fields.
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Part I, Chapter 4: Resonance in First-order Theory

We will present a classical example of a resonator without or with damping to give a
basic understanding of acoustic resonance effects. This becomes helpful in the context of
the later chapters where resonance plays an important role in the understanding of the
standing acoustic waves.

Part I, Chapter 5: Forces Acting on Microparticles in an Acoustic Field in an Inviscid

Fluid

Several groups of experimentalists have quoted the pressure force term from Gor’kov, [14],
as the theoretical background for their experimental applications of particle manipulations,
see for example [42].

In this chapter we will leap from general microfluidic theory to a re-derivation of the
very condensed article from 1962 by Gor’kov [14]. We will work through it thoroughly
and derive the expression for the pressure force to get a deeper understanding of the, by
Gor’kov often omitted, calculations and limitations leading to this much cited expression.

Part II, Chapter 6: Analytic Solution in Simple Channel

This chapter opens the part of the discussion of applications of the pressure force. We will
derive an analytical expression for the trajectory of a single particle affected by a standing
wave in a laminar flow and compare it to experimental results.

Part II, Chapter 7: Introduction to Separating Systems in the Single-Particle Approach

This chapter is dedicated to a description of our channel setup and the parameters we use
in our simulations.

Part II, Chapter 8: Separation of Red Blood Cells and Lipid Particles

The first separation application we will analyze is inspired by the Laurell group’s attempt
to separate red blood cells and lipid cells in blood plasma [24], [28], [29]. Red blood cells are
affected by the pressure force and move towards the nodal plane, where the lipid particles
move towards the anti-nodal plane. We analyze the system by numerically solving the
derived coupled differential equations in Matlab showing the length of channel required
in order to obtain separation. Finally we will propose different designs where we consider
both the separation length and throughput of the sample solution.

Part II, Chapter 9: Separation of Red and White Blood Cells

In this chapter we will consider separation of red and white blood cells in the light of
the ongoing collaboration between DTU Nanotech and The University of Santa Barbara
[6]. This separation could be useful in terms of medical research, if we want to make
measurements on white blood cells without having red blood cells in the test sample.

The red and white blood cells are affected in the same direction by the pressure force,
but the magnitude of the force is different because of the various physical properties of the
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particles. We will discuss how the channels should be designed to be able to separate the
particles.

Part II, Chapter 10: Separation of Lipid Particles in Milk

This chapter considers separation of lipid particles in milk which is an application under
development at the company Foss. In this application the particles only differ in size, and
we will discuss a possible design for separating all the particles above a certain diameter
from the milk. Furthermore we will examine if we are able find a simple analytic solution
to describe the required channel length to carry out the separation.

Part II, Chapter 11: Other Possible Applications of the Pressure Force

In this chapter we introduce other possible applications of the pressure force, that we have
not seen in other papers.

Part III, Chapter 12: Neglected Effects

In the numerical and analytical analyses we neglect numerous effects. This chapter is a
brief introduction to the neglected effects and a discussion of how large an impact they
presumably would have on the results. The effects include the longitudinal modes which by
actuation arise in the channel. The experimentally reported Fåhraeus–Lindqvist effect is
discussed together with analyses of the temperature dependence of the system parameters.
Furthermore we will estimate the forces which arise if we try to go beyond the single-
particle picture. These effects include concentration and diffusion effects and interparticle
forces expressed by the secondary Bjerknes force. Finally we will give an estimate of the
second-order effect called acoustic streaming which is analyzed as a boundary effect caused
by the viscosity of the fluid in the boundary area. The chapter will be concluded with a
discussion of which of the mentioned effects that have the biggest contribution to the forces
acting on a particle in the fluid.
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Chapter 2

Governing Equations and

Perturbation Theory

In this thesis we describe classical fluid dynamics using the continuum hypothesis in which
all references to the molecular structure of the liquid are replaced by the basic concept of
the fluid „particle”. The fluid particle represents a volume of liquid much smaller than the
macroscopic length scales, but large enough ∼ (10 nm)3 to contain a number of molecules
big enough to ensure well-defined averages of e.g. the density ρ(r, t) and the momentum
density ρ(r, t)v(r, t). In the following we limit ourselves to the equations related to the
conservation of momentum and mass, thus disregarding thermal effects.

The central fields in fluid dynamics are the velocity field v(r, t), the density field ρ(r, t),
and the pressure field p(r, t). Often we drop the explicit reference to the time or spatial
dependence.

We assume that the systems considered are isothermal. Furthermore in the thesis we
will be using the customary Eulerian field description i.e. that the fields are considered for
fixed points r at all times t, so that r is independent of t. As an example we emphasize
that the Eulerian velocity field v(r, t) is the velocity of the fluid at a given point r and
time t. The alternative is the Lagrangian description involving changing position vector
r(t) of a fluid particle which means that r is dependent of t.

2.1 Momentum and Density

The change of momentum density, essentially Newton’s second law adapted to the Eule-
rian field description, leads to the non-linear Navier–Stokes equation. For a compressible,
Newtonian, and viscid fluid we adopt the notation of [5],

ρ
[
∂tv + (v ·∇)v

]
= −∇p+ η∇2v + βviscη∇(∇ · v) + fbody, (2.1)

where η is the dynamical viscosity parameter of the fluid. βvisc is related to the second
viscosity caused by internal friction during compression. The value βviscη is not easily
determined, but we will in the following use the approximation βvisc = 5/3 in accordance
with Stoke’s surmise, see [5]. In the following we are ignoring any form of body forces
acting on the entire fluid such as gravity or magnetic forces, i.e. fbody = 0.
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The conservation of mass leads to the continuity equation

∂tρ = −∇ · (ρv). (2.2)

It is worth noting that in the case of an incompressible fluid we have ρ is constant and
thus the continuity equation reduces to ∇ · v = 0.

Besides the governing equations described above we will be using the thermodynamical
equation of state expressing the pressure in terms of the density to eliminate one variable
from Eqs. (2.1) and (2.2), thus we have

p = p(ρ). (2.3)

2.2 Perturbation Theory

We consider the thermal equilibrium state described by the three fields: velocity v0, pres-
sure p0, and density ρ0. We have assumed that the unperturbed state is isentropic, homo-
geneous, and static i.e. v0 ≡ 0.

In the following we consider small oscillatory movements of a compressible fluid. These
movements, interpreted as an acoustic field, are assumed to be a minor perturbation of
the thermal equilibrium of the fluid. This implies that the changes in velocity, pressure,
and density are small relative to their thermal equilibrium values. Including perturbation
terms up to second order, we get

v = v(0) + αv(1) + α2v(2) = v0 + v1 + v2 = 0+ v1 + v2, (2.4a)

ρ = ρ(0) + αρ(1) + α2ρ(2) = ρ0 + ρ1 + ρ2, (2.4b)

p = p(0) + αp(1) + α2p(2) = p0 + p1 + p2, (2.4c)

In Eq. (2.4) we have made the perturbation parameter implicit meaning that the first-order
velocity v1 is understood to contain the perturbation parameter.

We furthermore express the pressure in terms of the density as suggested in Eq. (2.3).
This is accomplished with a Taylor expansion around the unperturbed value p0 = p(ρ0).
Including terms up to second-order we get the following expression,

p ' p0 + ∂ρp
∣∣∣
ρ=ρ0

(ρ− ρ0) +
1
2
∂2
ρp
∣∣∣
ρ=ρ0

(ρ− ρ0)
2 (2.5a)

' p0 + ∂ρp
∣∣∣
ρ=ρ0

ρ1 + ∂ρp
∣∣∣
ρ=ρ0

ρ2 +
1
2
∂2
ρp
∣∣∣
ρ=ρ0

(ρ1 + ρ2)2 (2.5b)

' p0 + c2aρ1 + c2aρ2 +
1
2
∂ρ(c2a)ρ

2
1, (2.5c)

where we have neglected terms of third-order or higher in Eq. (2.5b). We have introduced
the speed of sound in the fluid, ca, in terms of the isentropic derivative at ρ = ρ0

c2a ≡
(
∂p

∂ρ

)
s

. (2.6)

In the first-order approximation ca is assumed to be constant.



Chapter 2. Governing Equations and Perturbation Theory 11

2.2.1 Zeroth-order Perturbation Equations

Inserting the perturbed terms in Eqs. (2.1), (2.2), and (2.3) we get the first-order equations

0 = −∇p0, (2.7a)

∂tρ0 = 0, (2.7b)

p = p(ρ0) = p0. (2.7c)

The only solutions to the equations Eq. (2.7) are evidently constants, and we conclude
that the zeroth-order terms corresponding to thermal equilibrium are constants given by
ρ0 and p0.

2.2.2 First-order Perturbation Equations

Inserting the perturbations again this time considering only terms of first-order we get the
governing equations to first-order

ρ0∂tv1 = −c2a∇ρ1 + η∇2v1 + βviscη∇(∇ · v1), (2.8a)

∂tρ1 = −∇ · (ρ0v1) = −ρ0∇ · v1, (2.8b)

p1 = c2aρ1, (2.8c)

where we notice that the constant zeroth-order terms have been pulled outside the differ-
ential operators, and p1 has been expressed by ρ1 using Eq. (2.5c).

2.2.3 Second-order Perturbation Equations

Using the same approach as above we find the second-order governing equations

ρ1∂tv1 + ρ0∂tv2 + ρ0(v1 ·∇)v1 = −∇p2 + η∇2v2 + βviscη∇(∇ · v2), (2.9a)

∂tρ2 = −ρ0∇ · v2 −∇ · (ρ1v1), (2.9b)

p2 = c2aρ2 +
1
2
∂ρ(c2a)ρ

2
1. (2.9c)
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Chapter 3

Acoustic Waves in Fluids

3.1 Inviscid First-order Acoustic Field

If we neglect viscid damping in the linear first-order approximation, we get from Eq. (2.8)

ρ0∂tv1 = −c2a∇ρ1, (3.1a)

∂tρ1 = −ρ0∇ · v1, (3.1b)

p1 = c2aρ1. (3.1c)

Our goal is to find wave equations for the first-order quantities ρ1, p1 and v1.
We take the divergence of Eq. (3.1a), exploit that temporal and spatial differential

operators commute, and obtain

ρ0∂t(∇ · v1) = −c2a∇ · (∇ρ1). (3.2)

Combining this with Eq. (3.1b) we get −∂t∂tρ1 = −c2a∇ · (∇ρ1) or

∂2
t ρ1 = c2a∇2ρ1. (3.3)

From Eq. (3.1c) it is immediately seen that we have a corresponding equation for the
first-order pressure perturbation

∂2
t p1 = c2a∇2p1. (3.4)

3.1.1 The Wave Equation for Irrotational First-order Inviscid Velocity Per-
turbation

A proper wave equation for the velocity perturbation is not obtainable for arbitrary veloc-
ities. We therefore limit ourselves to the case of an irrotational flow, i.e. ∇×v = 0, which
makes us able to determine a velocity potential as

v1 = ∇φ1. (3.5)

With this definition Eq. (3.1a) leads to

ρ0∂t∇φ1 = −c2a∇ρ1 ⇒ ρ1 = −ρ0

c2a
∂tφ1 + ∇×A ⇒ ρ1 = −ρ0

c2a
∂tφ1, (3.6)
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where we choose the vector field to be A = 0 without loss of generality. According to
Eq. (3.1c) the first-order perturbation in pressure is

p1 = −ρ0∂tφ1. (3.7)

We notice that the Eqs. (3.5), (3.6), and (3.7) constitutes the connection between all three
desired first-order quantities and the first-order scalar velocity potential φ1. We have
therefore reduced our problem in a given setting, where the first-order velocity field can be
assumed irrotational, to finding the appropriate velocity potential.

The velocity potential can be found to fulfill the same type of wave equation as the other
first-order perturbation quantities. This can be found by inserting Eqs. (3.5) and (3.6) in
Eq. (3.1b),

∂2
t φ1 = c2a∇2φ1. (3.8)

3.1.2 Inviscid First-order Harmonic Time-dependent Waves

We now assume that the velocity perturbation is varying harmonically in time with no
time-independent terms, i.e. v1 = v1(r)e−iωt. When we are looking at harmonic v1, it is
readily seen from equation Eq. (3.1a) that v1 in this case is a gradient field and thereby
irrotational, and we can employ the results derived above.

One simple class of solutions to the wave equation with harmonic time-dependence is
the plane traveling wave, of amplitude φA, propagating in the direction of the wave vector
k0 and with angular frequency ω. In complex notation this is given as

φ1(r, t) = φAei(k0·r−ωt). (3.9)

Inserting this into the wave equation (3.8) gives the linear dispersion relation for sound
waves in a fluid, ω2 = c2a|k0|2, or

ω = cak0. (3.10)

Alternatively, we can consider the general class of time harmonic solutions i.e. the
solutions which have the same harmonic time-dependence. This is expressed as

φ1(r, t) = φk(r)e−iωt. (3.11)

Inserting this into the wave equation for φ1, Eq. (3.8), using the dispersion relation, leads
to the Helmholtz equation

∇2φk(r) = −k2
0φk(r). (3.12)

This eigenvalue problem with k2
0 as the eigenvalue will only allow certain values of the wave

vector k0 for a given set of boundary conditions, which results in an eigenmode described
by φk(r) and the harmonic time part.

3.2 First-order Viscid Acoustic Field

In the previous section we neglected damping in the linearized model to derive the Helm-
holtz equation for the first-order harmonic perturbation. Taking into account the attenu-
ation of the waves caused by the atomic interaction, heat transfer, viscosity etc., we can
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no longer neglect the viscid terms in the first-order Navier–Stokes equation (2.8a),

ρ0∂tv1 = −c2a∇ρ1 + η∇2v1 + βviscη∇(∇ · v1). (3.13)

Fist of all we look for a partial differential equation describing the density (pressure)
field. Taking the divergence of this equation, again exploiting that temporal and spatial
differential operators commute, gives

ρ0∂t(∇ · v1) = −c2a∇2ρ1 + (1 + βvisc)η∇2(∇ · v1). (3.14)

Using the continuity equation Eq. (2.8b) gives a partial differential equation in ρ1,

∂2
t ρ1 = c2a∇2ρ1 +

1
ρ0

(1 + βvisc)η∇2(∂tρ1). (3.15)

From the connection between density and pressure to first order, Eq. (2.8c), it is clear that
p1 fulfills a similar equation.

3.2.1 Viscid Harmonic Time-dependent Waves in First-order

In the general case of a viscid fluid it is not possible to construct a similar equation for
the perturbed velocity v1. This is only possible in the case of an irrotational velocity field.
In analogy with the inviscid case we furthermore limit ourselves to the important special
case of harmonic time-dependence. Even in this situation the field is strictly speaking not
irrotational as we are considering attenuation, but we conclude from Eq. (3.13) that we for
a small viscosity η can treat the velocity field as a gradient field. Explicitly we see this by
perturbation of the velocity in the viscosity η,

v1 = v(0)
1 + ηv(1)

1 = ∇φ1 + ηv(1)
1 (3.16)

When considering Eq. (3.13) with harmonic time-dependence this perturbation to first-
order in η gives

− iωρ0(∇φ1 + ηv(1)
1 ) = −c2a∇ρ1 + η∇2(∇φ1) + βviscη∇(∇2φ1) +O(η2), (3.17)

−iωρ0ηv
(1)
1 = ∇

[
−c2aρ1 + η(1 + βvisc)∇2φ1 + iωρ0φ1

]
+O(η2). (3.18)

where O(η2) refers to terms containing η2 or any higher powers of η. Eq. (3.18) shows that
to first-order in η the velocity field, φ1, shown in Eq. (3.16) is a gradient field and hence
irrotational.

In analogy to the inviscid case, the assumption of harmonic time-variation leads to a
class of solutions in ρ1 given by

ρ1(r, t) = ρ1(r)e−iωt. (3.19)

Inserting this in equation Eq. (3.15) we arrive at

ω2ρ1(r) = −c2a∇2ρ1(r) +
iω
ρ0

(1 + βvisc)η∇2ρ1(r), (3.20)
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or

∇2ρ1(r) = −ω
2

c2a

(
1− i(1 + βvisc)ηω

ρ0c2a

)−1

ρ1(r) = −ω
2

c2a
(1− 2γi)−1 ρ1(r), (3.21)

where we have defined the acoustic damping factor γ

γ ≡ (1 + βvisc)ηω
2ρ0c2a

. (3.22)

Equation Eq. (3.21) is the Helmholtz equation with complex wavenumber, if we define the
modulus of the complex wavenumber as

k =
ω

ca

1√
1− i2γ

. (3.23)

Insertion of typical parameter values as done in [5] and [22] we find the magnitude of the
γ-factor,

γ ≈ 10−3 Pa s× 2π × 2× 106 s−1

2× 103 kg m−3 × (1483 m s−1)2
= 5.7× 10−6, (3.24)

thus justifying the Taylor expansion in the wavenumber to first-order in γ. This results in,

k =
ω

ca

1√
1− i2γ

' ω

ca
(1 + iγ) = k0 (1 + iγ) , (3.25)

where k0 = ω/ca is the real-valued wavenumber of the inviscid case Eq. (3.12).
In this way we arrive at the Helmholtz equation for the harmonic variating density

perturbation ρ1,

∇2ρ1(r) = −ω
2

c2a
(1− i2γ)−1 ρ1(r) ' −k2

0 (1 + iγ)2 ρ1(r) = −k2ρ1(r). (3.26)

This is the lossy Helmholtz equation, of which possible solutions are damped traveling
plane waves found directly in analogy to the inviscid Helmholtz equation by replacing k0

with k = k0 (1 + iγ),
ρ1(r, t) = Aei(k0·r−ωt)e−γk0·r, (3.27)

where A is a density amplitude. We notice that the exponential damped term has a
damping length of 1/(k0γ). Since we are observing attenuation in the system, this system
cannot be sustained without an energy supply like a driving force.

We now return to v1 to find a similar equation to determine the spatial part of the
velocity exploiting that we have already assumed a harmonic time-variation.

The harmonic time-dependence, shown for the density field in Eq. (3.19), changes the
first-order continuity equation (2.8b) into

∂tρ1 = −ρ0∇ · v1 ⇔ ∇ · v1 = −∂tρ1

ρ0
= iω

ρ1(r)
ρ0

. (3.28)

When treating only irrotational fields, we have

∇2v1 = ∇(∇·v1), (3.29)
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which together with the assumption of harmonic variation transforms the first-order Navier–
Stokes equation including the viscid terms, Eq. (3.13), into

− iωρ0v1(r) = −c2a∇ρ1 + η(1 + βvisc)∇
(

iω
ρ1(r)
ρ0

)
(3.30)

= −c2a(1− i2γ)∇ρ1(r). (3.31)

We notice that v1 can be written as a gradient field v1 = ∇φ1, where we again introduce
the first-order velocity potential φ1. We see from Eq. (3.31) that we can choose the first-
order velocity potential as

φ1(r, t) = −i
c2a(1− 2γ)

ωρ0
ρ1(r)e−iωt. (3.32)

This implies the general formulation of the non-viscid connection between the first-order
velocity potential and density, corresponding to Eq. (3.6),

ρ1 = − ρ0

c2a(1− i2γ)
∂tφ1 = −ρ0k

2

ω2
∂tφ1, (3.33)

where we in the last equality have used the definition of the complex wavenumber, Eq. (3.23).
Eq. (3.33) turns into a wave equation for the first-order velocity potential with viscosity

by remembering the continuity equation Eq. (2.8b),

∇2φ1 = − 1
ρ0
∂tρ1. (3.34)

Inserting into Eq. (3.33) gives us the desired wave equation for the first-order velocity po-
tential including viscosity, assuming an irrotational and harmonic first-order perturbation
term

∇2φ1 =
k2

ω2
∂2
t φ1 = −k2φ1. (3.35)

We notice that this is the lossy Helmholtz equation as long as the considered viscosity is
such that k = k0 (1 + iγ) as shown in Eq. (3.25).

3.3 Condition for Incompressible Behavior

An incompressible fluid is much easier to describe, primarily because of the simple form of
the continuity equation described in Chapter 2. In this section we want to analyze under
which conditions the fluid can be considered as incompressible to first-order.

The first condition is the obvious one that Δρ/ρ0 � 1 in time-independent systems.
This simply states that the relative change in density is small. To relate this to more
tangible quantities, we want to relate Δρ to other quantities involved in the problem.
Hence we consider the time-independent inviscid Navier–Stokes equation. From Eq. (2.1)
we get

(v·∇)v = − 1
ρ0

∇p, (3.36)
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where we have made the assumption that we are considering an incompressible fluid in
which the density is ρ0 everywhere, corresponding to the zeroth-order perturbation in the
density where the other perturbations are zero.

If we furthermore consider an irrotational flow, we notice that 2(v·∇)v = ∇(|∇φ|2) =
∇(|v|2) = ∇(v2). Inserting this in Eq. (3.36), we get

1
2
∇(v2) +

1
ρ0

∇p = ∇
[

1
2
v2 +

p

ρ0

]
= 0, (3.37)

where we have used that ρ0 is independent of the spatial coordinate. From Eq. (3.37) we
conclude that

1
2
|v|2 +

p

ρ0
= constant. (3.38)

This is called Bernoulli’s equation for incompressible steady flows.

From Eq. (3.38) it is now evident that any change in pressure is given by

Δp = −ρ0vΔ(v2). (3.39)

Thus, we have that Δp ∼ ρ0v
2. To first-order we concluded in Eq. (2.8c) that Δp = p1 =

c2aρ1. Hence we observe that to first-order ρ1 ∼ ρ0v
2
1/c

2
a. From Δρ1/ρ0 � 1 we get a

necessary condition for incompressibility stated as

v2
1 � c2a ⇒ v1 � ca. (3.40)

The condition stated in Eq. (3.40) is necessary but not sufficient if we are considering a
non-steady flow i.e. a time-dependent flow. In this situation we notice from the continuity
equation, Eq. (2.2), that the condition for the flow to be considered as incompressible, is

|∂tρ| � |∇ · (ρv)| = |ρ∇ · v| (3.41)

In the last equality we have used that the condition Eq. (3.40) is assumed to be fulfilled
such that we can neglect terms involving the gradient of the density i.e. using that |ρ∇·v| �
|v ·∇ρ|.

Now considering the time-dependent inviscid Navier–Stokes equation we get to first-
order from Eq. (2.8a)

ρ0∂tv1 = −c2a∇ρ1. (3.42)

If we consider a problem with the characteristic length, L, and the characteristic time, τ ,
we estimate from Eq. (3.42)

ρ0
v1
τ

= −c2a
Δρ1

L
, (3.43)

concluding that the density change to first-order is of the order of magnitude Δρ1 ∼
Lρ0v1/τc

2
a. Returning to use this in the condition stated in Eq. (3.41) we see that this is

fulfilled to first-order when

Δρ1

τ
� ρ0

v1
L

⇔ L

τ2c2a
� 1

L
⇔ τ � L

ca
. (3.44)
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This condition is interpreted as L/ca is the time taken for the sound to traverse the char-
acteristic length L. This must then according to Eq. (3.44) be small compared to the time
τ it takes the flow to change notably. This way the changes in the fluid may be regarded
as instantaneous. The conditions in Eqs. (3.40) and (3.44) are in agreement with [16].

When working with standing waves in the fluid it is more convenient to consider the
condition Eq. (3.44) with respect to the wavelength of the standing wave. Noticing that
the characteristic time scale of the standing wave is of the order τ ∼ 1/ω which in turn
is related to the wavelength of the standing wave ω ∼ ca/λ. This rewrites the condition
Eq. (3.44) in terms of the wavelength of the standing wave and the characteristic length
of the problem

λ� L, (3.45)

indicating that the length scale of the problem should be small compared to the wavelength
of the standing wave so that the density change caused by the wave can be neglected.

3.4 Inviscid Second-order Acoustic Field

In the previous discussion we have presented the first-order (or linear) theory. In the linear
approximation the harmonic time dependence enters in all terms to first-order, which we
saw led to the Helmholtz equation. Consequently taking the time average over a full
oscillation period all such terms would average out, leaving no opportunity for a DC drift
velocity or DC pressure gradient. However, if we consider the second-order approximation,
we introduce products of first-order terms, which will have a non-zero time average. For
the harmonic time variation cos(ωt), the time average of cos2(ωt) is 1/2.

The objective is to be able to discuss the pressure force created by the pressure gradi-
ent. We therefore consider the second-order pressure perturbation. Since we are operating
at high frequencies, we simplify the problem by only considering the time average of the
pressure perturbation without loss of practical importance, because for fields oscillating
at high frequencies we are only able to observe the time average. The goal of this sec-
tion is therefore to derive an expression for the time average of the second-order pressure
perturbation to be used in later calculations.

We consider the governing second-order Navier–Stokes equation (2.9a) neglecting vis-
cosity

ρ1∂tv1 + ρ0∂tv2 + ρ0(v1 ·∇)v1 = −∇p2. (3.46)

We notice the general theorem that the time average of the time-derivative of a T -periodic
function, f(t+ T ) = f(t), is zero because

〈∂tf〉 =
1
T

∫ t+T

t
∂t′f dt′ =

1
T

[f(t+ T )− f(t)] = 0, (3.47)

Assuming that all perturbation terms are periodic, we get the time average of Eq. (3.46)

〈
∇p2

〉
= −

〈
ρ1∂tv1

〉
−
〈
ρ0(v1 ·∇)v1

〉
. (3.48)
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Reintroducing the first-order velocity potential as done in Eqs. (3.5) and (3.6), we get

〈
∇p2

〉
= −

〈(
−ρ0

c2a
∂tφ1

)
∂t (∇φ1)

〉
−
〈
ρ0[(∇φ1) ·∇](∇φ1)

〉
, (3.49)

or

∇
〈
p2

〉
=

ρ0

2c2a
∇
〈
∂ 2
t φ1

〉
− ρ0

2
∇
〈
|∇φ1|2

〉
, (3.50)

exploiting that the spatial differentiation and time-average commute. Spatial integration
now yields 〈

p2

〉
=

ρ0

2c2a

〈
∂ 2
t φ1

〉
− ρ0

2

〈
|∇φ1|2

〉
=

ρ0

2c2a

〈
(∂tφ1)2

〉
− ρ0

2

〈
|v1|2

〉
. (3.51)

Eq. (3.51) expresses the time average of the second-order perturbation in the pressure. We
notice that this time average only contains the first-order perturbations in the velocity
potential. To calculate the time average of the second-order pressure perturbation we
therefore only have to solve the linear problem for the velocity potential.

3.5 Calculation of Time Average

We now want to find out how to calculate these time averages. We are considering two
quantities given as the real part of an complex expression,

A(t) = Re
{
A0e

iωt
}

and B(t) = Re
{
B0e

iωt
}
, (3.52)

where A0 and B0 are complex numbers. The time-average of their product is defined as〈
A(t)B(t)

〉
≡ 1
T

∫ T

0
A(t)B(t) dt, (3.53)

where T is the period. We use the fact that Re{Z} = 1
2 [Z + Z∗] to get

〈
A(t)B(t)

〉
=

1
4T

∫ T

0

[
A0e

iωt +A∗0e
−iωt

][
B0e

iωt +B∗0e
−iωt

]
dt. (3.54)

Finally we use that the terms containing the exponential cancel out on integration, and
we get〈

A(t)B(t)
〉

=
1
4τ

∫ τ

0
[A0B

∗
0 +A∗0B0] dt =

1
4

[A0B
∗
0 +A∗0B0] =

1
2
Re {A0B

∗
0} . (3.55)
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Chapter 4

Resonance in First-order Theory

In this chapter we will introduce acoustic resonance in a simple resonator as we will be
interested in standing waves in microchannels considered as a resonator. We will con-
centrate on the one-dimensional single-domain double actuation resonator both without
and with viscosity. The multilayer system with transmission is considered to be beyond
the scope of this section, because it does not contribute to the simple understanding of
the fundamental concept of resonance in an acoustic system, which is the aim of this sec-
tion. Furthermore we will be discussing the perturbation approach from an estimate of the
implicit perturbation parameter.

4.1 Acoustic Resonance in a Single-domain System

We consider a model of a microfluidic system excited by a piezo-electric crystal. We
imagine an one-dimensional system as shown in Fig. 4.1. The piezo-actuator gives rise to a
harmonic movement of the walls enclosing the fluid. The equilibrium position of the walls
is assumed to be at x = ±L, and the walls are assumed to be moving back and forth with
opposite phase but both with the maximum amplitude `. The movement of the walls can
therefore be described by ξ(±L, t) = ±`e−iωt. We imagine an actuator system with small
oscillatory amplitude, ` ≈ 1 nm from [5], relatively to the length of the system ` � L so
that we can neglect the movement of the walls. The width of the typical system considered
in this thesis is approximately 0.3 − 1.1 mm. Even though the displacement is small, the
system is driven at a high frequency so that it is not possible to neglect the velocity change.
The velocity of the oscillatory motion at the boundary is therefore readily found to be

vwall(±L, t) = ±ω`e−iωt. (4.1)

We notice that we are considering a situation with harmonic time variation so that
the first-order velocity potential is fulfilling the (lossy) Helmholtz equation, ∂2

xφ1(x) =
−k2φ1(x), like we explained in Sections 3.1.2 and 3.2.1 as long as the viscosity is considered
small. Making no distinction here on whether we are including viscosity or not, just writing
the possible complex wavenumber as k, the solution for the velocity potential is

φ1(x, t) =
[
Aeikx +Be−ikx

]
e−iωt, (4.2)
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Figure 4.1: A sketch of the single-domain, one-dimensional resonator system. From [22].

where we in the last part have introduced the implicit harmonic time-dependence. A and
B are arbitrary integration constants with respect to the spatial coordinate x.

The corresponding first-order velocity is found as

v1(x, t) = ∂xφ1(x, t) = ik
[
Aeikx −Be−ikx

]
e−iωt, (4.3)

and the first-order density is found from Eq. (3.33) as the time derivative of the velocity
potential,

ρ1(x, t) = −ρ0k
2

ω2
∂tφ1(x, t) = i

ρ0k
2

ω

[
Aeikx +Be−ikx

]
e−iωt. (4.4)

We are now using the no-slip boundary conditions formulated via the wall movement
Eq. (4.1) to determine the constants. First we notice that the boundary conditions are
anti-symmetric i.e. v1(−L, t) = −v1(+L, t) implying from Eq. (4.3) that A = B. Inserting
this into Eq. (4.3) together with one of the boundary conditions leads to the magnitude of
the coefficients,

A = − ω`

2k sin(kL)
, (4.5)

where we have used 2i sin(x) = eix − e−ix.
Inserting this into the solutions for the first-order velocity potential Eq. (4.2), velocity

Eq. (4.3), and density Eq. (4.4), we obtain

φ1(x, t) = −ω`
k

cos(kx)
sin(kL)

e−iωt, (4.6a)

v1(x, t) = ω`
sin(kx)
sin(kL)

e−iωt, (4.6b)

ρ1(x, t) = −iρ0k`
cos(kx)
sin(kL)

e−iωt. (4.6c)

We now have to make a distinction between whether we are considering the viscid or
inviscid fluid.
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We start by considering the inviscid case where the wavenumber is real, k = k0. From
Eq. (4.6) we observe that resonance in this case occurs at wavenumbers kn and correspond-
ing frequencies ωn,

Lkres = nπ, n ∈ N,

ωres = cakres = n
πca
L
.

(4.7)

We observe that in this undamped case the velocity is diverging at resonance. This con-
cludes that a resonator system can be created where it is possible to create significant
magnitudes of the field. Taking the real part of Eq. (4.6), we notice a phase shift of π/2
between the velocity and the density (pressure) in both space and time. From [5] we have
the energy flux to second-order is JE = −ρ0(∇φ1)(∂tφ1) = c2av1ρ1. The phase shift be-
tween velocity and density (pressure) then implies that the time-averaged energy flux is
zero.

It is also worth noticing that at resonance the first-order velocity will have nodes at
the boundary wall, where the velocity potential and density (pressure) will have anti-nodes
at the boundary. This is an important observation which will be used extensively in the
following chapters as we are considering resonators operating at resonance frequency.

We now turn to the problem of the viscid case. As described in Section 3.2.1, we
can approximate the wavenumber for small viscosity as k = k0(1 + iγ), where k0 is the
real wavenumber from the inviscid problem. In the case of a small viscosity such that
γk0L� 1, we can make a Taylor expansion of the sine and cosine terms in Eq. (4.6) in k
around k0. This yields the velocity and density (pressure) in the small damping case

v1(x, t) ≈ ω`
sin(k0x) + iγk0x cos(k0x)
sin(k0L) + iγk0L cos(k0L)

e−iωt, (4.8a)

ρ1(x, t) ≈ −iρ0k0`
cos(k0x)− iγk0x sin(k0x)
sin(k0L) + iγk0L cos(k0L)

e−iωt. (4.8b)

4.1.1 Considering the Perturbation Parameter and the First-order Velocity

Off-resonance we have sin(k0L) = 1 in Eq. (4.8) — notice that γ � 1 meaning that the
sine term is larger than the cosine term in the denominator — leaving the fields as

v1(x, t) ≈ ω` [sin(k0x) + iγk0x cos(k0x)] e−iωt, (4.9a)

ρ1(x, t) ≈ −iρ0k0` [cos(k0x)− iγk0x sin(k0x)] e−iωt. (4.9b)

The magnitude of the fields off-resonance are therefore given solely by the prefactor

∣∣v1(x, t)∣∣ ≈ ω` =
ω`

ca
ca, (4.10a)∣∣ρ1(x, t)

∣∣ ≈ ρ0k0` =
ω`

ca
ρ0. (4.10b)

where we have used the non-viscid dispersion relation, cak0 = ω.
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From Eq. (4.10) it is possible to read off the implicit perturbation factor discussed in
Section 2.2. With characteristic parameter values we can estimate this to be

αoff,res =
ω`

ca
≈ 106 s−1 × 10−9 m

1483 m s−1
= 6.7× 10−7. (4.11)

From this we conclude that off-resonance the perturbation approach is at least self consis-
tent in the sense that it produces a perturbation parameter value α� 1.

Continuing from Eq. (4.8) at resonance, i.e. when the denominator is small, we get
sin(k0L) = 0 and cos(k0L) = 1, indicating the resonance condition stated in Eq. (4.7). At
resonance we get the velocity and density (pressure) fields

v1(x, t) ≈ ω`
[
− i

nπγ
sin(knx) +

x

L
cos(knL)

]
, (4.12a)

ρ1(x, t) ≈ iρ0kn`

[
i

nπγ
cos(knx) +

x

L
sin(knx)

]
. (4.12b)

Comparing the fields off-resonance Eq. (4.9) and on-resonance Eq. (4.12) we notice that the
resonance fields acquire a resonant component with an amplitude 1/(nπγ) ≈ 3.1×104 (for
n = 1) times larger than for the off-resonance field. This means a change in the magnitude
of the perturbation parameter in the resonant case

αres =
1
nπγ

ω`

ca
≈ 3.1× 104 × 6.7× 10−7 = 2× 10−2. (4.13)

We notice that with strong resonance, which in the limit goes towards the infinite inviscid
case treated above, we tend to invalidate the perturbation approach. Hence we conclude
the importance of the viscosity of the fluid when regarding resonators. We also conclude
that large energy resonances, corresponding to the case of very low viscosity, gives a pos-
sible invalidation of the whole perturbation approach, which requires small values of the
perturbation parameter, α� 1, to be valid.

It is also interesting to notice that the first-order velocity in this way is estimated to
have the magnitude |v1| ≈ 10−2ca at resonance. As pointed out in [22] this is about two
magnitudes higher than the experimentally observed values. This is primarily due to the
assumption of a perfectly coupled and lossless resonator delivering its energy at resonance,
which of course is not the case in the experimental setup. Like [22] we will as an estimate
use the experimentally confirmed magnitude |v1| ≈ 10−4ca, [33].

4.1.2 Energy in the Resonator

It can be shown that the acoustic energy density to second-order of the acoustic fields is
given as the sum of the kinetic energy and the potential energy [5],

〈
Eac

〉
=

1
2
ρ0

[〈
∇φ1

〉2 +
〈 1
ca
∂tφ1

〉2
]

=
1
2
ρ0

[〈
v2

1

〉
+
〈( ca

ρ0
ρ1

)2 〉]
, (4.14)

where we in the last equality have used the relations between the first-order quantities and
the first-order velocity potential, cf. Eqs. (3.5) and (3.6).
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We will consider the general case including the viscosity. The expressions for the first-
order velocity and density is then given in Eq. (4.8). Using the result for the time average
of harmonic variating quantities found in Section 3.5, and noticing that the real first-order
terms expressed by complex notation in Eq. (4.8) is found by taking the real part of the
complex representation, we obtain

〈v2
1〉 =

1
2
ω2`2

sin2(k0x) + γ2k2
0x

2 cos2(k0x)
sin2(k0L) + γ2k2

0L
2 cos2(k0L)

, (4.15a)〈(
ca
ρ0
ρ1

)2
〉

=
1
2
ω4`2

c2ak
2
0

cos2(k0x) + γ2k2
0x

2 sin2(k0x)
sin2(k0L) + γ2k2

0L
2 cos2(k0L)

. (4.15b)

Inserting Eqs. (4.15a) and (4.15b) in Eq. (4.14) and using the Pythagorean identity for
sines and cosines we get

〈
Eac

〉
=
ρ0ω

2`2

4
1 + x2γ2k2

0

sin2(k0L) + γ2k2
0L

2 cos2(k0L)
, (4.16)

where we have also used the linear dispersion relation ω = cak0 and that we to first-order
in γ have k2 = k2

0 since γ � 1.
We want to consider the spatial-averaged energy density in the resonator which is

located at x = −L to x = L. Hence we integrate the energy density over the length of the
resonator,

ε =
1

2L

∫ L

−L

〈
Eac

〉
dx =

ρ0ω
2`2

8L
L+ 1

3γ
2k2

0L
3

sin2(k0L) + γ2k2
0L

2 cos2(k0L)
. (4.17)

We can now expand the sine and cosine terms in the denominator again under the assump-
tion that we are driving the resonator close to the resonance frequency ωres = cakres. The
Taylor expansions of the sine and cosine around the resonance frequency gives

sin(k0x) ≈ sin
(
ωres
ca

L

)
+
L

ca
(ω − ωres) cos

(
ωres
ca

L

)
, (4.18a)

cos(k0x) ≈ cos
(
ωres
ca

L

)
− L

ca
(ω − ωres) sin

(
ωres
ca

L

)
. (4.18b)

Inserting the Taylor expansions Eqs. (4.18a) and (4.18b) into Eq. (4.17) while using the
resonance condition Eq. (4.7) means that k0L ≈ kresL = ωresL/ca = nπ leading to
sin (ωresL/ca) = 0 and cos (ωresL/ca) = (−1)n, and gives

ε =
ρ0ω

2
res`

2

8
1

L2/c2a (ω − ωres)2 + γ2L2ω2
res/c

2
a

(4.19)

=
1
8
ρ0c

2
a

`2

L2

ωres
γ

γωres

(ω − ωres)2 + γ2ω2
res

, (4.20)

where we again use the assumption γ � 1 which is why the last term in the numerator of
Eq. (4.17) can be neglected compared to the first one.
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We recognize the form of the energy density in the resonator Eq. (4.20) as a Lorentzian,
which is the same kind of function we would get when solving for the amplitude of the clas-
sical harmonic oscillator. The energy density is centered around the resonance frequency
ωres and has a full width at half maximum (FWHM) of 2γωres. With the typical param-
eters used in the following chapters FWHM around the resonance frequency is estimated
as

2γωres ≈ 2× 10−5 × 2π × 2× 106 rad s−1 = 40 Hz. (4.21)

This example of a resonator is one-dimensional and for a real analysis of the physical system
we would of course have to generalize the analysis to three dimensions which is beyond
the scope of this thesis where we will not concentrate on the form of the resonance and
how it is actually created. An estimate can be given by considering the three-dimensional
cavity with homogeneous Neumann boundary because of the assumption of the walls being
acoustical hard materials so the pressure gradient is zero normal to the boundary walls,
nnormal·∇p1 = 0. This leads to a restrictions on the frequencies determined by the geometry.
In a rectangular cavity with the dimensions l0, w0, and h0 the solution to the Helmholtz
equation with the mentioned boundary conditions gives the resonance frequencies as stated
in [22],

ωres,3d = c2a

√(
2πn
l0

)2

+
(

2πk
h0

)2

+
(

2πm
w0

)2

, (n, k,m) ∈ N3. (4.22)
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Chapter 5

Forces Acting on Microparticles in

an Acoustic Field in an Inviscid

Fluid

Gor’kov [14] presented in 1962 a paper with derivations on a microparticle in an inviscid
fluid under the influence of an acoustic field. This paper is very condensed, so in this
chapter we would like to present a detailed derivation of Gor’kov’s results.

In the linear approximation described in Section 3.4, there can be no pressure force and
hence in average no displacement of the particle, since all first-order terms are harmonic
and are time-averaged to zero. Thus we have to go to second order to be able to see these
effects. Below we derive an expression for the force acting on a small particle entrained by
the fluid in an arbitrary acoustic field. In the following chapter we will only be concerned
with inviscid fluids i.e. we are neglecting all loss terms and especially viscosity. This
assumption is important since we want to describe the system by the velocity potential
which in turn demands that the fluid is isentropic. If the rotation is zero at one instant
and the flow is not isentropic it will most certainly not be irrotational an instant later, see
the discussion in [16].

5.1 The Potential Flow

First we consider the constant flow around a particle in an acoustic field and want to de-
termine if this flow is a potential flow. Using the Stokes theorem the irrotational condition
can be written as zero circulation along any closed contour,∮

v· dl =
∫

(∇× v)· dA = 0. (5.1)

From this it is clear that any constant velocity field is irrotational.

We need to determine if the flow around the particle is a potential flow. The isentropic
flow is determined by the non-viscid Navier–Stokes equation, Eq. (2.1),

ρ [∂tv + (v ·∇)v] = −∇p. (5.2)
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If we follow the particle immersed in the fluid we have a system where the particle is not
moving but the fluid is. Because of the acoustical field the pressure oscillates making the
particle surface oscillate at a certain angular frequency ω and amplitude a.

The size of the individual terms of Eq. (5.2) are estimated as follows: The velocity of the
fluid close to the particle surface changes by an amount of the same order as the velocity,
u, of the oscillating surface of the particle over the characteristic size of the particle, l.
This makes the spatial derivative of v of the order u/l and the term (v · ∇)v ∼ u2/l.
Considering the first term in Eq. (5.2) we see that ∂tv is of the order ωu. Noticing that
the angular frequency is of magnitude ω ∼ u/a we conclude that the first term is of the
order ∂tv ∼ u2/a. Comparing this to the other terms we obtain

|∂tv| � |(v ·∇)v| if a� l. (5.3)

We thus conclude that if the oscillations of the particle surface are small compared to the
length of the particle we can neglect the non-linear term of Eq. (5.2). This means that we
are limited to only consider sufficiently small variations in the pressure so that the particle
surface is not vibrating with too large an amplitude.

Neglecting the second term of Eq. (5.2) and applying the rotation operator on both
sides yields ∇× (ρ∂tv) = −∇× (∇p) = 0 because the rotation of a gradient-field is zero.
To first order ρ∂tv = ρ0∂tv1 which gives that ∇ × v1 is a constant with respect to time.
Because rotation and time-average commute, 〈∇ × v1〉 = ∇ × 〈v1〉 is equal to the same
constant. Assuming that v1 varies harmonically in time, we know that 〈v1〉 = 0 which
means that the constant also must be zero, giving ∇ × v1 = 0. Therefore to first order
the pressure variation is sufficiently small so that the amplitude of the surface oscillations
of the particle is small compared to the particle size. The flow around the particle is a
potential flow, and we can use the notation of velocity potential described in Chapter 3.

5.2 The Average Force For Second-order Perturbation

In the linear scattering theory we assume that the first-order velocity potential can be
written as the sum of the wave incident on the particle, φin, and the scattered wave, φsc,

φ1(r, t) = φin(r, t) + φsc(r, t). (5.4)

This means that all interference effects are neglected. Furthermore, we are neglecting the
scattered waves being reflected back towards the sphere from the wall of the fluid container
or other particles.

When neglecting body forces and viscid forces on the particle, the magnitude of the
average force is equal to the average flux of momentum through any arbitrary closed surface
∂V of the volume element V in which the particle is enclosed [5],

〈Fi〉 = −
∫
∂V
〈Πij〉nj dA, (5.5)

where 〈Πij〉 = pδij + ρvivj is the time average of the momentum flux density tensor,
nj = n · ej is the component of the outward pointing normal vector n to the surface in the
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direction of ej , and ρ is the density of the fluid. Using the perturbation scheme outlined
in Section 2.2 we include up to second-order effects for both the velocity and the pressure.

When neglecting viscosity we get the first-order perturbation in pressure from Eq. (3.7)

p1 = −ρ0∂tφ1. (5.6)

Restricting ourselves to periodic time variating first-order perturbations, we observe that
〈p1〉 = 0 by Eq. (3.47).

The second-order time-average perturbation of the pressure is obtained from Eq. (3.51),
and noticing that the second-order expansion of ρvivj is ρ0v1,iv1,j , we can rewrite Eq. (5.5)
as

〈Fi · ei〉 = −
∫
∂V

{[
−ρ0
〈v2

1〉
2

+
ρ0

2c2a

〈
(∂tφ1)2

〉]
δij + ρ0〈v1,iv1,j〉

}
nj dA. (5.7)

We see from Eq. (5.7) that we only need to solve the linear scattering problem, i.e. deter-
mine φ1, to determine the force. We therefore dedicate the next section to determination
of the velocity potential.

5.2.1 Calculation of the Velocity Potential

In Chapter 3 we saw that the velocity potential fulfilled the scalar wave equation Eq. (3.8).
Making a multipole expansion of the solution, see Appendix B, taking into account only
the terms which are not diverging at infinity, we look for retarded solutions φsc to the
velocity potential of the form

φsc =
a(t− r/ca)

r
+ ∇·

(
A(t− r/ca)

r

)
+ · · · (5.8)

=
a(t− r/ca)

r
− Ȧ(t− r/ca) · er

car
− A(t− r/ca) · er

r2
+ · · · . (5.9)

Here and in the following the dot denotes the derivative with respect to the argument.
Assuming that Ȧ varies periodically in time with angular frequency ω, then Ȧ/ca ∼
Aω/ca ∼ A/λ. This means that in the region close to the particle i.e. r � λ, we look for
solutions of the form

φsc =
a(t)
r
− A(t) · er

r2
+ · · · , (5.10)

where er is a unit vector pointing in the radial direction. This corresponds to only including
the largest of the two terms including A in Eq. (5.9). Notice that Eq. (5.10) is for small r
values.

We now look at the situation close to the particle where Eq. (5.9) reduces to Eq. (5.10),
to determine the coefficients a and A. To do this we make a general simplification of the
problem. Until now we have been discussing particles of an arbitrary shape. Now we
simplify our problem to spherically shaped particles in order to be able to determine the
coefficients. In all of the following we will therefore only be concerned with spherically
shaped particles.

The strategy for determining the coefficients is to consider different situations where
either the first or the second term of Eq. (5.10) vanish, and we therefore can determine the
other coefficient.
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First Term — Mass Flux

We now consider the first term a(t)/r of Eq. (5.10). This term describes the ejection of
the fluid because of the presence of the sphere and the compressibility of the sphere. We
therefore consider a stationary sphere in the fluid in an acoustic field which to first-order is
carrying the density ρin at the location of the sphere. This problem has complete rotational
symmetry and hence the term including A vanish because we see that this term includes
an angular dependence. It therefore suffices to consider only the first term of Eq. (5.10)
for this setup.

First we look at an incompressible sphere of radius R and volume Vs. The volume
Vsρ̇in/ρ0 would have entered the volume now occupied by the sphere per unit time. This
volume would have entered if the sphere was absent and is equivalent to the emission of
the same volume from the surface of the sphere by the scattered wave. If the normal vector
er is taken as pointing outwards, this means that

Vs
ρ̇in(t)
ρ0

=
∫
∂Vs

vsc(t) · er dA. (5.11)

Because vsc = ∇φsc the integral becomes

4π
3
R3 ρ̇in(t)

ρ0
=
∫
∂Vs

∇φsc ·er dA (5.12)

=
∫
∂Vs

∇
(
a(t)
r

)
·er dA (5.13)

= −
∫
∂Vs

a(t)
r2

er ·er dA (5.14)

= −a(t)
R2

4πR2. (5.15)

Thus

a(t) = − R
3

3ρ0
ρ̇in(t). (5.16)

We can expand this derivation by taking into account the fact that the sphere is compress-
ible. It means that Eq. (5.11) becomes

Vs
ρ̇in(t)
ρ0

+ δV̇s,1 = −4πa(t), (5.17)

where δV̇s,1 denotes the first-order volume change per unit time due to compression of the
sphere.

We now take advantage of the fact that δV̇s,1 by definition is small, since we only are
considering the case where the amplitude of the oscillations of the surface is small compared
to the length scale of the particle. This means that we can express it using the chain rule,

δV̇s,1 =
∂Vs
∂ρs

∂ρs
∂ps

δṗs,1, (5.18)
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where it is understood that the process of changing the volume of the sphere must be
isentropic, so we keep considering a lossless system. In analogy with Eq. (2.6) we define
the speed of sound in the sphere as the isentropic derivative,

c2s =
(
∂ps
∂ρs

)
ρ=ρs

. (5.19)

Because the pressure outside the sphere must be the same as inside the sphere at equi-
librium we notice from Eq. (2.8c) that the first-order perturbation of the pressure, δps,1,
is

δps,1 = p1 = c2aρ1 = c2aρin ⇒ δṗs,1 = c2aρ̇in. (5.20)

Furthermore, using that

∂Vs
∂ρs

=
∂

∂ρs

(
ms

ρs

)
= −ms

ρ2
s

= −Vs
ρs
, (5.21)

with ms denoting the mass of the sphere, Eq. (5.18) becomes

δV̇s,1 = −Vs
ρ̇inc

2
a

ρsc2s
. (5.22)

From Eq. (5.17) we finally obtain a(t),

a(t) = − 1
4π

(
Vs
ρ̇in(t)
ρ0
− Vs

ρ̇inc
2
a

ρsc2s

)
= − R

3

3ρ0
˙ρin(t)

(
1− ρ0c

2
a

ρsc2s

)
. (5.23)

This takes into account both the volume that the sphere occupies and thereby the mass
which is expelled from the surface and the fact that the sphere changes size when placed
in the fluid in an acoustic field.

These effects are present no matter if the sphere is stationary or moving, as long as there
is an incoming density perturbation of the size ρ̇in, and a following pressure perturbation
to make the surface compress.

Second Term — Movement of the Sphere and Fluid in Presence of the Sphere

The second term in Eq. (5.10) can be determined from the fact that in a stationary flow the
normal component of the velocity of the fluid and the normal component of the velocity of
the surface must be the same for r = R. We consider a sphere moving with the constant
velocity vs in a stationary fluid. This problem clearly involves a direction and hence an
angular dependence. The first term of Eq. (5.10) does not exhibit any angular dependence,
so for this kind of problem it suffices to only consider the second term. Though the effects
described above concerning mass flux is still valid, these effects cannot have any influence
on the flow of the fluid around the sphere.

The mentioned continuity condition for the normal component of the velocity of the
fluid and the velocity of the surface of the sphere, means that only the radial part of A(t)
enters the equations. Neglecting all other parts we can write A(t) = Ar(t)er, remembering
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that the fluid velocity is given as ∇φsc and only taking the radial part of the gradient, we
get

vs · er = ∇
(
−A · er

r2

)
· er
∣∣∣∣
r=R

= Ar
2er
R3
· er. (5.24)

Thus A(t) · er = 1/2vs · erR3, and the second term of φsc in Eq. (5.10) becomes

− A(t) · er
r2

= −vs · er
R3

2r2
. (5.25)

In general, the fluid is not stationary, but both the fluid and the sphere is moving, implying
that the sphere is entrained by the fluid and moves with a velocity u(t). We notice that it
still suffices only to consider the second term of Eq. (5.10) since this problem still involves
directions.

Since the equation for the full potential, Eq. (5.4), is linear and fulfills the scalar wave
equation as described in Chapter 3, so must the scattered potential,

∇2φsc =
1
c2a
∂ 2
t φsc. (5.26)

We notice that for a sphere with radius R the velocity potential changes notably over
this length scale, hence the spatial derivative in the left-hand side of Eq. (5.26) is of
the order ∼ φsc/R

2. The right-hand side is for harmonic time dependence of the order
∼ ω2φsc/c

2
a ∼ φsc/λ

2. For high frequency acoustic waves, and close enough to the sphere,
we have the condition λ� R, and we can neglect the right-hand side of Eq. (5.26) which
leads to that close to the sphere, the velocity potential must obey the Laplace equation,
∇2φsc = 0.

To determine the coefficient A we consider the situation close to a sphere entrained
by the fluid, when the fluid has a constant velocity and flows in the x-direction. Hence
we solve the Laplace equation inside and outside the sphere. Denoting the scattered field
outside with subscript O and inside the sphere with subscript I, the Laplace problem is
subject to the following boundary conditions:

BC 1 Continuity of the pressure, pI = pO at r = R. To first order in Eq. (3.7) we get
psc = p0− ρ0∂tφsc = ρ0 +iρ0ωφsc, assuming that the time-dependence is on the form
e−iωt. This means that

ρI∂tφI = ρO∂tφO ⇒ ρIφI = ρOφO, at r = R, (5.27)

BC 2 Continuity of the normal velocity

vI · er = vO · er ⇒ ∂rφI = ∂rφO, at r = R. (5.28)

BC 3 φO(r, θ) → vinr cos θ for r → ∞; far from the sphere the scattered velocity field
must be like the incoming field.

BC 4 φI must remain finite.
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Using boundary condition 3 we see that the potential only can have a cosine variation
(not higher powers of cos θ). This gives the following linear combination of solutions to
∇2 {rp cos θ} = 0 with p being an integer

φ(r, θ) =
[
Ar +Br−2

]
cos θ. (5.29)

Inside the sphere the potential cannot diverge according to boundary condition 4, thus
BI = 0, and φI must have the form

φI(r, θ) = AIr cos θ. (5.30)

Similarly using boundary condition 3 we conclude that AO = vin so that the potential
outside the sphere must have the form

φO(r, θ) =
[
vinr +BOr

−2
]
cos θ. (5.31)

Using boundary conditions 1 and 2, respectively we arrive at the two equations

ρIAIR = ρO
(
vinR+BOR

−2
)

(5.32a)

AI = vin − 2BOR
−3. (5.32b)

By solving Eq. (5.32) with respect to AI and BO we find the potential to be given as

φI(r, θ) = vinr
3ρO

2ρI + ρO
cos θ, (5.33a)

φO(r, θ) = vin

[
r +

ρI − ρO
2ρI + ρO

R3r−2

]
cos θ. (5.33b)

Identifying that ρ0 = ρO and ρs = ρI as the density of the fluid and the sphere respectively
and using that vinr cos θ = vin · r, we see that the velocity potential inside the sphere φI
gives the velocity of the sphere itself. Taking the gradient of φI, we get the velocity u(t)
of the sphere entrained by the fluid with the constant velocity vin,

u(t) = ∇φI =
3ρ0

2ρs + ρ0
vin(t). (5.34)

We see that we have to correct Eq. (5.25) now that the fluid is also moving around the
sphere. Placing ourselves in the reference frame of the fluid we again obtain a situation
where the fluid is at rest with respect to the chosen coordinate system and the sphere is
moving. This situation determines A(t) as shown in Eq. (5.25) where vs is the velocity of
the sphere in the chosen system. In the rest-frame of the fluid the sphere will, according
to Eq. (5.34), have the velocity vin(t)− u(t) giving the coefficient as

A(t) = −
[
vin(t)− u(t)

]R3

2
= −R

3(ρs − ρ0)
2ρs + ρ0

vin(t). (5.35)

Using the constants a and A found in Eq. (5.23) and Eq. (5.35) we get the scattered
velocity potential by inserting into the general solution Eq. (5.8),

φsc(t− r/ca) = − R3

3ρ0r
ρ̇in(t− r/ca)f1 −

R3

2
f2∇ ·

(
vin(t− r/ca)

r

)
, (5.36)

where

f1 = 1− ρ0c
2
a

ρsc2s
and f2 =

2(ρs − ρ0)
2ρs + ρ0

. (5.37)
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5.3 Forces Acting on a Particle in a Plane Running Wave

We want to determine the force on particles in an ideal fluid when the incoming acoustic
field is a plane traveling monochromatic wave in the x-direction

φin(x, t) = −u0

k
cos(kx− ωt). (5.38)

Furthermore, we still use the linear approximation for the full first-order perturbation of
the velocity potential,

φ1(r, t) = φin(r, t) + φsc(r, t), (5.39)

implying that all quantities with the subscript „in” or „sc” is of first-order.
We see that the projection of the force in the x-direction is given from Eq. (5.7) by an

integral over the surface of the sphere (r = R)

〈Fx〉 = 〈F · ex〉 =−
∫
∂V

{[
−ρ0
〈v2

1〉
2

+
ρ0

2c2a

〈(
∂φ1

∂t

)2〉]
ex · er

+ ρ0

〈
(ex · v1)(v1 · er)

〉}
dA.

(5.40)

When inserting the linear splitting of the potential in incoming and scattered quantities
indicated in Eq. (5.39), the first term in the curly brackets becomes

ζ =

[
−ρ0
〈v2

1〉
2

+
ρ0

2c2a

〈(
∂φ1

∂t

)2〉]
cos θ, (5.41a)

or

ζ =
ρ0

2

[
−
〈
v2
in,0 + v2

sc,0 + 2vin,0vsc,0 cos θ
〉

+
1
c2a

〈
(∂tφin)

2 + (∂tφsc)
2 + 2(∂tφin)(∂tφsc)

〉]
cos θ.

(5.41b)

Here, we have introduced the angle θ between the radial direction, er, and the x direction,
ex, and used vin,0 to denote the amplitude of the incoming velocity i.e. vin = vin,0ex,
and vsc,0 to denote the amplitude of the radial component of the scattered velocity i.e.

vsc = vsc,0er.
In Appendix C we have calculated the scattered and incoming velocity field created

because of the incoming potential Eq. (5.38). In Eqs. (C.3) and (C.13) we found that
∂tφin = −cavin,0 and ∂tφsc = −cavsc,0. Using this in Eq. (5.41b) we conclude that

ζ =
ρ0

2

[
−
〈
v2
in,0 + v2

sc,0 + 2vin,0vsc,0 cos θ
〉

+
1
c2a

〈
(−cavsc,0)2 + (−cavin,0)2 + 2(−cavin,0)(−cavsc,0)

〉]
cos θ,

(5.42a)

= ρ0vin,0vsc,0
(
cos θ − cos2 θ

)
. (5.42b)



Chapter 5. Forces on Microparticles 35

The second term in the integrand of Eq. (5.40) is

ρ0

〈
(ex · v1)(v1 · er)

〉
= ρ0

〈
(ex · [vin + vsc]) ([vin + vsc] · er)

〉
(5.43)

= ρ0

〈
(vin,0 + vsc,0 cos θ)(vin,0 cos θ + vsc,0)

〉
(5.44)

= ρ0

〈
v2
in,0 cos θ + v2

sc,0 cos θ + vin,0vsc,0(1 + cos2 θ)
〉
. (5.45)

Thus the average force on the particle in the direction of the incoming wave (x-direction)
is found by inserting Eq. (5.42b) and Eq. (5.45) into Eq. (5.40),

〈Fx〉 = −ρ0

∫
∂V

〈
v2
in,0 cos θ + v2

sc,0 cos θ + vin,0vsc,0(1 + cos θ)
〉
dA. (5.46)

To reduce the expression even further and to realize that the force from a plane traveling
wave only depends on the momentum carried away by the scattered wave, we consider the
change of energy inside a given volume. Following [5] we find that the change in energy
with time inside a given volume V is given by the change in energy flux,∫

V
∂tEacdV = −

∫
V

∇ · JEdV. (5.47)

Taking the time average of Eq. (5.47), remembering that the time average of a time deriva-
tive is always zero for periodic functions, see Eq. (3.47), we arrive at

0 =
〈∫

V
∂tEacdV

〉
=
〈∫

V
∇ · JEdV

〉
=
〈∫

∂V
JE ·dA

〉
=
∫
∂V
〈JE〉·dA, (5.48)

where we have used Gauss’s theorem to convert the volume integral into a surface integral
and without loss of generality assumed that the surface does not vary in time. From [5]
we have that the energy flux to second order is given as

JE = ρ0 (∇φ1) (∂tφ1) = ρ0v1 (∂tφ1) , (5.49)

where the subscript 1 as usual denotes the first-order perturbation quantities.
Now we use the linear splitting of the first-order quantities and exploit Eq. (5.48) to

get a useful relation between the scattered and incoming velocity components if we let the
considered surface be a sphere

0 =
∫
∂V

〈
ρ0

(
∂φin
∂t

+
∂φsc
∂t

)
v1

〉
· dA (5.50a)

= ρ0

∫
∂V

〈
(−cavin,0 − cavsc,0)(vin,0ex + vsc,0er)

〉
·er dA (5.50b)

= ρ0ca

∫
∂V

〈[
v2
in,0 cos θ + v2

sc,0 + vin,0vsc,0(1 + cos θ))
]〉

dA (5.50c)

=
〈
v2
in,0 cos θ + v2

sc,0 + vin,0vsc,0(1 + cos θ)
〉
, (5.50d)
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where we again have used the relations from Appendix C, ∂tφsc = −cavsc,0 and ∂tφin =
−cavin,0. The last equation follows from the arbitrary choice of integration surface. If the
integral is zero for an arbitrary choice of surface, then the integrand must be identical zero.
Using Eq. (5.50d) to reduce Eq. (5.46), the average force turns out to be

〈Fx〉 = ρ0

∫
∂V
〈v2

sc,0〉(1− cos θ) dA. (5.51)

The scattered velocity that emerges from the incoming potential Eq. (5.38) through
the use of Eq. (5.36) is calculated in Appendix C to lowest order in r

vsc(t− r/ca) =
R3u0ω

2

c2ar
sin
[
ω(t− r/ca)

](1
3
f1 −

1
2
f2 cos θ

)
er +O(r−2). (5.52)

Using that the time average of a sine function squared over a full period is 1/2, we get the
desired time average,

〈v2
sc,0〉 =

〈[
R3u0ω

2

c2ar
sin(ω(t− r/ca))

(
1
3
f1 −

1
2
f2 cos θ

)]2〉
(5.53a)

=
R6u2

0ω
4

2c4ar2

(
1
3
f1 −

1
2
f2 cos θ

)2

. (5.53b)

We can now evaluate the integral in Eq. (5.51),

〈Fx〉 = 2π
ρ0R

6u2
0k

4

2

∫ π

0

[
1
R2

(
f2
1

9
− f1f2

3
cos θ +

f2
2

4
cos2 θ

)

× (1− cos θ)R2 sin θ

]
dθ

(5.54a)

=
ρ0R

6u2
0k

4

2
2π

2
9

(
f2
1 + f1f2 +

3
4
f2
2

)
. (5.54b)

Letting I = ρ0cau
2
0/2 denote the average energy flux density, the average force on a spher-

ical particle with radius R in a fluid in a monochromatic wave is

〈Fx〉 =
4πI
9ca

R2(kR)4
(
f2
1 + f1f2 +

3
4
f2
2

)
. (5.55)

We see that the force scales as k4. This implies that this force is very small for
rapidly oscillating incoming waves. Because we are operating at ultrasound frequencies
f & 1.5 MHz, we conclude that this force is negligible. In the next section we therefore
consider the force in an arbitrary wave which is not similar to the plane running wave.
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5.4 Forces Acting on a Particle in an Arbitrary Wave

We neglect second-order terms in the scattered and incoming wave thus only taking into
account the mixed terms. This reduces Eq. (5.7) to

〈Fi〉 = −
∮ ([

−ρ0

2
〈v2

1〉+
ρ0

2c2a

〈
(∂tφ1)2

〉]
δik + ρ0〈v1,jv1,k〉

)
nk dA (5.56a)

= −ρ0

∮ ([
− 1

2
〈
(vsc + vin)2

〉
+

ρ0

2c2a

〈
[∂t(φsc + φin)]2

〉]
δik

+ ρ0

〈
(vsc,i + vin,i)(vsc,k + vin,k)

〉)
nkdA

(5.56b)

= −
∮ ([

−ρ0

2
〈
2vsc,jvin,j

〉
+

ρ0

2c2a

〈
2(∂tφsc)(∂tφin)

〉]
δik

+ ρ0

〈
vsc,ivin,k + vin,ivsc,k

〉)
nkdA.

(5.56c)

Remembering that ρ1 = −ρ0/(c2a)∂tφ1 from Eq. (3.6) we get for the average force to first
order in the scattered and incoming waves

〈Fi〉 = −
∮ ([

−ρ0〈vsc,jvin,j〉+
c2a
ρ0
〈ρscρin〉

]
δik + ρ0〈vsc,ivin,k〉+ ρ0〈vin,ivsc,k〉

)
nkdA.

(5.57)
We convert expression (5.57) to a volume integral using the Gauss’s theorem and that
summation over all k is implicit,

〈Fi〉 = −
∫
V
∂k

([
−ρ0〈vsc,jvin,j〉+

c2a
ρ0
〈ρscρin〉

]
δik

+ ρ0〈vsc,ivin,k〉+ ρ0〈vin,ivsc,k〉
)
dV,

(5.58)

Noticing that time average and spatial differentiation commute, we get

〈Fi〉 = −
∫
V

[
− ρ0〈(∂ivsc,j)vin,j〉 − ρ0〈vsc,j(∂ivin,j)〉+

c2a
ρ0
〈(∂iρsc)ρin〉+ 〈ρsc(∂iρin)〉

+ ρ0 (〈(∂kvsc,i)vin,k〉+ 〈vsc,i(∂kvin,k)〉+ 〈(∂kvin,i)vsc,k〉+ 〈vin,i(∂kvsc,k)〉)
]
dV.

(5.59)

We note that we are considering a potential flow, and thus

∂kvj = ∂k∂jφ = ∂j∂kφ = ∂jvk. (5.60)
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Using this interchange of the indices in Eq. (5.59), we get

〈Fi〉 =−
∫
V

{
c2a
ρ0

[〈
(∂iρsc)ρin

〉
+
〈
ρsc(∂iρin)

〉]

+ ρ0

[〈
vsc,i(∂kvin,k)

〉
+
〈
vin,i(∂kvsc,k)

〉]}
dV.

(5.61)

We now consider the inviscid first-order governing equations, Eq. (3.1a) and Eq. (3.1b).
Using the linear splitting of the first-order quantities in a scattered and an incoming part,
as shown for the potential in Eq. (5.39), we can write the governing first-order equations
as [

ρ0∂t(vsc + vin)
]
i
=
[
− c2a∇(ρsc + ρin)

]
i
= −c2a∂i(ρsc + ρin), (5.62a)

∂t(ρsc + ρin) = −ρ0∇·(vsc + vin) = −ρ0∂k(vsc,k + vin,k). (5.62b)

From Eq. (5.62a) we conclude that

∂iρsc = −ρ0

c2a
∂t(vsc,i + vin,i)− ∂iρin, (5.63a)

∂iρin = −ρ0

c2a
∂t(vsc,i + vin,i)− ∂iρsc, (5.63b)

and from Eq. (5.62b) we see that we can write

ρ0∂kvin,k = −∂t(ρsc + ρin)− ρ0∂kvsc,k. (5.64)

Exploiting Eqs. (5.63a), (5.63b), and (5.64) we reduce Eq. (5.61) to

〈Fi〉 =−
∫
V

{〈(
−∂t(vsc,i + vin,i)−

c2a
ρ0
∂iρin

)
ρin

〉
+
〈
ρsc

(
−∂t(vsc,i + vin,i)−

c2a
ρ0
∂iρsc

)〉

+
〈
vsc,i(−∂t(ρsc + ρin)− ρ0∂kvsc,k)

〉
+ ρ0

〈
vin,i(∂kvsc,k)

〉}
dV.

(5.65)

We emphasize that we are only considering first-order perturbations in the scattering and
incoming fields, i.e. we are only considering mixed terms in the scattered and incoming
fields. This reduces Eq. (5.65) to

〈Fi〉 = −
∫
V

{
−
〈
ρin(∂tvsc,i)

〉
−
〈
ρsc(∂tvin,i)

〉
−
〈
vsc,i(∂tρin)

〉
+ ρ0

〈
vin,i(∂kvsc,k)

〉}
dV

(5.66a)

= −
∫
V

{
−
〈
∂t(ρinvsc,i)

〉
−
〈
ρsc(∂tvin,i)

〉
+ ρ0

〈
vin,i(∂kvsc,k)

〉}
dV. (5.66b)



Chapter 5. Forces on Microparticles 39

We notice the general case of the time average of a time derivative of an arbitrary periodic
function i.e.,

〈
∂tf
〉

= 0, see Eq. (3.47). For periodic first-order perturbations we therefore
get 〈

∂t(ρinvsc,i)
〉

=
〈
∂t(ρscvin,i)

〉
=
〈
ρsc(∂tvin,i) + (∂tρsc)vin,i

〉
= 0, (5.67)

or 〈
ρsc(∂tvin,i)

〉
= −

〈
(∂tρsc)vin,i

〉
. (5.68)

Inserting Eqs. (5.67) and (5.68) into Eq. (5.66b) we get

〈Fi〉 = −
∫
V

〈
vin,i (ρ0(∂kvsc,k) + ∂tρsc)

〉
dV. (5.69)

Reintroducing the velocity potential by the relations vsc,k = ∂kφsc and ρsc = −ρ0/(c2a)∂tφsc,
we get

〈Fi〉 = −ρ0

∫
V

〈
vin,i

[
∂ 2
k φsc −

1
c2a
∂ 2
t φsc

]〉
dV. (5.70)

If we consider the integrand of Eq. (5.70) we see that the contents of the squared brackets
are similar to the wave equation for the scattered velocity potential, Eq. (5.26). The
scattered velocity potential has been determined in Eq. (5.36). We conclude that we are
considering the case described in Appendix B with

a(t− r/c) = −R3/(3ρ0)f1ρ̇in(t− r/c), (5.71)

and

A(t− r/c) = −R3/(2)f2vin(t− r/c). (5.72)

From the analogy with Appendix B we see from Eqs. (B.13) and (B.24) that inserting the
velocity potential Eq. (5.36) into the scalar wave equation will give us zero everywhere
except at the origin, where the divergence is represented by delta-functions. As usual
suppressing the arguments, we see that[

∇2 − 1
c2a
∂ 2
t

] [
a

r
+ ∇·

(
A
r

)]
= −4πaδ3(r)− 4π∇·

[
Aδ3(r)

]
(5.73)

= 4π
R3

3ρ0
f1ρ̇inδ

3(r) + 4π
R3

2
f2∇·

[
vinδ3(r)

]
. (5.74)

Inserting Eq. (5.74) into Eq. (5.70), we get

〈Fi〉 = −ρ0

∫
V

〈
vin,i

[
4π
3ρ0

R3f1ρ̇inδ
3(r) + 2πR3f2∇·

(
vinδ3(r)

)]〉
dV. (5.75)

Remembering the general rules for integration by parts,∫
V

(∇f) · u dV =
∫
∂V

fu·dA−
∫
V
f(∇·u)dV, (5.76)
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where f is an arbitrary scalar function and u is an arbitrary vector function, we can now
carry out the integration1 in Eq. (5.75) with f = vin,i and u = vinδ3(r)

〈Fi〉 =− ρ0

〈
4π
3ρ0

R3f1ρ̇invin,i

〉
− 2πR3f2ρ0

[ ∫
∂V

〈
vin,ivinδ3(r)

〉
·dA

−
∫
V

〈
(∇vin,i) · vinδ3(r)

〉
dV

]
.

(5.77)

Here we take the volume to be any volume outside the considered body, because we by
definition have placed the origin inside the body.

The first integral in the squared brackets is zero because the integration area does not
include the origin, and the three-dimensional delta function therefore is zero everywhere
on the integration surface. Hence we get

〈Fi〉 = −4
3
πR3f1

〈
ρ̇invin,i

〉
+ 2πR3f2ρ0

〈
(∇vin,i)·vin

〉
(5.78)

= −4
3
πR3f1

〈
ρ̇invin,i

〉
+ 2πR3f2ρ0

〈
(∂kvin,i)vin,k

〉
. (5.79)

In Eq. (5.79) it is understood that every variable is taken at the origin, i.e. at the position
of the particle in consideration.

To make the interpretation of this result more simple we want to express the average
force by a force potential. We notice that we have assumed the first-order velocity per-
turbation to be an irrotational vector field, hence by Eq. (5.79) the average force must
also be an irrotational vector field. We can therefore introduce the scalar force potential
in analogy to the velocity potential as 〈F〉 ≡ −∇U . Notice that the minus sign is purely
conventional to make particles go to places with a small potential.

We notice that we can rewrite the first term of Eq. (5.79) when we only consider periodic
perturbations. From Eq. (3.47) we conclude that〈

∂t(ρinvin)
〉

= 0 (5.80)

or 〈
(∂tρin)vin

〉
= −

〈
ρin(∂tvin)

〉
. (5.81)

Using the result Eq. (5.80) and the governing equations without viscosity, Eq. (3.1a) and
Eq. (2.8c), we can rewrite the first term of Eq. (5.79) to concern only the pressure,

−4
3
πR3f1

〈
(∂tρin)vin,i

〉
=

4
3
πR3f1

〈
ρin(∂tvin,i)

〉
=

4
3
πR3f1

〈(
pin
c2a

)(
−∂ipin

ρ0

)〉
(5.82a)

= − 4
3c2aρ0

πR3f1

〈
pin (∂ipin)

〉
. (5.82b)

1Integration of the three-dimensional δ-function is defined as:
∫

V
f(r)δ3(r − r0)dV = f(r0) if the

volume V includes the point r = r0, otherwise the integral equals zero.
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When we want to write the force as the gradient of the scalar force potential, we notice
that

∂i(p
2
in) = 2pin(∂ipin), (5.83a)

∂i(v
2
in) = 2vin,k(∂ivin,k) = 2vin,k(∂kvin,i), (5.83b)

where we in the last equality in Eq. (5.83b) have used the assumption that the velocity
field is irrotational, and that we therefore can interchange the indices when taking the
gradient as shown in Eq. (5.60).

We notice that Eq. (5.83a) and Eq. (5.83b) are the expressions that we have in Eq. (5.79).
Using this and the result from Eq. (5.82b), we see that the force can be written as the
gradient of a scalar field,

〈Fi〉 = − 4
3c2aρ0

πR3f1

〈
pin (∂ipin)

〉
+ 2πR3f2ρ0

〈
(∂kvin,i)vin,k

〉
(5.84a)

= − 4
3c2aρ0

πR3f1

〈1
2
∂i(p

2
in)
〉

+ 2πR3f2ρ0

〈1
2
∂i(v

2
in)
〉
. (5.84b)

This implies that the scalar field U for which 〈F〉 = −∇U is given as

U =
2

3c2aρ0
πR3f1

〈
p2
in

〉
− πR3f2ρ0

〈
v2
in

〉
= 2πR3ρ0

[ 〈
p2
in

〉
3c2aρ2

0

f1 −
〈
v2
in

〉
2

f2

]
. (5.85)

5.5 Pressure Force on a Single Particle in a Standing Wave

Eq. (5.85) is expressing the force potential on a body given the incoming pressure pin and
velocity vin at the position of the particle. Assuming a standing wave in a single direction,
the x-direction, we can write the incoming velocity potential as

φin =
u0

k
cos(kx) cos(ωt), (5.86)

where u0 is the velocity amplitude, k is the wavenumber of the standing wave, and ω is
the angular frequency of the wave. From Eqs. (3.5) and (3.7) we get the velocity and the
pressure

vin = ∇φin = (∂xφin)ex = −u0 sin(kx) cos(ωt)ex, (5.87a)

pin = −ρ0∂tφin =
u0ρ0ω

k
cos(kx) sin(ωt) = u0ρ0ca cos(kx) sin(ωt). (5.87b)

Inserting Eqs. (5.87a) and (5.87b) into Eq. (5.85) gives the force potential

U = 2πR3ρ0

[〈
(u0ρ0ca)2 cos2(kx) sin2(ωt)

〉
3c2aρ2

0

f1 −
〈
u2

0 sin2(kx) cos2(ωt)
〉

2
f2

]
(5.88a)

= 2πR3ρ0u
2
0

[
1
3
f1

〈
cos2(kx) sin2(ωt)

〉
− 1

2
f2

〈
sin2(kx) cos2(ωt)

〉]
(5.88b)

= 2πR3ρ0u
2
0

[
1
6
f1 cos2(kx)− 1

4
f2 sin2(kx)

]
, (5.88c)
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where we in the last equality have used that the time-average of cosine or sine functions
over a period is 1/2.

The average force on a particle located at x is then given as 〈Fx〉 = −∂xU , from the
definition 〈F〉 = −∇U , which leads to

〈Fx〉 = −2πR3ρ0u
2
0

[
−2

6
f1k cos(kx) sin(kx)− 2

4
f2k sin(kx) cos(kx)

]
(5.89a)

= −4πR3ρ0u
2
0k cos(kx) sin(kx)

[
−1

6
f1 −

1
4
f2

]
(5.89b)

= 8πkR3〈Eac〉 sin(2kx)
[
1
6
f1 +

1
4
f2

]
, (5.89c)

where we in the last equality have used the trigonometric identity sin(2a) = 2 sin(a) cos(a)
and the dispersion relation ω = cak. Furthermore we have used that the average acoustic
energy in the incoming wave 〈Eac〉 is given by [5]

〈Eac〉 =
1
2
ρ0

[〈
(∇φin)2

〉
+
〈(

1
ca
∂tφin

)2〉]
(5.90a)

=
1
2
ρ0

[〈
(−u0 sin(kx) cos(ωt))2

〉
+

〈(
−u0ω

kca
cos(kx) sin(ωt)

)2
〉]

(5.90b)

=
1
4
ρ0

[
u2

0 sin2(kx) + u2
0 cos2(kx)

]
=

1
4
ρ0u

2
0. (5.90c)

Returning to Eq. (5.89c) inserting Eq. (5.37) gives the force acting on a small particle in
a standing wave in the x-direction:

〈Fx〉 = 8πkR3〈Eac〉 sin(2kx)
[
1
6

(
1− c2aρ0

c2sρs

)
+

1
4

2(ρs − ρ0)
2ρs + ρ0

]
(5.91a)

= 4πkR3〈Eac〉 sin(2kx)

[
ρs + 2

3(ρs − ρ0)
2ρs + ρ0

− 1
3
c2aρ0

c2sρs

]
(5.91b)

= 4πkR3〈Eac〉Φ sin(2kx). (5.91c)

We see by comparison with Eq. (5.55) that this force is many times larger because it scales
as (kR)R2 and not as (kR)4R2 which was the case for the plane traveling wave. For
simplicity we define the term in the square brackets in Eq. (5.91b) as Φ.

5.6 Visualizing the Pressure Force and the Idea Behind Par-

ticle Separation

When we in the following chapters discuss the acoustophoretic sign, we understand it as
the sign of the Φ-factor. We notice that it is the Φ-factor which determines the direction
of the pressure force. Hence it is the density and speed of sound of the single particles
compared to the fluid that determines the direction of the pressure force.
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0 y=ww/2

Pressure, p

F when Φ>0

F when Φ<0

Force, F

Figure 5.1: A sketch showing the pressure (velocity potential) standing wave in the channel with
a wavelength of λ/2 = w. Furthermore the resulting pressure force as expressed by Eq. (5.91c) is
sketched for Φ > 0. If we plotted it for Φ < 0 the sign would change. The arrows indicate the
direction of the force on particles with negative or positive Φ-factor respectively.

As an illustration of the principle we consider a resonator of the type discussed in
Chapter 4 where the walls are placed at y = 0 and y = w. At resonance the pressure
field (velocity potential) has anti-nodes at the walls as shown in Eq. (4.6). The wavelength
is then given as λ/2 = w which gives the fundamental mode of the resonance condition
derived in Eq. (4.7), k = nπ/w, n ∈ N. We see from Fig. 5.1 that the wavelength of
the force is half the wavelength of the pressure resulting in a positive force in the area
0 < y < w/2 and a negative force for w/2 < y < w for particles with Φ > 0. The result
is that particles with a positive Φ-factor move towards the center of the channel and are
thereby collected at the nodes in the pressure. In the same way we observe that particles
with Φ < 0 move towards the edges of the channel and end up at the anti-nodes in the
pressure. It is this general principle we will be using in order to separate different types of
particles in the second part of the thesis.

5.7 Considering the Pressure Force in 2D

The pressure force can also be determined in the two-dimensional case where we use the
potential from Eq. (5.85) as a starting point. When considering a standing wave in two
dimensions, we can write the velocity potential corresponding to Eq. (5.86) as

φ2Din =
u0

k
cos(kxx) cos(kyy) cos(ωt), (5.92)

where we use the fact that a standing wave can be written as the sum of two counter-
propagating waves with wave vectors k and −k respectively, such that k2 = k2

x+k2
y. With

Eqs. (3.5) and (3.7) we find

vin = −u0kx
k

sin(kxx) cos(kyy) cos(ωt)ex −
u0ky
k

cos(kxx) sin(kyy) cos(ωt)ey, (5.93)

pin = −ρ0∂tφ
2D
in = −ωu0

k
cos(kxx) cos(kyy) sin(ωt). (5.94)
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Inserting these equations into Eq. (5.85) we arrive at

U2D = U0

[
2f1 cos2(kxx) cos2(kyy)

− 3
(
k2
x

k2
sin2(kxx) cos2(kyy) +

k2
y

k2
cos2(kxx) sin2(kyy)

)
f2

]
.

(5.95)

with

U0 =
1
8

4πR3

3
u2

0ρ0 =
1
2

4πR3

3
〈Eac〉. (5.96)

Because of symmetry in x and y in Eq. (5.95), we will only calculate the pressure force in
the x-direction, which becomes

〈Fx〉 = −∂xU2D = 2U0kx cos(kxx) sin(kxx)

×

[
2f1 cos2(kyy) + 3f2

k2
x

k2
cos2(kyy)− 3f2

k2
y

k2
sin2(kyy)

]
.

(5.97)

Using k2 = k2
x + k2

y and some trigonometric manipulation, Eq. (5.97) can be reduced to

〈Fx〉 = U0kx sin(2kxx)

[
2f1 cos2(kyy) + 3f2

(
cos2(kyy)−

k2
y

k2

)]
. (5.98)

We see that if ky = 0, corresponding to k = kx, we arrive at the 1D equation like we would
expect.
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Chapter 6

Analytic Solution in Simple

Channel

The pressure force gives the possibility of manipulating particles in a laminar flow as
experimentally verified in [30], [32], [42]. We would like to point out first that the analyses
in this part will be based on the single-particle approach, neglecting all interactions between
the particles. Hence the particles will only be affected by the flow of the fluid and by the
pressure force originating from the standing wave.

As the simplest case we start with the one-particle approach to particle manipulation
by considering the movement of a particle in a channel. We determine the trajectory and
travel time of a single particle in the laminar flow given a certain starting position in the
channel. Following the experimental results [24], [28], [29], we are considering a channel
with width w = λ/2, where λ is the wavelength of the standing wave (velocity potential
or pressure) with anti-nodes at the channel edge as illustrated in Section 5.6.

The particles are placed in a laminar flow in a rectangular channel with width w, height
h, and length L as shown in Fig. 6.1. We notice the obvious symmetry of the considered
setup around the center of the channel at y = w/2. All setups considered in this thesis
will feature this symmetry, and we conclude that it suffices only to consider one half of
the channel. We will in all the following analyses only consider the left side of the channel
as the systems will be mirrored in the right-hand side, such that the x-direction is the
direction of the laminar flow. Here a coordinate system is placed with the x-axis parallel
to the channel edge with zero at the edge of the channel. The y-axis is placed orthogonally
to the channel edge as shown in Fig. 6.1.

6.1 Travel Time

First we want to find an expression for the time a particle uses to travel between two
points, y(t1) to y(t2), in the transverse direction.

We assume that we have a standing pressure wave in the y-direction and neglect pos-
sible standing waves in the x-direction. Furthermore we assume that the flow is laminar,
indicating that we have to require a small Reynold’s number, i.e., Re < 10. The character-
istic velocity of the problem is the velocity of the flow in the channel, and the characteristic
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x
y

z
w

h

L

vx

Figure 6.1: A sketch of the rectangular channel with indication of the used coordinate system.

length scale is the radius of the particles, which with the parameters given in Chapter 7
gives

Re ≡ Rρ0vflow
η

≈ 5× 10−6 m× 103 kg m−3 × 0.1 m s−1

0.890× 10−3 Pa s
= 0.11 (6.1)

We see that the assumption is fulfilled so that the considered flows can be assumed laminar.
In laminar flows a spherical particle with a relative velocity of v compared to the fluid
experiences a Stokes-drag given by [5]

Fdrag = 6πηRv, (6.2)

and the force on the particle from the acoustic field in 1D is given as Eq. (5.91c)

Fpressure = 4π〈Eac〉R2
(
kyR

)
Φ sin

(
2kyy

)
ey. (6.3)

Assuming that the particle only has a non-zero velocity when a force is acting on it1 and
neglecting the body forces on the particle, the velocity component in the y-direction is
determined by balancing the pressure force and the Stokes drag,

Fdrag,y = Fpressure ⇔ vy =
2〈Eac〉R2ky

3η
Φ sin(2kyy) ⇔

dy

dt
= αy sin(2kyy), (6.4)

where αy for simplicity is introduced as the constant in front of the sine in the following
analysis. The differential equation Eq. (6.4) can be solved by separation of the variables
in an interval

pπ < 2kyy < (p+ 1)π ⇔ p
π

2ky
< y < (p+ 1)

π

2ky
, where p ∈ Z. (6.5)

Using that ∫
1

sin(2x)
dx = log

∣∣ tan(x)
∣∣, (6.6)

1It can be estimated that the time for acceleration of the particle is on the order of µs, and thus it is
reasonable to assume that it is always moving in a local steady-state [5].
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gives the travel time

t2 − t1 =
1
αy

1
2ky

log

(
tan[kyy(t2)]
tan[kyy(t1)]

)
, where αy =

2〈Eac〉R2kyΦ
3η

, (6.7)

and log(a) denotes the natural logarithm of a. Notice that if Φ < 0, then the travel time
becomes negative, i.e. the particle travels from y(t2) to y(t1) and not from y(t1) to y(t2).
It should also be noted that with the resonance condition ky = nyπ/w , the solution is
valid within the interval from Eq. (6.5)

p

ny

w

2
< y <

p+ 1
ny

w

2
, where p ∈ N0 and ny ∈ N . (6.8)

y(t1) and y(t2) have to be in the same interval, which gives the same sign of the two
tangent-terms in Eq. (6.7), and thus we have removed the absolute value from Eq. (6.6).
As an example we consider the case with ny = 1, which gives us that Eq. (6.7) is valid in
either the left- or the right-hand side of the channel. A particle starting in either of the
intervals will theoretically never enter another interval.

6.2 Distance Traveled in Longitudinal Direction

We note from Eq. (6.8) that when w = λ/2 ⇔ ny = 1 and when considering the left-
hand side of the channel as explained in the introduction to this chapter, tan(kyy) =
tan(πy/w) > 0, such that we from Eq. (6.7) see that

2kyαy(t2 − t1) = log
(

tan[kyy(t2)]
tan[kyy(t1)]

)
(6.9)

tan[kyy(t1)]e2kyαy(t2−t1) = tan[kyy(t2)] (6.10)

y(t2) =
1
ky
Arctan

[
e2kyαy(t2−t1) tan

[
kyy(t1)

]]
. (6.11)

The movement in the x-direction is determined only by the flow profile in the channel,
when we neglect all standing waves in the channel except the one in the y-direction. In a
rectangular channel with width w and height h the flow profile is given by [5],

vx(y) =
4h2Δp
π3ηL

∞∑
n,odd

1
n3

1−
cosh

(
nπ y−w/2h

)
cosh

(
nπ w

2h

)
 sin

(
nπ

z

h

)
, (6.12)

with our choice of coordinate system, and where Δp/L is the applied pressure per length
of the channel. We assume throughout the thesis that we are at z = h/2, and thus the
sine-factor in the equation above becomes (−1)(n−1)/2.

We have plotted the Pouseille-flow speed, vx, in a rectangular channel (350 µm ×
125 µm), and the result can be seen in Fig. 6.2a. From the plot we see that the flow-speed
has a maximum in the middle of the channel and goes to zero at the boundaries.

To find out how many terms to include in the Pouseille-flow, we have plotted the ratio
of the flow-speed with n-terms to the one with (n − 1)-terms. The results can be seen in
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(a) (b)

Figure 6.2: (a) The Pouseille-flow in a rectangular channel using the parameters defined in
Chapter 7. The colormap shows vx in units of m s−1. The plot is made using four terms in
Eq. (6.12). Notice that the figure in the xy-direction is not to scale. (b) This plot shows a
comparison of the terms in the sum included in vx, Eq. (6.12), where we plot the ratios of the flows
with n-terms compared to the one with (n−1)-terms term at z = h/2. From this plot we conclude
that it is sufficient to include four terms. Notice that we due to the symmetry of the system only
have plotted from 0 ≤ y ≤ w/2.

Fig. 6.2b. From this plot we conclude that four terms should be enough to get accurate
simulations.

Now we can find the total distance traveled in the x-direction from a particle entering
the channel at position y(t1),

x(t1, t2) =
∫ t2

t1

vx
[
y(t′)

]
dt′ =

∫ y(t2)

y(t1)
vx(y′)

(
dy′(t)
dt

)−1

dy′ (6.13)

Further on we will use the shorthand notation, y1 as y(t1) and y2 as y(t2). From Eq. (6.4)
we have an expression for dy/dt. Thus we can calculate the traveled distance knowing the
entry position and the final position of the particle from Eq. (6.13)

x(y1, y2) =
∫ y2

y1

vx(y′)
1

αy sin(2kyy′)
dy′ (6.14)

=
4h2Δp
π3ηL

1
αy

∫ y2

y1

1
sin(2kyy′)

×

( ∞∑
n,odd

1
n3

1−
cosh

(
nπ y

′−w/2
h

)
cosh

(
nπ w

2h

)
 (−1)(n−1)/2

)
dy′

(6.15)

Note that 1/αy ∝ η which means that x(y1, y2) is independent of the viscosity as long as
it is the same everywhere in the channel. The viscosity only affects the individual time
profiles y(t) and x(t), but not the trajectory x(y).

Furthermore we would like to point out that x(y1, y2) ∝ 〈Eac〉−1. From experiments
in [4] we have seen that 〈Eac〉 scales as the square of the applied voltage over the piezo-
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acutator, such that x(y1, y2) ∝ V −2
PP . This means that the travel length can be changed a

lot by adjusting VPP.

The integral in Eq. (6.15) cannot be evaluated analytically using simple integral solution
techniques. Thus to get an idea of the form of the expression x(y1, y2) we will assume a
constant flow profile across the channel, i.e. vx(y) = vx,av, which is not the whole truth
according to Fig. 6.2, but it seems reasonably at z = h/2 for the center part of the channel.
Using Eq. (6.14) we find

x(y1, y2) =
vx,av
αy

∫ y2

y1

1
sin(2kyy′)

dy′ (6.16)

=
vx,av
αy

1
2ky

log
(

tan(kyy2)
tan(kyy1)

)
(6.17)

=
3ηvx,av

4〈Eac〉k2
yR

2Φ
log
(

tan(kyy2)
tan(kyy1)

)
. (6.18)

As an example we see that x has a R−2 dependence. It is because the larger the particles,
the faster they travel from y1 to y2, and thus they travel a shorter distance down the
channel in the x-direction. Notice that vx,av ∝ 1/η such that x(y1, y2) is independent of η
even though it explicitly looks like it depends on η.

6.3 Experimental Verification of Theory

To test the simple model that the particle moves according to Eq. (6.11) in the y-direction,
we consider a setup with a video camera filming the flow in a channel through a Pyrex-lid
placed on the channel. Polystyrene spheres with known radii are let into the channel with
a non-zero flow rate. When we are sure that particles have entered the channel, the flow
is stopped and the camera starts filming. A piezo-actuator attached to the chip with the
channel is activated with a frequency matching w = λ/2 and the particles (with positive
Φ) moves towards the channel center.

The experiments were made by Rune Barnkob [4], and the video was analyzed using
the freeware-program Tracker2, see Fig. 6.3. For simplicity we treat the data of the right-
hand side as it was mirrored in the central axis of the channel into the left-hand side.
Using Matlab’s lsqcurvefit we fit the data with a two parameter fit of ky and 〈Eac〉 to
Eq. (6.11) remembering that ky is also contained in αy to the first power. For the fitting
script see Section H.1.

The fit is shown in Fig. 6.4 and it matches the experimental data very well. Furthermore
it gives an estimate of the average acoustical energy and the wavelength. We find 〈Eac〉 =
15.1 J m−3 and λ/2 = 381.5 µm. The value of λ/2 agrees with the width of the channel,
w = 377 µm. The value of 〈Eac〉 gives an estimate of a reasonable value to use in our
later simulations. It should be noted that this experiment was made with a peak-to-peak
voltage of 1.0 V, but it could also be turned up to at least 10 V as done in [28]. The
acoustic energy scales approximately, as noted before, with the square of the peak-to-peak

2http://www.cabrillo.edu/~dbrown/tracker/

http://www.cabrillo.edu/~dbrown/tracker/
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Figure 6.3: Output from the program Tracker. The red dots show the trajectory of a polystyrene
particle in a water solution starting from the right side of the channel moving towards the center
when the flow in the channel has been turned off for some time, and the piezo-actuator suddenly
is turned on. The blue line indicates the channel with width of 377 µm. The time step between
two points is 1/16 s. Even though the flow in the channel is turned off, we see fluctuations in the
x-direction. This might be due to longitudinal modes or acoustic streaming, discussed in Part III.

voltage [4], so our value of 〈Eac〉 = 1000 J m−3 in the simulations seems like a reasonable
estimate.

To be able to interpret these data thoroughly, more particles have to be tracked, but
that is beyond the scope of this thesis. The purpose here is to show that our analytical ex-
pression for the particle movement in the y-direction actually agrees with the experimental
results.

Figure 6.4: Fit of the trajectory shown in figure Fig. 6.3 to Eq. (6.11). The constants for the
fitting is given in Chapter 7. It should be noted that the fit depends on the identification of the
width of the channel in Fig. 6.3 with the blue ruler, but going into details with that is beyond the
scope of this thesis.
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Chapter 7

Introduction to Separating

Systems in the Single-Particle

Approach

This chapter will focus on basic functionality and characteristics of the elements of the
system we are to analyze in the following chapters. The considered setup origins from the
blood-separation setups proposed by the Thomas Laurell group at University of Lund [24],
[28], and from the milk-separation setup proposed by Jacob Riis Folkenberg [1].

7.1 The Channel Setup

The main setup consists of a rectangular channel with the width w, height h and length L as
shown in Figs. 6.1 and 7.1. Where nothing else is stated we use the channel measurements
given in [29], see Table 7.1. We notice from Chapter 6 that the height of the channel only
influences on the flow profile when neglecting transverse modes in the z-direction because
h < w, and since we only consider the channel in the middle at z = h/2, a change in h
would not affect our results significantly.

The channel is coupled to a piezo-electric crystal which oscillates at a resonance fre-
quency giving a standing pressure wave in the channel with anti-nodes at the channel
edges i.e. the wavelength is nλ/2 = w, where n ∈ N. The standing pressure wave in the
channel causes a pressure force as visualized in Section 5.6. According to our discussion
of the one-dimensional resonator in Chapter 4 we get the resonance condition Eq. (4.7),
and the fundamental standing wave in the considered channel thus requires a frequency of
f = 2.119 MHz. This estimate only considers the channel as one-dimensional resonator in

Table 7.1: The dimensions of the channel are the same as used in practice for separation [1], [29].

Blood separation Milk separation

Height, h 125 µm 150 µm
Width, w 350 µm 1125 µm



54 Chapter 7. Introduction to Separating Systems

Figure 7.1: A sectional view of the channel setup in Fig. 6.1 with indications of the used termi-
nology.

the y-direction, hence neglecting standing waves in the x- and z-directions.

The sample solution is fed into the channel from the inlet(s) and the separation of the
particles then takes place over the length L of the channel after which the flow is separated
into the three outlet channels as seen in the sectional view of the setup in Fig. 7.1.

We will through the whole discussion of applications limit ourselves to only consider
three outlets, partially because of the practical complications of making more outlet chan-
nels and partially to limit the design parameters to be variated through the analyses. The
inlet channels on the other hand are varied. In Chapters 8, 9, and 10 we will be discussing
systems with both one, three, and five inlets of variable sizes and positions.

In most of Chapters 8 and 9 we are considering the fundamental resonance mode in the
channel with w = λ/2 as this is the standard in experiments [42]. We will however extend
the analyses primarily in Chapter 10 to also consider systems actuated to a resonance
where the wavelength of the standing pressure wave fulfills w = 2λ/2 and w = 3λ/2.

Another important remark about the considered setup is the assumption of steady
state. We limit ourselves to only consider steady-state flows as most practical applications
will be aiming towards continuous flows through the systems. We merely conclude that
after a certain amount of time, we will have a steady flow of particles. The particles which
leave the channel may therefore not have entered at the same time, but as long as we
keep the steady input and disregard any initializing phase, there will be a steady flow of
particles along the single-particle trajectories.

Our simulations are only valid to the point in the channel where the outlets begin
because afterwards the channel profile changes, and we are not sure how the pressure
waves look like in the region with outlets. Thus we ignore effects that might occur at
the entrance to the outlets. Later on when combining different resonance channels in one
system we assume that no forces act on the particles and that they only are driven by the
laminar flow no matter what form the transition parts have.
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7.2 The Simulations

In Chapter 6 we found that the particle movement in the y-direction was described by the
equation of motion, Eq. (6.4). The flow in the x-direction is, when neglecting longitudinal
modes in the channel (see discussion in Section 12.1), given from the flow profile Eq. (6.12).
These constitute a system of coupled first-order differential equations describing the particle
trajectory. In the simulations these are solved using Matlab’s ode45 differential equation
solver, which is based on the Runge–Kutta method.

In the simulations we will be utilizing the different transport fluids with properties
shown in Table 7.2. Chapters 8 and 9 will be focusing on particles in blood plasma
and Chapter 10 will be using milk as transport medium. Through the simulations a
simplification is made assuming that the potential buffer-mediums have exactly the same
characteristics (compressibility, viscosity, and density) as the transport medium, but that
it does not contain the particles which are to be separated.

Furthermore the particles considered in the simulations will have the properties given
in Table 7.3. We notice that the red blood cells (RBCs) are actually not spherical in
shape, but more cylinder-like with diameter of 6− 8 µm and thickness 2 µm according to
[6], which gives volumes of approximately 50− 100 µm3. We choose to use V = 75 µm3 as
a mean value for our simulations and rewrite this volume to the corresponding radius of a
sphere. The white blood cells (WBCs) are approximately spherical in shape with diameter
5− 20 µm, and according to [6] a good mean value to use is DWBC = 10 µm. The density
of WBCs can vary between (1060 – 1090) kg m−3, but we choose to use ρWBC = 1060 kg
m−3.

When considering the parameters in Table 7.3, we notice that the value of the speed of
sound in the particles, as included in the expression of the pressure force Eq. (5.91c), can
be replaced with the value for the compressibility of the particle. This property is formally
defined as β = −(1/V )∂pV , which by trivial manipulations corresponds to β = 1/(c2aρ),
where ca is the speed of sound and ρ is the density of the particle/fluid. We observe that
this is the ratio that enters the expression for the pressure force Eq. (5.91c). We sometimes
use the compressibility as the fundamental value instead of the speed of sound depending
on what we were able to find as experimentally determined values.

To calculate the pressure force from Eq. (5.91c) it is required to know the time-averaged
amplitude of the acoustical energy density. Together with the applied pressure per length
the used value of the time-averaged acoustical energy density is shown in Table 7.4, where
Q and Δp/L are related through Eq. (8.1), and vx,av = Q/(hw). The biophysicists requires
flow rates in the systems above 100 µL/hr [3], but we only operate above this limit.
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Table 7.2: Fluid properties

Blood Water Milk Units

Density, ρ 1052a 998b1 1029c kg m−3

Viscosity, η 2.7d 0.890b2 2.1c mPa s
Compr., β βWater 5.88e βWater 10−10 Pa−1

Speed of sound, ca - - 1483b - - m s−1

aDepends on the blood owner’s type, age, physiological condition etc., but an approximate value can
be found in [12].

bFound in [17]. b1 At 20 ◦C. b2 At 25 ◦C.
cAcquired from [11].
dValue found in [10], also discussed in Section 12.3.
eFrom [2] — We consider the fat as Chylomicron, when finding the value of the compressibility.

Table 7.3: Particle properties used in the simulation

RBCs Lipid WBCs Polystyrene Milk fat Units

Density, ρ 1096a 920a 1060b 1050c 890d kg m−3

Volume, V 75b 14 524 72 - - (µm)3

Radius, R 2.62b1 1.50e 5.00b 2.58a2 - - µm
Compr., β 3.48a1 5.35a1 βRBC - - βFat 10−10

Pa−1

Speed of sound, ca - - - - - - 2350c - - m s−1

Φ-factor 0.150 -0.015 0.139 0.226 0.0077 dim.-less
in blood in blood in blood in water in milk

aFrom [2] — We consider the fat as Chylomicron. a1 Experimental evaluated at 25 ◦C. a2 From [4].
bFrom [6]. b1 For our calculations we assume that the RBCs are not toroidal-like in shape but assume

that they are spherical with a radius R = [3V/(4π)]1/3.
cFound in [17].
dData is from [21] at 60 ◦C.
eAccording to [2] it is a good approximation to use R = 1.5 µm in blood, which is the average size of

the lipid particles in milk.

Table 7.4: Other parameters for separation

Blood Milk Units

Time-averaged acoustical energy density a, 〈Eac〉 1000 1000 J m−3

Pressure gradient, Δp/L 100 2.77 kPa m−1

Flow rate, Q b 0.295 0.038 mL min−1

Average flow velocity in channel, vx,av 110 3.7 mm s−1

aThe validity of this value is discussed in Section 6.3.
bThe flow rate in the whole λ/2-channel, i.e. from all inlets.
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Chapter 8

Separation of Red Blood Cells and

Lipid Particles

Separation of erythrocytes (RBCs) has recently been experimentally reported by Petersson
et al. [28], [29]. In this chapter we will follow the ideas of these results and focus on the
separation of RBCs and lipid cells in blood plasma. This effect has for example medical
applications where we would like to remove the lipid particles from the blood collected
during open heart surgery. When the blood is collected and returned to the patient, lipid
particles originated from adipose tissue are also reintroduced into the circulatory system
with the danger of causing massive embolization of various organs.

The parameter values are explained thoroughly in Tables 7.2 and 7.3 and causes the
RBCs and lipid particles to have different acoustophoretic sign, i.e. different sign of the
Φ-factor introduced in Eq. (5.91c). This means that eventually the lipid particles will end
up at the pressure (velocity potential) anti-nodes, and the RBC will end up at the pressure

Figure 8.1: Particle trajectories for RBC with radius R = 2.616 µm and lipid-particle with radius
R = 1.5 µm. We see that the RBC are collecting at the center of the channel and the lipid-particles
at the edge of the channel.
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(velocity potential) nodes. When following the approach of [28], [29], and [24] we start
by considering channels with width of w = λ/2 = 350 µm, where λ is the wavelength of
the standing wave. This would give anti-nodes at the channel edges as explained in the
discussion of the one-dimensional resonator covered in Chapter 4. It means that the lipid
particles will end up at the channel edge and the RBCs at the center of the channel as
shown by the particle trajectories in Fig. 8.1. This system will be investigated in this
chapter through several designs with the aim of being able to determine and optimize the
length of the channel in order to achieve complete removal of lipid particles from the outlet
while still withholding a decent throughput, i.e., the amount of particles flowing through
the channel per time.

8.1 Lipid Size

A very important parameter in the pressure force is the size of the particle as we see from
Eq. (5.91c) because it scales with the cube of the radius (∝ R3). Results from [26] have
shown the distribution in size as seen in Fig. 8.2a where the lipids are those found in raw
milk, which we use as an estimate for the lipid particles found in blood. From this figure
we have decided to use Rlipid = 1.5 µm, since it shows a noticeable peak there. However we
have made three simulations to examine the dependence of the lipid-size, and the results
can be seen in Fig. 8.2b. We see that the lipid-particle size is very important when we find
that the required length of the channel for lipid particles starting at y = 140 µm changes
from 0.25 m to 0.95 m. However we find it reasonable to use Rlipid = 1.5 µm, since it has
the largest peak in the distribution chart.

(a) (b)

Figure 8.2: (a) The distribution of lipid particle sizes adapted from [26]. Notice that the x-
axis depicts the diameter and not the radius. (b) The trajectory of lipid particles starting at
y = 140 µm. We notice that the particles theoretically is at rest at the outer edge of the channel
according to Eq. (6.12), hence we observe the sudden stop in the trajectory.
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(a) (b)

Figure 8.3: (a) The setup for the one-channel system. Here we only want to determine the
distance required before the particles are within the outlet interval, i.e., the outer inlets for the
lipid particles and the center outlet for the RBCs (b) The simulation results using the one-channel
setup. The y-axis depicts the length before the particles have moved into the desired output
interval. The vertical, dashed line indicates the splitting point of the two outlets.

8.2 Finding the Flow Rate

An important design parameter for this system is the throughput(flow rate of blood), since
we e.g. during surgery would like to be able to pump a lot of blood around. The flow rate
is simply the flow speed integrated over the inlet area, see [5]. This gives us

Q = 2
∫ 1

2
w

0

∫ h

0
vx(y, z) dz dy. (8.1)

Since we assume that we have blood in the channel in all of the z-direction and using
Eq. (6.12), the throughput for a system where the blood inlet is in the interval y ∈ [ylhs; yrhs]
becomes

Qblood = 2
∫ yrhs

ylhs

4h2Δp
π3ηL

( ∞∑
n,odd

1
n3

1−
cosh

(
nπ y−w/2h

)
cosh

(
nπ w

2h

)
) 2h

nπ
dy. (8.2)

The throughput can then easily be found using numerical integration taking into account
the first four terms of the infinite sum, as we discussed in Section 6.2.

8.3 One-inlet Channel

This setup is similar to what was considered in [28], see Fig. 8.3a and introduced properly
in Chapter 7. We will consider the required length of the channel before a lipid-particle
or RBC entering the channel at y0 has reached a position where it will leave through the
outer or center outlet respectively.

To reduce the parameter space we consider an outer outlet at y ∈ [0;w/4] and hence
a center outlet at y ∈ [w/4;w/2]. The results can be seen in Fig. 8.3b. It is clear that
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(a) (b)

Figure 8.4: (a) The three-inlet system where we vary the width of the center inlet. (b) We vary
the width of the center inlet in a three-inlet system. The y-axis shows the required length before
95 % of the particles are within the desired outlet channel. The dashed line indicates the splitting
point of the two outlets.

the lipid-particles move slower compared to the RBCs since they are smaller and have a
smaller Φ-factor. Therefore we notice that the lipid particles are the limiting factor for
the length of this setup. To get a lipid particle starting near the center of the channel to
leave through the outer outlet we would have to make the channel approximately 30 cm
long with our choice of parameters1. The reason for this long channel length is that the
pressure force is small at the center of the channel, thus the lipid particles starting at the
center of the channel are remaining a long time at the center.

This naturally leads to the idea of making a system where a buffer medium is injected
in the center of the channel using three inlets, thus ensuring that there are no lipid particles
which start at the center, hence making it possible to make a shorter channel. We will
discuss this idea in the next section. The advantages of this system however is the high
throughput and the simplicity of the design. To get shorter channel lengths without the
lipid particles mixing with the RBCs in the center outlet, one could make the center
outlet smaller, but this would give problems since the center outlet is too small to let
all the RBCs pass through due to the high concentration of RBCs in human blood, cf.
Section 12.5. This could be fixed by diluting the blood before it enters the system, but
this would have a negative impact on the throughput. For this system with one inlet we
get from Eq. (8.2) a throughput of blood Qblood = 4.82× 10−9 m3 s−1 = 0.29 mL min−1.

1A particle starting exactly at y = w/2 would theoretically never be affected by any pressure force
according to Eq. (6.3). Thus we have to consider particles near the middle as an estimate.
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8.4 Three-inlet Channel

To avoid having lipid particles near the center of the channel we propose another inlet
design, namely a blood (B), buffer (W), blood (B), i.e. a BWB-system. We vary the
width of the center inlet and calculate the required length before 95 % of the particles
have entered the desired outlet channel, see figure Fig. 8.4a and Fig. 8.4b. Notice that
the required length for the lipid is zero until y = 87.5 µm. This is because all of the lipid
particles start so that they leave through the outer outlet. The small jumps for the RBC
is not a physical phenomena, but due to numerical inaccuracy. We see that the required
length for RBCs is way smaller than the lipids. However we see that the required length
for the lipids in this case is small, ∼ 10−1 m, much smaller than for the one-inlet channel.

On the other hand we have lower throughput because we are not having blood in the
whole channel. If one wants a channel with a maximum length of 10 cm, we see that the
blood inlet should be in the interval yinlet ∈ [0 µm; 125 µm] ∪ [225 µm; 350 µm] to have
less than 5 % of the lipid particles in the blood. For this system the throughput would be,
using Eq. (8.2), Qblood = 3.15 × 10−9 m3 s−1 = 0.19 mL min−1. This is only 65 % of the
flow rate for the one-channel inlet system, but keep in mind that this channel was three
times longer, and thus the BWB-system might be favorable.

8.5 Five-inlet Channel

The RBCs lying closest to the channel edges are near an anti-node in the pressure and are
thus affected only by a small pressure force. These will be the last particles to reach the
center outlet channel in a separation. To minimize the channel length required to have all
the RBCs in the center outlet, we thus consider a WBWBW-system. Since the pressure
force has a maximum at y = w/4 and y = 3w/4, we inject the RBCs in channels around
these maxima where we vary the width and position of the channel to find an optimal
setup. This is done in Appendix D where we conclude that in this system with lipids
these optimizations do not matter compared to the BWB-system; they only give a smaller
throughput. The lipids have a separation length of about two orders of magnitude larger
than the RBCs. Thus the most important design fact is to make the blood inlet channels
to start further out than the center outlet such that we have no lipid particles in the center
outlet channel.

8.6 A 3/2 λ-harmonic System

We will briefly examine if we can optimize the system by considering a system with
w = 3/2λ. For our setup this would mean that w = 1050 µm. It would not fundamentally
change the way the system behaves, but we would have to introduce the previously men-
tioned BWB-system in [350 µm; 700 µm]. There the lipid-particles would move towards the
anti-nodes at y = 350 µm and y = 700 µm while the RBCs would move towards the nodal
plane at the center, y = 525 µm. In the intervals [0 µm; 350 µm] and [700 µm; 1050 µm]
we would have a buffer medium.

The wider channel will not change the pressure force, since k = πny/w is the same in
this channel as in the previous — notice that ny = 3 for 3λ/2 but on the other hand w is
also three times the one we considered earlier. If we use the coordinate system shown in
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Fig. 8.5, we can use the same y values as for the system we have looked at so far. Basically
we are not interested in what happens in the two buffer media on each side of our blood flow.

Figure 8.5: A sketch of the 3λ/2 harmonic
system. Note that the two dotted lines show
the anti-nodes of the pressure field.

The Pouseille-flow profile will change with a
wider channel we have therefore calculated it
for each system. The results can be seen in
Fig. 8.6a. Notice that the Pouseille-flow is al-
most constant for the wide setup. In the cen-
ter third of the channel we find the flow pro-
file to be constant to four significant figures.
If we were to use this system, this fact could
help in the analysis, since a constant speed in
the x-direction could be used instead of the
Pouseille-flow. This will also be discussed fur-
ther when we look into separation of fat in
milk, where we will also find an analytically
expression, cf. Chapter 10.

We are not going to repeat all the pre-
vious calculations for the wider channel, but
only look at the previously mentioned optimal
system. In Fig. 8.6b we have plotted the re-
quired length before 95 % of the particles are
within the desired outlet where we vary the
inner edge of the blood inlet. If we compare this figure with Fig. 8.4b where we plotted the
required length for the small channel, we see that the lipid length is almost the same since
the slowest lipid particles were the ones near the middle of the channel where the change
in vx is small. However the RBC-length has become larger in this new system because
the flow velocity has become greater, thus enabling the particles to move further in the
x-direction. However the RBCs are still not the limiting factor of the system.

If we want a system with a channel length of ∼ 10 cm and 95 % we see that we
should introduce blood in the intervals (now without the aforementioned change in y)
[350 µm; 470 µm] and [580 µm; 700 µm].

The throughput for this system was found to be Qblood = 4.38 × 10−9 m3 s−1 =
0.26 mL min−1. This is significantly higher than what we have previously found for the
same channel length due to the higher flow velocity in the blood inlets. Thus in many
respects, although the device is more complicated, this system is better than the smaller
system we looked at earlier. However if we were to have multiple parallel systems, the
previously mentioned λ/2-, BWB-inlet system is superior if we look at the throughput per
channel width.
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(a) (b)

Figure 8.6: (a) A comparison of the Pouseille flow in two different systems. Notice that the
y-axis has been moved by 350 µm to the left for the wide system. (b) The three channel system
where we vary the right hand side. The dashed line indicates the split bewteen the inner and the
center outlet.

8.7 Summary

In this chapter we looked at the possibility of using the pressure force to separate RBCs
with Φ > 0 from lipid-particles with Φ < 0 in blood plasma. This was done using numerical
simulations. We have considered the pros and cons of various designs. When taking into
account both channel length as well as the throughput, we found a design utilizing three
inlet channels respectively blood, buffer, blood (BWB), to be a good compromise between
the two design parameters. The purpose of that design was to get the lipids away from
the center part of the channel because they moved much slower in the y-direction than the
RBCs, and the lipids thus were the limiting factor of the system. Furthermore we looked
at a w = 3/2λ system and found that we were able to obtain better throughputs at the
cost of a small increase in the channel length.

We also saw that the results were very dependent on the exact size of the particles as
well as the Φ-factor. To optimize the design one would have to get more precise values of
particle and fluid properties as well as the value for the acoustical energy density.
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Chapter 9

Separation of Red and White

Blood Cells

In the previous chapter we have concentrated on separating particles with opposite acousto-
phoretic signs with the example of RBCs and lipid cells. In this chapter we will focus
on particles having the same acoustophoretic sign as reported experimentally by Filip
Petersson et al. [30]. With the same acoustophoretic sign the particles are affected by the
pressure force in the same direction. By inspiration from the collaboration between DTU
Nanotech and The University of Santa-Barbara we concentrate on separation of RBCs
and WBCs. These have nearly the same compressibility and density but differ in size as
shown in Table 7.3. Our aim with this chapter is to investigate the possibility of separating
RBCs and WBCs. This has major application in biotechnology, where the present, slow
separation of these two types in blood is a bottle-neck of many bio-analytic methods where
researchers want to investigate the WBCs [6]. Thus they are more interested in having a
good separation than having a throughput, which will be our guideline in this chapter too.

9.1 Separation by Different Channel Designs

The RBCs and WBCs are both moving towards the middle of the channel when operating
with the usual half wavelength in the velocity potential over the channel. When we are
looking to separate these two particles, it is clear that any approach must have an inlet
different from the center of the channel to achieve an optimal separation. In this chapter
we will furthermore work under the assumption that the WBCs are spherical with a fixed
radius of 5 µm. On the other hand we let the RBCs vary from having a volumes of 50 µm3

to 100 µm3 (radius of spherical cells varying from 2.285 µm to 2.879 µm) as they do in
practice.

First we consider the flow trajectory of the particles when starting from a given point
in the channel. As usual by symmetry arguments we are only considering the left-hand side
of the channel and everything is mirrored in the other side of the channel. In Fig. 9.1a is
shown the channel setup considered in the analysis of the flow trajectories in Fig. 9.1b. We
observe that the important trajectories for this separation are the ones from the edges of
the inlet. All of a given particle type will be positioned in between these two trajectories.
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(a) (b)

Figure 9.1: (a) The BWB-channel setup considered in Fig. 9.1b. (b) We are considering an inlet
channel from y ∈ [0; 100 µm] as sketched in Fig. 9.1a. The graph shows the trajectories of WBCs
and the two extrema sizes of the RBCs when these are started at the outer or inner edge of the
inlet.

When we want to determine whether or not it is possible to separate the WBCs from the
RBCs we therefore consider the trajectory of a WBC starting at the outer edge of the inlet
and the trajectory of the particular RBC starting at the inner edge of the outlet. Fig. 9.1b
clearly shows this fact because the WBCs are influenced by a larger pressure force and
hence are moving faster towards the center of the channel. When the RBC from the inner
edge crosses the WBC trajectory from the outer edge, the particles are separated in two
non-mixing beams. At this point we can choose to end the channel and let the two separate
beams exit the channel through different outlets. This gives a theoretical total separation
of the particles.

Even when total separation is not possible in cases where the beams always are mixed,
it is in general possible to calculate how much of the outer inlet’s RBCs that have been
removed in the outlet channel. Afterwards one could repeat the process to obtain a higher
concentration of WBCs compared to RBCs. We could consider the case where the RBCs
and WBCs are not totally separated and try to calculate how good separation we achieve.
But since it turns out that we actually are able to have total separation, we will only
consider this case.

To ensure that it is possible in practice to let separate beams leave the channel in
different outlets, we are in general not considering the intersection between the two tra-
jectories. Instead in the following we are considering the channel length (referred to as
the separation length) at which the „white beam” and the „red beam” are separated by
more than 7.5 µm (corresponding to one-half particle size of the WBCs). From Fig. 9.1b
it is also worth noticing that with this definition of the separation length, there exist an
interval where the separation is possible; the interval where the two considered beams are
separated by more than 7.5 µm.
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9.1.1 Separation in BWB-system, Varying Inner Edge of Blood Inlet

Figure 9.2: Shows the setup of a channel
with blood inlet at the edges of the chan-
nel. The outer edge of the inlet is fixed at
the channel edge and we are varying the
inner edge of the inlet. This is the setup
which is used in Fig. 9.3.

We have argued that the inlet cannot be placed at
the center of the channel. Therefore we start the
analysis of the separation of RBC and WBC with
the BWB-system sketched in Fig. 9.2: A blood
inlet at the edge of the channel where the outer
edge of the inlet is fixed at the channel edge, and
where we vary the position of the inner edge of
the blood inlet. The separation length interval is
shown as a function of the position of the inner
edge of the inlet in Fig. 9.3a. In Fig. 9.3a we have
furthermore shown the channel length at which the
„red beam” has become narrow enough for the con-
centration to exceed 91 % (as explained in Sec-
tion 12.5 this is the maximum concentration to
be obtained by optimal stacking of the RBCs, as-
suming they are non-compressible and cylindrical).
Above this length we can no longer rely on the cal-
culated beam widths because we cannot expect to
be able to compress the particles that closely in
the beam. Notice that the WBCs start out at a
very low concentration in standard blood (∼ 1 %
Vol 1) so they will never obtain a critically high concentration before the RBCs have done
so.

We see that the minimum separation length grows approximately linearly with the
position of the inner edge of the blood inlet. The shorter separation length at narrow inlet
channels is caused by the fact that the slower inner RBC trajectory and the faster outer
WBC trajectory are starting closer to each other, and hence the WBC catches up with the
RBC faster (at shorter channel lengths). Narrower inlets give less throughput, but this is
not our concern in this chapter.

By comparison of the slopes of the linear parts of the minimum of the separation
lengths, we conclude that the channel length must be longer for larger RBCs because they
move faster and are harder to be passed by the WBCs.

It is important to notice that it is no longer possible to separate the two beams when
the inlet becomes too wide, indicated when the intervals are no longer present at a given
inlet width. This is the result of the slower RBCs starting to close to the center of the
channel while the faster WBCs pass them by enough space to make a non-mixing separation
possible. This point occurs at narrower inlet channels for larger RBCs, because they move
faster to the center. This is also the effect that causes the large RBCs to require a longer
minimum channel length in order to separate them from the WBCs.

Another interesting point is that the size of the separation length intervals decreases as
we increase the width of the blood inlet regardless of the size of the RBCs. We conclude
that the small inlet is the most optimal because it is the most stable with respect to the

1http://en.wikipedia.org/w/index.php?title=White_blood_cell&oldid=295545544

http://en.wikipedia.org/w/index.php?title=White_blood_cell&oldid=295545544
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(a) (b)

Figure 9.3: (a) The outer edge of the blood inlet is kept fixed at the channel edge as shown in
Fig. 9.2. The graph shows the separation length as a function of the position of the inner edge of
the blood inlet, i.e., in the shown intervals full separation would be possible for a given position of
the inner edge of the blood inlet. The dashed lines indicates the channel length above which the
„red beam” has a concentration which exceeds 91 %. Finally the size of the pressure force at the
position of the inner edge of the inlet is also indicated as a scaled quantity. (b) The graph shows
the width of the inner outlet at the minimum separation length shown in Fig. 9.3a in order to get
full separation.

chosen channel length in order to obtain separation. In Fig. 9.3a it is also clear that we
obtain the longest possible channel lengths before the concentration rises too high, if we
choose a narrow inlet channel. For a narrow channel we therefore observe both larger
separation intervals and a longer possible channel length. Most important is that it is
possible to separate the different types of RBCs from the WBCs with the same device
(same separation length).

Considering the width of the inner outlet required to catch all the WBCs we look at
Fig. 9.3b. In the figure is shown the width of the outlet required to catch the whole WBC
beam in the inner outlet. This width is defined as the midpoint between the „red beam”
and the „white beam” at the minimum possible separation length, and we notice that a
more narrow outlet still gets the RBCs and WBCs separated but will not catch all the
WBCs present in the inlet. We notice that the wide blood inlet channels require a small
inner outlet in order to catch the whole beam of WBCs in the outlet because RBCs are
injected closer to the center of the channel. Furthermore we observe that the relationship
between the blood inlet width and the required inner outlet width is approximately linear
making it easy to scale the device design.
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9.1.2 Separation in WBWBW-system, With Variable Width of Blood Inlet

Figure 9.4: Shows a WBWBW-system
with a blood inlet with center of 50 µm
from the edge of the channel. We vary the
width by symmetrically expanding the in-
let keeping the center fixed to obtain the
system that is used in Fig. 9.5.

Next we consider a fixed blood inlet center in a
WBWBW-system and examine how the separa-
tion length changes as we change the width of the
blood inlet symmetrically around this fixed center.
The system is sketched in Fig. 9.4. From Fig. 9.5a
we observe that the minimum separation length
grows approximately linearly with the width of the
beam until the limit where it is no longer possible
to separate the particles.

By comparing the slopes we again find that
the largest RBCs give rise to the biggest change
in minimum channel length per inlet width. No-
tice that these changes are comparable with what
we found when only varying the inner edge of the
blood inlet in the BWB-system.

By comparison between Figs. 9.3a and 9.5a
we also notice that the separation length intervals
are smaller for the narrow inlet channels in the
setup where the center of the inlet is 50 µm from
the channel edge (Fig. 9.5a). This is due to two
effects. First of all we have removed the WBCs
from the region near the edge where the pressure force is small. Secondly the RBCs at
the inner inlet edge are starting closer to the center of the channel for a given width than
for the BWB-setup used in Fig. 9.3a. But we also notice that this difference is decreasing
as the width of the inlet in Fig. 9.5a is increasing. This is because the WBCs are coming
closer to the edge and the RBCs starting points are more similar to the setup in Fig. 9.3a,
corresponding to what we would expect from our previous analyses.

The maximum separation length possible before the concentration in the „red beam”
is too high, is decreasing with the inlet width in the BWB-system (Fig. 9.3a) whereas in
the WBWBW-system (Fig. 9.5a) they are increasing with the inlet width.

In the BWB-system (Fig. 9.3a) the outer edge of the blood inlet is invariant — fixed at
the channel edge. The decrease is here caused by the inner edge of the blood inlet getting
closer to the center and hence reaching the center faster to make a narrow beam with high
concentration.

In the WBWBW-system (Fig. 9.5a) we also observe this effect, but in this setup the
outer edge of the blood inlet is not fixed. As the inner RBCs are reaching the center faster
when we increase the width of the blood inlet, the outer RBCs are reaching the center
slower. Because a narrow beam (high concentration) requires both beam edges to get close
to the center, we notice that the maximum separation length is increasing with the width
of the blood inlet.

Again considering the required width of the inner outlet in order to catch all the WBCs
in the outlet, we look at Fig. 9.5b. We notice that the blood inlet and the inner outlet
width is linearly related making design scaling easier. Furthermore we notice that at
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(a) (b)

Figure 9.5: (a) The separation length interval is shown as a function of the width of the blood
inlet channel, when the center of the inlet beam is placed 50 µm from the outer edge of the
channel as shown in Fig. 9.4. Furthermore the dashed line indicate the length above which the
concentration of RBCs exceeds 91 %. (b) Shows the required inner outlet width at the minimum
separation length shown in Fig. 9.5a in order to get all the WBCs captured in the inner outlet
channel.

narrow blood inlets we observe a more narrow inner outlet when we have positioned the
blood inlet away from the channel edge as done in Fig. 9.5b (compared to Fig. 9.3b). This
indicates that the separation takes place closer to the center of the channel, thus giving
smaller outlets, when the blood inlet is placed closer to the center of the channel. This
motivates the next analysis of the influence of the position of an inlet of fixed width.

9.1.3 Separation in WBWBW-system, With Variable Position of Blood Inlet

Finally we consider a fixed blood inlet width to study how the separation length vary
with position of the inlet channel. We choose a narrow inlet of 30 µm because this beam
width is used frequently in experimental setups. The setup is sketched in Fig. 9.6a and
the resulting separation length intervals is shown in Fig. 9.6b.

We first notice that the minimum separation length has a minimum and hence that
we get an optimal positioning of the inlet as shown in the section view of Fig. 9.6b shown
in Fig. 9.7a. We see that this position is where the 30 µm wide inlet lies on the outer
side of the maximum of the pressure force. For the chosen parameters the maximum of
the pressure force is at y = 87.5 µm and the optimal position of the center of the 30 µm
wide channel is about y = 60 µm from the channel edge. This position ensures that all the
particles in the inlet channel benefit from passage of the maximum in pressure force.

Furthermore we observe that the position near the edge of the whole channel gives rise
to the largest separation length intervals for all sizes of the RBCs. This is the result of the
smaller pressure force at the edge of the channel like we saw and discussed in Section 9.1.1.

It is the same effect that causes the decrease in the maximum separation length before
we reach a problematic concentration in the „red beam”. The closer to the channel edge
the blood inlet is, the longer channel is needed in order for the RBCs to get concentrated
because they start out by experiencing a very small pressure force. The big decline in the
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(a) (b)

Figure 9.6: (a) Shows the setup at which the position of a 30 µm wide inlet is varied. This
setup is used in Fig. 9.6b. (b) The separation length interval for varying positions of the center
of a blood inlet with a fixed width of 30 µm as sketched in Fig. 9.6a. The length at which the
concentration in the „red beam” exceeds 91 % is also shown as dashed lines. Furthermore the size
of the pressure force at the center of the inlet is indicated as a scaled value.

maximum possible length at positions closer to the channel center is then caused by the
inlet beam getting into the region with a higher pressure force right away, thus getting
concentrated at shorter channel length.

The effect mentioned at the end of Section 9.1.2 is now easily seen in Fig. 9.7b, where
the required inner outlet width in order to catch all the WBCs in the inner outlet channel
at the minimum separation length is shown. We observe that the closer the inlet with fixed
width gets to the center, the smaller outlet is needed because the separation occurs closer
to the center of the channel. Furthermore we notice that there is a linear relationship
between the position of the outer inlet and the size of the required outlet, and that the
largest RBCs require the most narrow inner outlets indicating that the separation occurs
closest to the center.

9.2 Concentration of White Blood Cells

After we have separated the RBCs and WBCs we are interested in concentrating the WBCs
and thus making them easier to find/analyze afterwards. Below we are focusing on the
most simple system for concentrating the cells. As shown in Fig. 9.8 we use only one inlet
filling the whole channel. The WBCs will be moving towards the center of the channel
as discussed earlier. The longer we make the channel the more WBCs will therefore be
collected in the center outlet as we found with RBCs in Section 8.3. It is clear that, when
we have chosen only to focus on the one inlet design for concentration, the size of the inner
outlet plays an important role.

In Fig. 9.9a the concentration is shown as a function of channel length for the two
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(a) (b)

Figure 9.7: (a) A zoom of the minimum of the separation lengths shown in Fig. 9.6b. (b) The
required inner outlet width for the minimum possible separation length found in Fig. 9.6b to have
full separation.

setups sketched in Fig. 9.8. We have chosen to concentrate from an initial concentration
of 1 % Vol., corresponding to the approximately ratio of WBCs in an adult persons blood
as mentioned earlier. It is clear that if we have separated the RBCs and WBCs earlier,
we have already concentrated the WBCs. Hence this section does not claim generality
with respect to the initial concentration but is included to show how much it is possible
to concentrate the cells, and how long a channel will be needed in order to do this.

From Fig. 9.9a we find that we are not able to concentrate to more than approximately
5 % Vol. if we choose the narrow outlet and to approximately 2 % if we use the wide outlet,
no matter how long we make the channel. Hence we conclude that the size of the outlet
is a very important parameter when we want to concentrate particles. The narrower the
outlet is made the better concentration can be obtained, provided we make the channel
sufficiently long. Consequently it is the ratio between the blood inlet and the central outlet
that determines the concentration which can be achieved by a given design. Hence it is
possible to get a higher concentration than the considered 5 % by reducing the width of
the central outlet, but we notice that the central outlet should be wide enough to contain
a flow of WBCs, and that there is a lower boundary on how narrow an outlet can be before
the concentration rises to high, cf. Section 12.5.

9.3 Changing the Transport Medium

In the above sections we have sought to separate the RBCs and WBCs by appropriate
channel designs. Inspired by talks with Jacob Riis Folkenberg at Foss we could also
seek to separate the RBCs and WBCs by a change of transport-medium. The change
of transport-medium from blood plasma to some other fluid is experimentally reported
by Per Augustsson et al. [38]. The characteristics of the transport medium enter in the
Φ-factor introduced in Eq. (5.91b) and thus affect the acoustophoretic sign. Hence we
want to examine if it is possible to find a fluid where the RBCs and WBCs have different
acoustophoretical sign like RBCs and lipid cells as discussed in Chapter 8. The fundamental
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(a) (b)

Figure 9.8: (a) Shows the one-inlet setup with center outlet of half the full channel width,
w = 350 µm. (b) Shows a sketch of the one-inlet setup with a center outlet of width w/5 = 70 µm.

idea is previously used by F. Petersson et al. [30] to separate normally acoustical inseparable
particles by changing the density of the transport medium, and hence altering the pressure
force.

We start by considering the expression for the Φ-factor from Eq. (5.91b),

Φ =
ρs + 2

3(ρs − ρ0)
2ρs + ρ0

− 1
3
c2aρ0

c2sρs
. (9.1)

We see that it only depends on the fluid in ρ0 and ca. We are interested in the case where
they have different signs, which means that sgn [Φred · Φwhite] = −1. We have indicated
the values of ρ0 and ca, where this is the case in Fig. 9.9b. Notice that it is a very small
band of possible pairs of values. Furthermore the required speed of sound decreases with
growing density, which is a problem because the speed of sound usually increases with
growing density. However we were able to find one fluid that satisfied our requirements,
namely nitrobenzene (C6H5NO2). The density of nitrobenzene is ρ0 = 1199 kg m−3, and
the speed of sound is ca = 1463 m s−1 [17]. With these values we find

Φred = 0.0053 and Φwhite = −0.0062. (9.2)

This shows that nitrobenzene has the exact property of making the WBCs moving to the
edges of the channel and the RBCs moving towards the center. But the drawback is that it
is highly toxic and possibly a carcinogen, which would make it dangerous to use in practice.
Furthermore these calculations require accurate values for the compressibility and speed
of sound of both the RBCs and WBCs.
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(a) (b)

Figure 9.9: (a) Shows the concentration as a function of the channel length for the two setups
shown in Fig. 9.8. (b) The allowed values for ρ0 and ca where the acoustophoretic sign is different
for RBCs and WBCs.

9.4 Summary

We have by numerical simulations analyzed different channel designs for separation of
particles with Φ > 0, here with the example of RBCs and WBCs in blood plasma. We
find that the WBCs are affected by a larger pressure force and that separation from RBCs
of different sizes is obtainable in intervals of channel lengths. The larger the considered
RBCs, the larger is the effect of the pressure force, making it more difficult to separate
the RBCs from the WBCs. By varying the position of the blood inlet we have shown that
the minimum separation length is obtained when the inlet is placed asymmetrically in the
channel a little towards the edge of the channel and not exactly where the pressure force
is largest. In this way all particles pass through the maximum of the pressure force.

Furthermore we have discussed concentration of the WBCs and shown that after chan-
nel lengths of about 2− 5 cm, maximum concentration is obtained with the chosen outlet
sizes. In this context we have observed that the width of the outlet channel is a very
important design parameter when considering concentration the way it influences both the
maximum achievable concentration and the length at which this occurs.

Finally we have discussed separation by varying the Φ-factors of the particles by using
another transport medium. It is shown that it theoretically is possible to achieve different
acoustophoretic sign of RBCs and WBCs but in practice it would be difficult to find a
suitable transport medium.
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Chapter 10

Separation of Lipid Particles in

Milk

Until now we have sought to separate particles with different compressibility, density, and
size. Inspired by Jacob Riis Folkenberg at the company Foss who works on separation of
lipid particles in milk this chapter will focus on this separation.

Foss produces measurement equipment for the food industry. In this respect the fat
particles are mixed with cells present in the milk, thus hindering the analysis of these cells
by other means (often optical). Therefore it is interesting to be able to remove the fat
from the milk, in such a way that the milk is not containing fat particles larger than a
certain size. This ensures that the analyses sensitive to particle size (for instance scattering
effects) are not influenced by the fat particles [1].

10.1 Design Considerations

We use the parameters for milk and fat particles found in Tables 7.2 and 7.3 resulting in
the fact that the fat particles are moving towards pressure anti-nodes (anti-nodes in the
velocity potential).

In practice when dealing with lipid particles in microchannels there is a tendency that
the particles in the milk will stick to the sidewalls, according to [1]. This would be the case
when using the above described channels with a width of λ/2. A way to avoid this is to
use channels of width w = 3λ/2, where the lipid particles are injected in the middle part
of the channel in an inlet not wider than w/3 centered around the middle of the channel.
This means that the particles would move towards the two anti-nodes at w/3 and 2w/3.

Particles injected exactly at y = w/2 would according to the analytic solution, Eq. (6.3),
never begin to move in the y-direction because the pressure force is exactly zero at that
point. However this would never be seen in practice since there would be some fluctuations
(or other not yet understood processes) pushing the particle a little away from y = w/2
leading to a non-zero pressure force on the particle. In our analysis we have to estimate
the effects of these fluctuations, and we do this by assuming that particles ate injected at
least a particle radius away from the middle of the channel.

Due to the symmetry of the problem we run our simulations in the region y = w/3
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(a) (b)

Figure 10.1: (a) Particle trajectories of particles injected in a inlet of width w/16 around the
center of the channel (such that we only see half of the inlet channel in the plot). For each particle
size the trajectory of the inner- and outermost particle in the inlet channel is plotted. (b) Channel
setup for lipid particle separation. The idea is that at the inner outlet all particles above a diameter
D0 should be near the dotted lines and flow through the outer outlet channels. These particles
will move faster towards the anti-nodes at w/3 and 2w/3 (green lines), which are values of y lying
in the outer outlet channels.

to y = w/2, where the results can be mirrored onto the other side of the channel. As in
Chapters 8 and 9 we are considering steady-state situations where it can be assumed that
there are particles along all the single-particle trajectories.

A plot of the particle trajectories is seen in Fig. 10.1a where we use the dimensions
from Table 7.1. At first we focus on the problem of sorting all particles above a certain
diameter away from the milk. A setup for this sorting is shown in Fig. 10.1b. The purpose
of the setup is to use that the velocity of a particle in the y-direction is proportional to the
square of the particle radius, and thus the distance before a particle reaches an anti-node
depends strongly on R, see Eq. (6.4).

To be sure that all particles with a diameter greater than D0 have moved away from
the center outlet (where the milk exits) we must look at the trajectory of the innermost
particle which is the last particle of a given size to reach an anti-node. As an example we
consider three different channels where the center outlet width is set to 335 µm, 295 µm,
and 255 µm, see Fig. 10.2. For each particle diameter we find the required length of the
channel before the particle exits in the outer outlet channel (which corresponds to the
intersection between the trajectory and the black dashed line in Fig. 10.2a). These lengths
are given as a function of the particle diameter D0 in Fig. 10.2b. At a given length all
particles of a diameter larger than D0 must be in the outer outlet channels. We see that
the required length does not depend very much on the center outlet width. This is because
the velocity of the particles in the y-direction is large compared to the velocity in the x-
direction. This leads to a range of y-values for which the trajectory curves are „flat” as seen
in Fig. 10.2a. Thus the particles will move very quickly over a large part of the channel
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(a) (b)

Figure 10.2: (a) Particle trajectories of the innermost particles in the considered channel. The
black dashed line must be understood as when the particles are to the left of this, they exit in an
outer outlet channel. (b) Length of channel required for all particles of diameter D0 to be only in
outer outlet channels.

making it less important where in the „flat” part of the trajectory the outlet change is.
From Fig. 10.2b we conclude that it is possible to choose a length of the channel for sorting
large particles away from the milk. If we for example want to remove all particles larger
than 3 µm from an inner outlet 295 µm wide we must use a channel with a length of ∼ 1
cm.

Comments on the flat trajectory

Due to the flat trajectory, the particle can almost all the time be considered as lying either
near the center of the channel or near the anti-node, where the anti-node in the λ/2-case
would be at the channel edge. This is because the shift from the center to the anti-node
happens over a very short channel length, and thus making the device very sensible to
variations in channel lengths. In Section 6.2 we found that the travelled distance in the x-
direction scales with 〈Eac〉−1. Because the acoustical energy density is difficult to determine
exactly in a given channel in practice, there is an uncertainty in the theoretical predictions
of the required channel length to promote a certain separation. If we try to design and
make calculations on a setup where some of the particles are taken out somewhere in
between the center and the anti-node, it would be difficult to determine the exact size of
the particles that would flow out of that channel.

In an experimental setup we would be able to see separation in multiple outlet channels
where the particles are sorted according to their size in the different channels with the
largest in the outermost channels as reported in [30]. The situation where the separation
takes place is found by tuning the applied voltage or by adjusting the flow velocity until
the desired particle flows out of the various outlets. In our opinion it would be difficult
to make good theory for this multiple separation system because of the uncertainty in the
acoustical energy density, which experimentally is taken care of by tuning the parameters.
But we find that it would be possible to make a reasonably estimate if a particle of a given
size is near the center or the edge of a channel for a given channel length. This we will
consider in the following.
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Figure 10.3: Comparison of numerical results with Eq. (10.1) with ys = w/3 + 40 µm corre-
sponding to a center outlet width of 295 µm. It is seen that the analytical solution matches almost
perfectly.

10.2 Analytical View on the Sorting

We see from Eq. (6.15) that the required length of the channel scales linearly with Δp/L
(as the velocity in the x-direction scales linearly with Δp/L), so if we want to sort for
other D0 than the channel was designed for, we just have to adjust the flow velocity.

Because of the flatness of the flow velocity profile in the x-direction, vx(y), around the
middle of the channel, see Fig. 8.6a, we are tempted to assume, that we can consider the
flow velocity of the milk as constant here. In Section 8.6 we saw that the velocity was
constant to four significant figures in the center third of the channel, so this is a reasonable
assumption. According to Eq. (6.18), the required length of the channel when the particle
travels from a position y to the position of the splitting point between the middle and
outer outlet channel, ys, is:

x(y, ys) =
3ηvx,av

4〈Eac〉k2
yR

2Φ
log
(

tan(kyys)
tan(kyy)

)
, (10.1)

where ky = 2π/λ = 3π/w and where y must be the position of the innermost particle
where it enters the channel. This gives the minimum length of the channel to be sure
that, according to our assumptions, all particles with radius R = D0/2 are not exiting
through the center channel. That this analytic expression can be used instead of numerical
simulations is apparent from the plot of Eq. (10.1) together with the numerical solution
given in Fig. 10.3.

Knowing the geometry of the channel, we can easily regulate the average flow velocity
according to Eq. (10.1) thus avoiding the need for numerical calculations in order to be
able to sort particles of a given size from a sample.

As another interesting example of particle sorting, though not very viable for the appli-
cation of removing all large fat particles from the milk, we will also discuss another sorting
opportunity this setup can provide. Consider the case where we only want to have particles
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(a) (b)

Figure 10.4: (a) Particle trajectories of the outermost particles in the considered channel. The
black dashed line must be understood as when the particles are left of this, they exit in an outer
outlet channel. To the right of the dashed line they exit through a central outlet of the width
295 µm. (b) Length of channel required for no particles of diameter below D0 to leave the outer
outlet channels.

above a certain radius in the outer outlets. Since this is not directly linked to removing all
particles above a certain threshold, we will only consider this case from an analytical point
of view, where Eq. (10.1) also is applicable. To be sure that no particles with a diameter
smaller than D0 enters the outlet channels, we have to consider the outermost particles
in the inlet channel. The trajectories of these particles are given in Fig. 10.4a and the
corresponding plot for the diameters is given in Fig. 10.4b. We see that it is possible to
design a channel where the particles in the outer outlets are only above a certain diameter.
For example if we want to make sure that no particles with a diameter below D0 < 4 µm
is entering through the outer outlets, when the central outlet is 295 µm, we can have a
maximum channel length of 2.5 mm.

10.3 An Idea for Milk Separation in Practice

In this section we want to describe a way that lipid separation in milk could be done
in practice. The channel setup is shown in Fig. 10.5, and the basic idea is to use the
3λ/2-channel as described above for the separation remembering that lipid particles have
a negative acoustical sign. We require that the particles enter the 3λ/2-channel in a small
interval around the middle of the channel to optimize the separation. A way to make this
focusing is to let the particles enter in the middle of a channel of width 2λ/2, long enough
for the pressure force to be able to focus a particle beam in the middle of the channel. The
lipid particles will be focused in the middle due to the anti-node at the center.

An experimental procedure for separation would be first to determine the acoustic
energy in the channel, then calculate the required length of the channel to separate certain
particles from Eq. (10.1) with a given flow rate, and at last do the separation of the desired
particles in the channel.

A way to estimate the acoustical energy could be to use a test-fluid with known viscosity



80 Chapter 10. Separation of Lipid Particles in Milk

Figure 10.5: System for separation of particles with Φ < 0. The particles are focused in a beam
in an area of width w = 2λ/2 and are afterwards separated in a channel of width w = 3λ/2.

and test particles with known Φ-factor and radius. One have to inject the test-fluid into
the channel and then have to adjust the flow velocity to find the flow velocity where the
particles change from exiting through the inner outlet to exiting from the outer outlet or
vice versa. This value together with the channel length can be inserted in Eq. (10.1) to
find an expression for 〈Eac〉. In the equation y would be the outermost point of the focused
particle beam entering the 3λ/2-area, and ys would be the y-coordinate of the splitting
point between the center and outer outlet channels.

There are uncertainties related to this process of determining the acoustic energies.
For example we are not certain how the particles are affected at the interface between
transport-medium and buffer-medium which would require further investigations beyond
the scope of this thesis. By choosing a buffer-medium with viscosities close to the one of
milk, we might be able to minimize these effects. Similar viscosities in buffer and milk
would also strengthen the assumption of a constant flow profile in the middle region of the
channel (according to Section 12.2). If the same flow velocity in the fluid inlets is used
we will avoid any questions about how laminar flows with different velocities affect each
other.

10.4 Summary

We have by numerical analyses suggested a design and procedure for separation of Φ < 0
particles with the example of lipid particles in milk, where we were able to sort large
particles away from the milk. We have seen that by only operating in the 1/3-central part
of a 3λ/2-channel with the same viscosity in the whole channel, we can approximate the
flow velocity profile with a constant average velocity. This leads to a simple analytical
solution which describes the separation length from which we with well-known particles
are able to determine the average acoustical energy density in the channel. One could try
theoretically to estimate how precisely we are able to split the particles in size, but a lot
of experimental factors influence on this.
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Chapter 11

Other Possible Applications of the

Pressure Force

In this chapter we will present other possible applications of the pressure force, besides
what we have learned that other research groups have worked with.

11.1 Size-sorting of Particles with Φ > 0

The principle of sorting similar particles with Φ > 0 is like the situation with Φ < 0
illustrated by the separation of fat-particles in milk, cf. Chapter 10, but we have to design
the channel in another way because the particles now move towards nodes and not anti-
nodes of the pressure field, see Section 5.6. A setup with this functionality is shown in
Fig. 11.1a where the particles first are focused in two beams in a 2λ/2-channel. These two
beams function as inlets for a succeeding λ/2-channel. In this way the situation in the λ/2-
channel is similar to the WBWBW-system for blood we have discussed in Section 8.6 for
the purpose of separation of RBCs and lipid particles. In the setup sketched in Fig. 11.1a
we would just have a higher concentration of RBCs in the inlet channels than we would
have if we had inlets of „regular” blood which had not been concentrated. Therefore this
system would be good for optimizing the blood separation setup where we both have high
throughput and short channel lengths. Furthermore it is convenient to have the same
viscosity in the channel, as we would have using this system, according to the discussion
on velocity flow profile in Section 12.2.

The experimental procedure is the same as for milk, as we described in Section 10.3,
where a known test-particle is used to determine the acoustical energy density for calcu-
lating the required flow velocity by Eq. (10.1).

11.2 Creation of Pulses of Particles

For practical microfluidic applications it could be useful to be able to have particles arriving
in a pulses. We illustrate a channel for particles with Φ < 0, and a similar system could
be made for particles with Φ > 0.



82 Chapter 11. Other Possible Applications of the Pressure Force

(a) (b)

Figure 11.1: (a) Setup for size-sorting of particles with Φ > 0. First a channel of width 2λ/2
focuses the particles into two beams at the pressure nodes. These beams are by a laminar flow led
into a channel of width λ/2 in such a way that the two beams lie near the edge of this channel.
This is done by leading some of the fluid out from the 2λ/2-part in some outer outlet channels as
illustrated. In the λ/2-part the particles are focused into the center of the channel. (b) Setup to
create pulses for particles with Φ < 0. The piezo-actuator is periodically turned on an off causing
the particles to be periodically sent either into the inner or the outer outlet(s). Note that the
pressure force is assumed large compared to the flow velocity such that when the actuator is on,
the particles move very fast to the edge. The dashed lines outline the flow profile when the actuator
is turned off.

The pressure force could be used to create pulses by turning on and off the piezo-
actuator (or at least varying the frequency between the resonance frequency and off-
resonance frequency), for the channel setup in Fig. 11.1b. The particles are injected in
the center inlet of a WBW-system in a λ/2-channel of length L (this situation could also
be achieved by focusing of the beam in a 2λ/2-channel as described in Fig. 10.5). We
assume that the pressure force on the particles, when the actuator is turned on, is so large,
that the traversed length in the x-direction before the particle is at a y-position, where it
would exit through the outer outlet channel, x(y1, y2), is very small compared to L. This
means that when the actuator is switched on, almost all particles in the channel at that
time will flow out of the outer outlets.

We assume that the velocity in the center of the channel is vx, and that the actuator
is switched on in a time interval ton. It gives a total length of a pulse of, ` ≈ L + vxton
— including the contribution both from the particles in the channel when the actuator
is turned on and the particles entering the channel while the actuator is turned on also
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contribute to the length of the pulse. From these assumptions we also see that the time
between the piezo is turned off until it can be turned back on again must be toff > L/vx.
Because the pulse length with this simple model is ` > L, a period of switching the actuator
on and off is T = ton + toff, which must be equivalent to T = `/vx + Δt, where Δt is the
time between the pulses.

To get an estimate of the pulse frequency we can obtain, we assume that the time
between pulses is the same as the time we experience a pulse, i.e. Δt = `/vx. This gives
a period of T = 2`/vx corresponding to a frequency of f = vx/(2`) < vx/(2L), limited by
the length of the channel and the flow velocity. Using standard parameters vx = 0.1 m/s
and L = 5 mm, we find f < 10 Hz.

The frequency can be made larger and the pulses smaller by looking at exactly how
long time a particle entering in the middle of the channel uses to get to a point where it
would flow out of an outer outlet channel. For optimization, analysis like in Chapter 8
could be made, but it is beyond the scope of this thesis.
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Chapter 12

Neglected Effects

In the previous chapters we ignored many effects in our simulations. In this chapter we
are going to look closer into what was reasonable to ignore, and what should be included
in an extended model. We will examine each effect one at a time and at last summarize
the effects and compare their contributions to the models.

12.1 Longitudinal Modes

When we examined the pressure force, we ignored all acoustic modes but the ones in the
y-direction. However, it is also possible that longitudinal modes in the channel affects the
flow of the particle down the channel. It would give a total flow in the x-direction vx(x, y)
of

vx(x, y) = vx,flow(y) + vx,long(x), (12.1)

where the flow profile in the channel, vx,flow(y), is given by Eq. (6.12), and vx,long(x) is the
contribution from the longitudinal modes.

To analyze the longitudinal modes, we have to consider the force in the two-dimensional
scheme as done in Section 5.7. We neglect the presence of the inlets and outlets of the
channel, assuming that the channel is rectangular with boundaries consisting of acoustical
hard material such that the pressure gradient normal to the surface vanish, nnormal ·∇p1 =
0. This translates into corresponding homogeneous Neumann boundary conditions for the
first-order velocity potential via the relationship p1 = −ρ0∂tφ1, Eq. (3.7). For harmonic
variating first-order perturbation terms, a solution to the inviscid Helmholtz equation,
Eq. (3.12), for the velocity potential with the mentioned boundary conditions is

φ2Din =
u0

k
cos(kxx) cos(kyy), (12.2)

where the resonance frequencies (eigenvalues of the Helmholtz equation) is determined
from

k2 = k2
x + k2

y =
(πnx
L

)2
+
(πny
w

)2
, nx, ny ∈ N0. (12.3)
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(a) (b)

Figure 12.1: (a) Contour plot of the normalized acoustic potential U2D/U0 in the case of no
longitudinal modes, kx = 0 and λ/2 = w, in a channel with w = 350 µm and L = 3 cm.
Furthermore a RBC trajectory in blood starting near the channel edge is indicated. (b) Contour
of the normalized acoustic potential U2D/U0 in the case of ky = 0 and nx = 3. Parameter values
for (a) and (b) are given in Chapter 7. Note that the axis are not equal.

In Section 5.7 we found that the harmonic velocity potential Eq. (12.2) leads to an acoustic
potential, Eq. (5.95), given by

U2D = U0

[
2f1 cos2(kxx) cos2(kyy)

− 3
(
k2
x

k2
sin2(kxx) cos2(kyy) +

k2
y

k2
cos2(kxx) sin2(kyy)

)
f2

]
,

(12.4)

where U0 = (1/2)(4πR3/3)〈Eac〉 has been introduced as a natural energy scale for the
acoustic potential.

Below we choose to make analyses of a system as the one indicated for blood separation
in Chapter 7 with w = 350 µm, and with a channel length L = 3 cm as used as a typical
length for separation of particles in practice [30].

In Part II we have only been considering the special case where kx = 0. In Fig. 12.1a a
plot of the potential together with a particle trajectory for a RBC in blood is seen where
f = 2.119 MHz and ny = 1, corresponding to only having one node in the y-direction. We
see that the acoustic potential is invariant in the x-direction, which also can be seen from
Eq. (12.4) with kx = 0.

Considering the ky = 0 mode

The opposite situation with no modes in the y-direction, ky = 0, is shown in Fig. 12.1b and
has f = 0.742 MHz. We notice that the pressure force in this situation is only affecting
the particles in the x-direction. In the x-direction the particles already have the velocity
vx,flow due to the flow profile in the channel. Hence the pressure force will either counteract
or amplify the flow velocity depending on the x-position of the particle. We see that the
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magnitude of the pressure force in this setup in analogy of the case with kx = 0 where
〈Fx〉 = 4πkxR3〈Eac〉Φ sin(2kxx). In equilibrium this force is balanced by the Stokes drag,
Fx,drag = 6πηRv, giving a maximum contribution from the longitudinal modes of

|vx,long| =
2
3η
kxR

2〈Eac〉Φ =
2πnx
3Lη

R2〈Eac〉Φ, nx ∈ N0. (12.5)

This must according to Eq. (12.1) be compared with the magnitude of the velocity flow
profile to determine which of the velocities that gives the major contribution to vx(x, y).

Using typical values as given in Chapter 7 for the blood simulations, we estimate the
drag velocity in the channel with L = 3 cm to have the magnitude |vx,long| ≈·0.27 mm s−1

for the mode nx = 10. This must be compared with the average magnitude of the flow
profile of vx,flow = 0.11 m s−1, and thus the longitudinal modes on the whole do not change
the flow in the x-direction in this considered case.

If the flow velocity in the flow profile is comparable but still larger than the velocity
contribution from the longitudinal mode, the particles will move in the x-direction peri-
odically slowing down and speeding up according to the sine variation of the longitudinal
modes from the pressure force. On the other hand if the velocity in the x-direction from
the flow profile is smaller than the magnitude of the longitudinal contribution, the particles
will collect at the nodes (for Φ > 0) in the acoustic potential. At a threshold flow velocity
v∗x,flow, the flow velocity exactly balances the velocity from the pressure force in a given
mode,

v∗x,flow = |vx,long| =
2πnx
3Lη

R2〈Eac〉Φ, nx = N0. (12.6)

From this we can experimentally determine an estimate of 〈Eac〉 in a given channel using
the threshold flow velocity as suggested in [6].

The Maximum Magnitude of the Longitudinal Velocity Contribution

When looking at the maximal velocity contribution from the longitudinal modes, we con-
sider the the pressure force in the x-direction for arbitrary wavenumbers, Eq. (5.98),

〈Fx〉 = U0kx sin(2kxx)

[
2f1 cos2(kyy) + 3f2

(
cos2(kyy)−

k2
y

k2

)]
, (12.7)

〈Fx〉 ≤ U0kx

[
2|f1|+ 3|f2|

]
, (12.8)

which is equal to the magnitude of the one-dimensional force, where ky = 0, as seen by
comparison with Eq. (5.89c). Hence we conclude that the estimate of the magnitude of
the longitudinal velocity contribution made above in the case of ky = 0 is in fact also an
estimate of the maximum magnitude of the longitudinal velocity contribution in 2D. It
should be noted that the maximum magnitude is proportional to the mode number, so for
very high order of modes or small velocity profiles the velocity originating from the modes
can have influence.
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(a) (b)

Figure 12.2: (a) Contour plot of the normalized acoustic potential U2D/U0 with ny = 1 and
nx = 1. (b) Contour plot of the normalized acoustic potential U2D/U0 with ny = 1 and nx = 3.
In both (a) and (b) we see the trajectories of RBCs experiencing the shown potential (solid black
line), a potential corresponding to kx = 0 (dashed black line) and a potential corresponding to half
the force from a kx = 0 field (dashed white line) are plotted.

Considering Longitudinal Modes with one Transverse Mode

Even though the pressure force in the x-direction is very small compared to the flow velocity
profile, the longitudinal modes introduce changes overall in the potential field. Hence the
potential in the y-direction is changed and it thus alters the trajectory of a particle. We
will in the following investigate this effect in our standard configuration for blood with one
node in the y-direction, corresponding to ny = 1 or as previously denoted w = λ/2, and
look at multiple nodes in the x-direction.

First of all we consider a situation with only a few nodes in the x-direction. The acoustic
potential for nx = 1 and nx = 3 is seen in Fig. 12.2 together with trajectories for a RBC
in blood. The modes have frequencies of fnx=1 = 2.119 MHz and fnx=3 = 2.120 MHz
from Eq. (12.3). As the second thing we consider the case of nx = 25, corresponding to
a frequency of f = 2.207 MHz shown in Fig. 12.3a. We see that the longitudinal modes
introduce periodic plateaus in the y-direction, corresponding to the minima in the potential,
where particles are not affected by the pressure force in the y-direction. Due to the flow
velocity profil the particles move forward in the x-direction even in areas without pressure
force. Hence this mode setup cannot prevent the particles with Φ > 0 from following the
flow in the x-direction as we could for ky = 0, because the potential has a minimum in
the center of the channel. Eventually the Φ > 0 particles will collect at the center and
experience no pressure force and just follow the flow in the x-direction.

When considering a case with nx = 25, see Fig. 12.3a, the potential qualitatively looks
a lot like that with kx = 0, but it is seen that that the trajectories in these two cases differ
a lot. We thus search for a explanation of this behaivour in the following.
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(a) (b)

Figure 12.3: (a) Contour plot of the normalized acoustic potential U2D/U0 with ny = 1 and
nx = 25. The trajectories of RBCs experiencing the shown potential (solid black line), a potential
corresponding to kx = 0 (dashed black line) and a potential corresponding to half the force from a
kx = 0 field (dashed white line) are plotted. (b) Contour plot of the normalized acoustic potential
U2D/U0 with ny = 1 and nx = 3. The trajectories of RBCs experiencing the shown potential
(solid black line) and a potential corresponding to half the force from a kx = 0 field (dashed
white line) are plotted. The trajectory marked 1 is for an average flow velocity of 2vx,flow, 2 is for
vx,flow = 0.11 m s−1, and 3 is for 1/2vx,flow.

The Average Force Exerted

When considering the introduced periodicity in the x-direction, it is natural to average the
pressure force experienced by the particle over the period in the acoustic potential, Tx, in
the x-direction, Tx = 2π/kx. It is reasonably to consider the particle trajectory by the
average over the spatial coordinate x, if the change in the potential/force which a particle
experiences varies on a much shorter length scale in the x-direction than in the y-direction.
The characteristic time scale of the potential change is the time it takes for a particle to
move one period in the given direction, Δt. If the characteristic velocity in the x-direction
is denoted vx, and one period in the x-direction has a length of the order L/nx, the time
it takes for the potential to change notably is of the order Δtx ∼ L/(nxvx). Similarly
the change in y-direction is of the order Δty ∼ w/(nyvy). Hence we must require for the
average to be in good agreement with the actual particle trajectory that

Δtx � Δty ⇔
ny
w
vy �

nx
L
vx. (12.9)

This should be understood such that the nodes passed per time by the particle must be
larger in the x-direction than in the y-direction. It ensure that it is possible to consider the
y-coordinate as constant while we experience a notably change the x-coordinate. Hence
the larger number of modes per length or the bigger the characteristic velocity in the
x-direction, the better we can expect an average to describe the particle trajectory.

The characteristic velocity in the x-direction is the velocity from the flow profile. In
the systems discussed in part II we are considering flow velocities of the order vx,flow ≈
0.11 m/s. The characteristic velocity in the y-direction is the velocity originating from the
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pressure force in the y-direction. This can be estimated in the same way as done in the
x-direction for the case ky = 0 in Eq. (12.5). Using typical values for RBCs we estimate
vy,long = 2.3 mm s−1. Therefore we fulfill the condition for the average to be close to the
particle trajectory in the considered setup.

Thus it is valid to use the spatial average of 〈Eac〉 in the x-direction, and from Eq. (5.98)
we find

〈Fx〉 = U0kx sin(2kxx)

[
2f1 cos2(kyy) + 3f2

(
cos2(kyy)−

k2
y

k2

)]
, (12.10a)

〈Fy〉 = U0ky sin(2kyy)
[
2f1 cos2(kxx) + 3f2

(
cos2(kxx)−

k2
x

k2

)]
, (12.10b)

leading to

〈Fx,average〉 = 0. (12.10c)

〈Fy,average〉 =
1
2
U0ky sin(2kyy)

[
2f1 + 3f2

(
1− 2

k2
x

k2

)]
(12.10d)

=
1
2
〈Fy,kx=0〉 − 3f2U0ky sin(2kyy)

k2
x

k2
. (12.10e)

The last equality follows from comparison with the expression for the one-dimensional force
Eq. (5.91a). This shows that the average force exerted on the particles is half the force
from a potential field with kx = 0 but including an extra term with the same sine-variation
as the pressure force in the y-direction. Thus the deviation from the (1/2)〈Fy,kx=0〉 effect
is biggest when the pressure force in the y-direction is largest, hence when the velocity in
the y-direction is largest.

Comparison with the Potential Without Longitudinal Modes

When considering the average force in Eq. (12.10c) we notice that it corresponds to half the
force exerted from a potential than in the situation with kx = 0 when the term 2k2

x/k
2 ≈ 0.

This is the case when

k2
x

k2
x + k2

y

� 1 ⇔ 1

1 +
(
nyL
wnx

)2 � 1 ⇔ ny
w
� nx

L
. (12.11)

This means that when the nodes per length is greater in the y-direction than in the x-
direction, the average force exerted from a mode with nx 6= 0 corresponds to (1/2)〈Fy,kx=0〉.
For the considered channel setup we have ny/w = 1/w = 2.9 × 103 m−1 and nx/L =
100 m−1 for nx = 3, thus fulfilling Eq. (12.11).

In Figs. 12.2 and 12.3 the trajectory of a RBC is plotted in different potentials together
with the trajectory for a similar RBC affected by 1

2〈Fy,kx=0〉. Furthermore the trajectory of
a particle experiencing the one-dimensional pressure force is calculated for comparison. We
notice the great agreement between the actual trajectory and the (1/2)〈Fy,kx=0〉 trajectory
as predicted by our theory.
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(a) (b)

Figure 12.4: (a) A cross-section of the Pouseille-flow in a BWB-channel with different viscosities,
respectively blood and water. The velocities are given in m s−1. (b) A cross-section of the
Pouseille-flow in a BWB-channel with constant viscosity. Notice that vx is measured in m s−1.

In Fig. 12.3b we have furthermore shown the proposed dependency on the flow velocity
Eq. (12.9), when plotting the trajectories of RBCs in a nx = 3 potential for different
flow velocities in the x-direction. We find that the case with the highest flow velocity
has the best agreement between the actual particle trajectory and the particle affected
by (1/2)〈Fy,kx=0〉, showing that the averaging approximation is best when operating with
large flow velocities, which confirms Eq. (12.9).

We conclude that if the flow velocities compared to the nodes per length in the two
directions fulfill Eq. (12.9), and we furthermore have the dimensions of the channel fulfilling
Eq. (12.11), the particle trajectory in the actual potential can very well be approximated
by the trajectory of a particle affected by (1/2)〈Fy,kx=0〉.

12.2 The Influence of the Viscosity on the Pouseille-flow

An effect we have neglected in our analysis of the separation of RBCs from lipids or WBCs
is that the viscosity of the buffer medium is not necessarily the same as that of the transport
medium. For blood we have used that η = 0.0027 Pa s. However the viscosity of water,
which is a reasonable approximation for what could be used as buffer medium, at 20◦C
is 0.0010 Pa s [5]. The differential equation for the Pouseille flow in each medium can be
derived from the Navier–Stokes equation, since η only varies at the boundaries between two
flows so it can be assumed constant in each medium. Whe notice that a steady-state flow in
a channel which is translational invariant in the x-direction, cannot depend the x position.
Furthermore the flow velocity can only have an x-component. Hence the velocity in each
medium must have the form v(y, z) = vx(y, x)ex. With a steady-state velocity of this
form we see from the Navier–Stokes equation that the velocity must fulfill the differential
equation, [5],

− η
[
∂2
y + ∂2

z

]
vx(y, z) =

Δp
L
. (12.12)
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(a) (b)

Figure 12.5: (a) A comparison of the flow-speeds in the middle of the channel for the two
different models using the viscosity of water and blood respectively. The two vertical lines show
the splitting of the three inlets. (b) The ratio of vx found using the model with different viscosities
to the vx found using constant viscosity.

The boundary condition at the edges of the channel is that vx goes to zero. At the interface
between the two flows we have that the shear stress is constant, and since the shear stress
is given as σ = η∇v, we get

η1∇vx,1 = η2∇vx,2. (12.13)

where the indices refer to the different media. We have implemented Eqs. (12.12) and (12.13)
in Comsol with the three-channel BWB-system described in Section 8.4 where we are as-
suming that the interfaces between the media are flat. In the optimal separation setup we
had blood in the interval [0 µm; 125 µm] and [225 µm; 350 µm] and buffer in-between.

A cross-section of the velocity-field with different viscosities in the channel can be seen
in Fig. 12.4a. We have also simulated the flow with constant η = 0.0027 Pa s which can
be seen in Fig. 12.4b. Notice that there is a clear difference in the flow-type. The speed
changes a lot in the middle of the channel when having different viscosities.

We have plotted a cross-sectional view of vx at z = h/2 to compare the results for
the two models in Fig. 12.5a. We see that the biggest difference between the two models
appears in the middle of the channel.

Furthermore we have plotted the ratio between the two flow-speeds, see Fig. 12.5b.
From this figure we deduce that the conclusion from the RBC–lipid section not will be
changed dramatically, since it was the lipids that were the limiting factor, and they will
not move into the middle subdomain where vx is much larger. However we still see that
the innermost lipids in the blood inlet (and RBCs for that sake) move almost 50 % faster
in the center when using the more sophisticated model than assuming the same viscosity
in the buffer- and transport-medium.
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(a) (b)

Figure 12.6: (a) The Fåhraeus effect. Plot of the relative haematocrit Hct/Hc vs. the tube
diameter D. (b) The Fåhraeus–Lindqvist effect. Plot of the apparent viscosity in the tube, ηapp,
against the tube diameter D. More advanced models of the non-Newtonian behavior is given in
[18] and gives small deviations (up to 0.15 in ηapp) from the simple model, but the tendency is still
the same.

12.3 The Fåhraeus effect and Fåhraeus–Lindqvist effect

Two of the most relevant non-linear effects which are observed in blood flowing in small
tubes are according to [18] the Fåhraeus effect and the Fåhraeus–Lindqvist effect. Without
going into details with the models behind these two effects we will just state the conse-
quences. Note that the models are for straight, circular channels with diameter D where
we in our work use rectangular cross-sections, but we assume that the same effects are
present in rectangular channels.

The standard haematocrit is denoted Hc when the blood is in a large reservoir. The
Fåhraeus-effect predicts a decrease in the concentration of RBCs, described by the dynamic
haematocrit Hct, i.e. the apparent haematocrit value in the tube, when the diameter of
the tube is reduced. The altered haematocrit values is due to the formation of a depleted
plasma layer at the channel edges. The layer is formed because of migration of cells from
the channel walls (where the migration has a higher flow velocity than the axial flow
velocity). Thus the Fåhraeus effect can be reduced by increasing the flow velocity, vx.

An empirical parametric description of the Fåhraeus effect is given in [23], and this
is plotted in Fig. 12.6a. The parameters used for the plot are unspecified, but it gives a
qualitative but not quantiative description of the Fåhraeus effect.

The Fåhraeus–Lindqvist effect states a decrease in the apparent viscosity in the tube,
ηapp, when the tube diameter is reduced. Due to stress-induced cell migration from the
Fåhraeus effect a slippage layer of plasma-rich, cell-depleted fluid appears near the tube
walls in small tubes, D = 5 µm − 0.3 mm [18]. The thickness of the layer depends of the
flow rate and the tube diameter, but is experimentally shown more or less to remain in
the range 2 − 4 µm for all tube diameters [7]. Thus the relative volume of the plasma
layer (with low viscosity due to the Fåhraeus effect) to the tube volume is increased with
decreasing tube diameter. This effect is describe as the Fåhraeus–Lindqvist effect. A
simple model is given in [25] and plotted in Fig. 12.6b to give a qualitative impression of
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the Fåhraeus–Lindqvist effect. We see that the effect can change the viscosity significantly
when having flow in small channels. But as noted in Section 6.2 the value of the viscosity
does not affect the particle trajectories in the channel, x(y), but only the time profiles, y(t)
and x(t). Hence we conclude that this effect is not that important to our determinition of
the channel length.

The Fåhraeus–Lindqvist effect as described above is valid for a haematocrit value up
to 95 % [10]. When the haematocrit is higher, we will have a high dense packing of the
RBCs which contributes to the non-Newtonian behavior of the fluid. Further discussions
on the non-Newtonian behavior of blood and the effect of having a blood flow in channels
(such as cell screening and plasma skimming) are described in detail in [18].

12.4 Temperature Dependence

Many of our parameters used in the simulations depend on the temperature. In this section
we will look closer at what this means for our results.

First we will look at the viscosity. According to [8] the viscosity of blood decreases
with temperature, for values see Appendix F. Generally the viscosity of blood increases
with approximately 2 % with a one degree decrease in temperature, see [8]. However as
discussed in Section 6.2 this will not change the required travel lengths but only the time
to get there, and since we assume that we are in steady-state, this dependence can be
neglected. However if we were to use a buffer medium at 20◦C and blood at 37◦C, the
cooling and heating of the two fluids would change the relative viscosity between them
thus leading to a different Pouseille-flow as discussed in Section 12.2, and this would be
very difficult to model.

We also know that the density and speed of sound in fluids change with temperature.
From [17] we found values for the speed of sound versus temperature in water in 10◦C
increments given in Appendix F. Regarding the density we found the following expression1

ρ =
ρat τ0

1 + a0 (τ − τ0)
, where a0, water = 0.88× 10−4 ◦C−1, (12.14)

where τ is the temperature and τ0 is a reference temperature. Using that the density
of water at τ0 = 4 ◦C is ρ0 = 1000 kg m−3, we can find the Φ-factors as a function of
temperature, where we neglect the change in density and temperature of the particles in
our fluid.

Using the above results for water Fig. 12.7a shows the change in Φ-factors versus
temperature using water as our buffer medium. Notice that the values are scaled to the
Φ-factor at 20 ◦C. In the simulations made in part II we used blood and milk as transport
mediums, but we were not able to find the temperature dependence of the density and speed
of sound for those two parameters. To see if running the system at different temperatures
would make it easier to separate our particles, we plot the ratio of the Φ-factor of RBCs
to lipid and to WBCs in Fig. 12.7b, taking the absolute value of the RBC to lipid ratio
for clarity. We see that the ratio for RBCs–WBCs is almost independent of temperature,
however it seems like we could improve our results for RBC to lipid separation. We stress

1http://www.engineeringtoolbox.com/fluid-density-temperature-pressure-d_309.html

http://www.engineeringtoolbox.com/fluid-density-temperature-pressure-d_309.html
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(a) (b)

Figure 12.7: (a) The ratio of the Φ-factors to Φ at 20 ◦C as a function of temperature. Notice
that these φ-factors are found with water as medium compared to the blood and milk we used in
our simulations (b) The ratio of the Φ-factors as a function of temperature. Notice that we have
taken the absolute value of the RBC/lipid ratio for clarity.

that the temperature dependence of density and speed of sound for the particles is not
included in the prior discussions. Furthermore as seen in Fig. 12.7a the Φ-factor for lipid
particles decreases with decreasing temperature which would mean that it would require a
longer channel to separate the particles, as we discussed in Chapter 8. Still the temperature
dependence is something that could be looked deeper into, since it could possibly make
the separation easier.

12.5 Effects of Concentration

In the previous discussion we only considered single point-like particles. This is not the
case in reality where RBCs, WBCs, and lipids have a finite extension. Furthermore we
have multiple particles. This means that there is a maximum of the concentration in our
channels. To simplify the analysis we will assume non-compressible spherical particles and
cylinders.

To derive an expression for the concentration in our outlets as a function of the inlet
concentration we consider N/Δt particles flowing in a channel per time. Thus Nin/Δt and
Nout/Δt particles are entering and leaving the channel respectively. We define Γ as the
percentage of particles from the inlet leaving in a desired outlet. The width of the stream
is w. Since we assume that we have reached steady-state, we have for a time step Δt

Nout

Δt
=

ΓNin

Δt
. (12.15)

Using that N = cV we get

coutVout
Δt

=
ΓcinVin

Δt
⇔ coutwoutΔLout · h

Δt
=

ΓwinΔLin · h
Δt

, (12.16)

where we have used that the volume entering the channel during the time step Δt can be
expressed as winhΔLin and similarly the volume leaving the channel as wouthΔLout, where
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h is the height of the channel. ΔLin and ΔLout are the length of the volume element and
can be expressed by the velocity of the fluid in the channel as ΔL = vxΔt. By assuming
a time-independent flow profile in the channel, we get

cout = cin
win

wout
Γ
vout
vin

= Γ · cin ·
win

wout
(12.17)

This equation allows us to find the smallest possible proportion of the width of the out-
let channel compared to the inlet because there are a physical maximum value for cout.
According to the Kepler conjecture, the highest average density in a regular lattice arrange-
ment of spheres is approximately cmax = 74 Vol%. This can be achieved with hexagonal
close-packed or face centered cubic structure.

However since the red blood cells are not spherical but rather toroidal shaped one could
imagine a stacking of cylinders instead of spheres. In this case the closest packing would be
parallel cylinders placed in a hexagonal grid. Thus the maximum concentration becomes
cmax ≈ 91 %, which is significantly higher than for stacking of spheres.

Assuming that we are examining male blood with a haematocrit value of 46 Vol% [20],
we are now able to find the smallest possible outlet channel assuming all the RBCs have
moved into the outlet channel, i.e. Γ = 1. Using Eq. (12.17) we arrive at

cout ≤ cmax = 1 · cin ·
win

wout
⇔ wout

win
=

cin
cout
≥ cin
cmax

=
0.46
0.74

= 0.62, (12.18)

using spherical stackings. Thus the outlet channel has to be at least 62 % of the inlet
channel if we want to have all the RBCs contained in it. However this value is a conservative
estimate since we have neglected compressibility, and the fact that the RBCs are not
spherical. If we use the results for stacking of cylinders, we get that the outlet channel
should be at least 50 % of the inlet channel, still neglecting the compressibility of the
RBCs.

This shows that we have to be careful not to choose too small an outlet channel for the
RBCs if we want the calculations from the single-particle approach to be valid. We have
not considered the lipids since the concentration is considerable smaller [2], but the same
argument applies for them as well.

12.6 Diffusion

In this section we consider the many-particle effect connected with the diffusion of particles
when there is a gradient in the concentration present. According to [5] the diffusion force
in a weak solution (low concentration) is given by

Fdiff = −∇µ, µ(T, ρ) = µ0 + kBT ln(ρ/ρ0), (12.19)

where µ(T, ρ) is the chemical potential, and where the subscript 0 refers to some constant
standard concentration. This leads to an expression for the size of the diffusion force in
the y-direction given as

Fdiff = kBT
∂yρ

ρ
= kBT

∂yc

c
. (12.20)
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In Section 5.5 we have shown, that the acoustical force drives the RBCs towards the middle
of the channel. According to Eq. (12.20) this leads to a diffusion force counteracting the
acoustical force Eq. (5.91c). In steady-state when the particles do not move, the size of
the two forces must be equal,

kBT
∂yc

c
= 4πkyR3〈EacΦ〉 sin

(
2πny

y

w

)
, (12.21)

where ky = πny/w. Solving this differential equation for the first mode, ny = 1, gives

c(y) = c0 exp
[
−2π〈Eac〉R3Φ

kBT

(
1 + cos(2π

y

w
)
)]
, (12.22)

where c0 = c(w/2) is the concentration in the middle of the channel. Using our choice of
parameters for RBCs at T = 293 K, the constant in the exponential takes the value

2π〈Eac〉R3Φ
kBT

= 4.16× 106. (12.23)

The exponential of this constant is huge, and thus we can say that according to this, the
beam should only be only as wide as the particle diameter. Therefore the diffusion cannot
be responsible for the finite size of the beam, as we observe in practice in Fig. 1.2, as
long as we can assume the expression of the diffusion force Eq. (12.19), which requires low
concentrations of particles in the transport medium.

To examine if the solution in the center of the channel actually is low, as it was assumed
for this derivation, we determine the maximum possible concentration of RBCs assuming
that these are spherical in shape. In stacking of spheres in a fcc structure we can achieve
the maximum concentration of

cmax =
√

2
R3
≈

√
2

(5× 10−6 µm)3
= 1.1× 1016 m−3, (12.24)

using a particle radius R = 5 µm. We must remember that this estimate requires the
particles to be very tightly stacked. For that reason we also want to make an estimate on
the size of the diffusion force when we assume a finite beam width with the concentration
cmax and the width L0 ≈ 30 µm. We estimate the derivative of the concentration by
∂yc ≈ cmax/L0, and the diffusion force Eq. (12.20) can thus be estimated as

Fdiff ≈
kBT

cmax

cmax

L0
=
kBT

L0
≈ 4.14× 10−21 J

30 µm
= 1.4× 10−16 N (12.25)

From Eq. (12.25) we find that the diffusion force is small compared to the typical value of
the pressure force on particles of size R = 5 µm, where the force is of the order 〈FPressure〉 ≈
10−9 N.
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12.7 Many Particle Forces — Secondary Bjerknes Force

The force between two adjacent particles has been neglected throughout the analysis in
the previous parts of the thesis. In this section we estimate the size of the force between
two particles in a fluid in an acoustic field and compare it to the pressure force that has
been discussed in the previous chapters.

In [9] the force between two particles is presented as a secondary effect in the scattered
field caused by the sound fields emitted by the other particles, hence the customary name
secondary Bjerknes force. We will use this theory for the interaction between two particles
even though it was first developed to describe the forces between two gas bubbles in a
liquid. We follow a derivation made by [39] modified according to our own approach in
deriving the pressure force. The final expression of the secondary Bjerkness force is given
by numerous authors [9], [39], [34].

Derivation of Expression for the Secondary Bjerknes Force

This derivation considers stationary particles/bubbles, and we will for simplicity adopt this
limitation in the derivation.

Consider two spherical particles, A and B, in a stationary fluid in a stationary acoustic
field. We assume that the inter-particle distance, d, fulfills λ� d. According to Eq. (3.45)
this assumption leads to the conclusion that in the vicinity of the particles, the fluid
between the particles can be regarded as incompressible. Furthermore we have to assume
that the particles remain spherical with radii RA(t) and RB(t) at all times.

We want to derive an expression for the force experienced by particle B caused by the
pressure gradient from the scattered sound field at A. We start by considering the velocity
of the wave scattered by A at a position r.

From Section 5.2.1 we have that in the region close to the particles r � λ the velocity
potential to first-order is given as

φsc,A =
a(t)
r
− A(t) · er

r2
+ · · · . (12.26)

We are only interested in the scattered velocity potential created by particle A at the place
of particle B, and we have assumed that the distance d between the two of them fulfills
λ � d. This is indicating the correctness of only considering the limit λ � r, when we
want to study the effect of the scattered wave on particle B. We limit ourselves to the
lowest order in r, hence considering the scattered velocity potential as φsc,A = a(t)/r.

Because we are considering an incompressible fluid with the density ρ0, we see that the
mass flux ejected from the surface of the particle A can be expressed as

ρ0V̇sc,A = ρ0

∫
∂VA

vsc,A(t) · er dS = ρ0

∫
∂VA

(∇φsc,A) · er dS. (12.27)

In analogy to the calculations made in Section 5.2.1 leading to Eq. (5.15) the right-hand
side of Eq. (12.27) gives −4πa(t), and the left-hand side yields ρ0V̇sc,A = ρ04πR2

AṘA.
Finally we conclude that to the lowest order in r the scattered velocity potential from
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particle A in the region λ� r is given as

φsc,A = −
R2
AṘA

r
. (12.28)

From the relation between velocity potential and the velocity in first-order perturbation
vsc,A = ∇φsc,A, we get

vsc,A =
R2
AṘA

r2
er. (12.29)

This also outlines the difference with the calculations made in Section 5.2.1. In Sec-
tion 5.2.1 we considered the field present in the region λ� r where we could not assume
incompressibility of the fluid. In this section it suffices to consider the velocity field in the
region λ� r because of the assumption λ� d. Furthermore in Section 5.2.1 we expanded
the model to moving particles, where this section only focuses on stationary spheres in
stationary sound fields.

To calculate the pressure fields from the velocity field Eq. (12.29), we consider the
first-order inviscid Navier–Stokes equation which is seen from Eq. (2.8a) and Eq. (2.8c) to
be

ρ0∂tv1 = −∇p1. (12.30)

Because this equation is linear, the scattered velocity from particle A, which in resemblance
with Section 5.2.1 is first-order, gives the pressure gradient

ρ0∂tvsc,A = −∇pA ⇔∇pA = −ρ0

r2
∂t

(
R2
AṘA

)
er. (12.31)

The particle B (with volume VB) experiences the pressure gradient ∇pA, hence it is subject
to the force from the scattered field from A, given as

FA,B = −VB∇pA. (12.32)

Substituting Eq. (12.31) into Eq. (12.32) we obtain the force exerted from the particle A
on particle B which is at a distance d,

FA,B = VB∇pA

∣∣∣
r=d

= VB

[ρ0

r2
∂t

(
R2
AṘA

)] ∣∣∣∣∣
r=d

er = VB
ρ0

d2
∂t

(
R2
AṘA

)
er. (12.33)

Because the time derivative of the volume of a sphere is given as V̇ = 4πR2Ṙ, we can
rewrite Eq. (12.33) as

FA,B =
ρ0

4πd2
VB∂

2
t VAer. (12.34)

Due to the rapid oscillating fields we are not interested in the momentary force but rather
in the time-averaged force experienced by particle B. Integrating over a full period of
oscillation T and using integration by parts, assuming that VA and VB have the same
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harmonic variation in time, we obtain〈
FA,B

〉
=

ρ0

4πd2

〈
VB∂

2
t VA

〉
er (12.35a)

=
ρ0

4πd2

1
T

∫ T

0
VB∂

2
t VA dter (12.35b)

=
ρ0

4πd2

1
T

(
[VB∂tVA]T0 −

∫ T

0
∂tVB∂tVA dt

)
er (12.35c)

= − ρ0

4πd2

1
T

(∫ T

0
∂tVB∂tVA dt

)
er = − ρ0

4πd2

〈
V̇AV̇B

〉
er, (12.35d)

which is the result obtained in [9] and [39]. We observe that this force can be both attractive
or repulsive depending on the phase between the oscillation of the particles.

As the volume change is very difficult to estimate, we want to rewrite Eq. (12.35d) with
the aim of expressing the volume changes by the compressibilities of the spheres and fluid.
We first notice the definition of compressibility as stated in Chapter 7, which we can use
to express the time-change in volume by

β = − 1
V
∂pV, (12.36a)

−βV =
∂t

∂p

∂V

∂t
, (12.36b)

V̇ = βV ωp1. (12.36c)

where we have used that to first-order we can assume a harmonic time-dependence. Notice
that we assume that both the fluid and the sphere are compressible and thus get that
β = βfluid − βparticle.

Inserting Eq. (12.36c) in Eq. (12.35d) assuming that particle A and B are of the same
type, we obtain〈

FA,B

〉
= − ρ0

4πd2

〈
(βV ωp1)

2
〉
er = − ρ0

8πd2
β2V 2ω2p2

1er = −2πρ0

9d2
β2R6ω2p2

1er, (12.37)

where a factor of 1/2 appears due to time-averaging. To estimate the magnitude of this
expression we rewrite the amplitude of the first-order perturbation in pressure via the
potential formulation of the first-order pressure p1 = −ρ0∂tφ1, see Eq. (3.7). Still assuming
harmonic first-order terms and noticing that the magnitude of the velocity potential is
u0/k, where u0 is the magnitude of the first-order velocity, and k is the wavenumber of the
standing wave, we get

p1 = −ρ0∂tφ1 = ρ0ωφ1, (12.38)∣∣p1

∣∣ = ρ0ω
u0

k
= ρ0ωu0

ca
ω

= ρ0u0ca. (12.39)

If we use that the relation between the average acoustical energy density and the first-
order velocity amplitude, derived in Eq. (5.90c), 〈Eac〉 = (1/4)ρ0u

2
0, we can express the

magnitude of the first-order pressure as
∣∣p1

∣∣ = ca
√

4ρ0〈Eac〉. With this we can estimate
the magnitude of the secondary Bjerknes force as∣∣∣〈FA,B

〉∣∣∣ = 8πρ2
0

9d2
β2R6ω2c2a〈Eac〉. (12.40)
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Estimate of the Magnitude of the Force

As the final step in the analysis we want to estimate the size of the secondary Bjerknes
force expressed in Eq. (12.40). In the estimate we use the typical parameters shown in
Tables 7.2 and 7.3 assuming an interparticle distance of d = 20 µm with a particle radius
of R = 5 µm,∣∣∣〈FA,B〉∣∣∣ ≈ 8π × (103 kg m−3)2

9× (20 µm)2
×
[
5.88× 10−10 Pa−1 − 3.48× 10−10 Pa−1

]2
× (5 µm)6 × (2π × 2× 106 s−1)2 × (1483 m s−1)2 × 103 Jm−3

≈ 2.2× 10−12 N

(12.41)

The pressure force on similar RBCs are of the order 2× 10−9 N. So we conclude that we
are making an error of about 10−3 when neglecting this kind of particle interaction. We
notice a very important fact from the estimate made above, that the secondary Bjerkness-
force scales notably with the particle size. Reducing the particle radius to half the size,
R ≈ 2.5 µm, we reduce the time-average of the secondary Bjerkness-force to 3.4× 10−14 N
for an interparticle distance d = 20 µm.

Another important point to be made is the scaling with the interparticle distance. At
low concentrations this ensures that it is reasonable to neglect the secondary Bjerknes force
altogether. But we notice that we can anticipate a larger interparticle interaction at high
concentrations. For example the secondary Bjerknes force is of the order of magnitude
8.7× 10−12 N for particles with R = 5 µm touching each other.

For particles touching each other we need particles of the size R ≈ 20 µm for the sec-
ondary Bjerknes force to be of the order 10−9 N and hence of the same order of magnitude
as the pressure force.

The secondary Bjerknes force derived here is independent of direction compared to the
acoustic wave. If this was included, we would get an extra angular dependent term in the
secondary Bjerknes force as stated in [42].

12.8 Acoustic Streaming

Acoustic streaming is in general a viscosity effect leading to time independent second-order
velocity terms. In this section we will treat boundary effects at a solid wall as a reason to
acoustic streaming. In this approach the acoustic streaming is caused by the viscosity of
the fluid near the boundary and leads to a time-independent flow near the boundary. This
flow is shown to be independent of the viscosity even though it origins from the viscosity.

Derivation of the Acoustic Streaming Velocity

We will follow the ideas of [16] where we consider a boundary between a potential flow
strictly in the x-direction and a solid wall placed in the xz-plane, making the problem
invariant in the z-direction. When applying a no-slip boundary condition we get a change
in velocity from the full flow far away from the boundary to zero velocity at the boundary
as sketched in Fig. 12.8. This change occurs in a boundary layer of the thickness δ. To
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Figure 12.8: Shows a sketch of the standing wave problem with a boundary layer to a solid wall.
From [22].

ensures that we are considering a thin boundary layer compared to the other length scales,
we assume that the characteristic length of the problem, L0, is much larger than δ. In
Appendix E it is shown that the thickness of the boundary layer is given as the length scale
over which the first-order velocity field is approaching the flow far from the boundary. It
is found to be

δ =
√

2η
ρ0ω

=

√
2× 0.89× 10−3 Pa s

103 kg m−3 × 2π × 106 s−1
= 0.53 µm (12.42)

Furthermore we notice that the boundary layer is much smaller than the wavelength
of the typical used acoustic wave, λ � δ. Thus enabling us to consider the fluid as
incompressible in the boundary layer, hence denoting the constant density ρ = ρ0, leading
to the continuity condition ∇·v = 0, cf. Eq. (2.2). All in all we are assuming that we are
considering a problem where

λ� L0 � δ. (12.43)

We start the analysis by considering the incompressible flow in the boundary layer with
the aim of deriving the equation of motion for the fluid in the boundary layer. Close to
the solid wall it is not possible to neglect the viscosity, when we notice that the velocity
decreases towards zero at the interface. First we make the perturbation to first-order in
the pressure (p = p0 + p1 + p2) and velocity (v = v0 + v1 + v2 = v1 + v2) of the viscid
Navier–Stokes equation, Eq. (2.1). Hence the equation of motion to first-order becomes,

∂tv1 = − 1
ρ0

∇p1 +
η

ρ0
∇2v1. (12.44)

We notice that the Navier–Stokes equation has been reduced using the incompressibility
condition, ∇·v = 0, before we made the perturbation.

To second-order the equation of motion is obtained in the same way as Eq. (12.44),

∂tv2 + (v1 ·∇)v1 = − 1
ρ0

∇p2 +
η

ρ0
∇2v1. (12.45)

Following the notation of [16] we introduce the constant ν = η/ρ0 to simplify the notation.
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These equations can be reduced by the assumption in Eq. (12.43). As L0 � δ we
conclude that the boundary layer is thin and that we must have the majority of the flow
in the boundary layer to be in the x-direction, hence vx � vy.

Using the no-slip condition between the boundary and the solid wall. This means that
the fluid is at rest at the wall, but outside the boundary layer we have flow in the x-
direction (a potential flow). Over the length scale of δ the velocity therefore changes from
the flow velocity far from the boundary to zero. Implying a large derivative of the velocity
in the y-direction compared to the derivative in the x-direction, where the velocity changes
over a length scale of L0, hence ∂y � ∂x.

Exploiting these assumptions we conclude that the first-order equation Eq. (12.44) in
the x-direction becomes

∂tv1,x = − 1
ρ0
∂xp1 + ν∂2

yv1,x, (12.46)

and the corresponding second-order equation Eq. (12.45) in the x-direction becomes,

∂tv2,x + (v1,x∂x + v1,y∂y)v1,x = − 1
ρ0
∂xp2 + ν∂2

yv2,x. (12.47)

The pressure can now be related to the velocity in the main stream, i.e. the potential flow
outside the boundary layer. Because the flow in the y-direction is small compared with the
flow in the x-direction as stated above, we conclude that the pressure gradient is small in
the y-direction compared to the pressure gradient in the x-direction, ∂xp� ∂yp. Neglecting
∂yp implies that ∂xp must be the same in the boundary layer and the main stream, i.e. the
potential flow outside the boundary layer. Using Bernoulli equation, Eq. (A.3), we express
∂xp by the flow outside the boundary layer,

f(t) = ∂tφ+
1
2
|∇φ|2 +

1
ρ0
p (12.48)

0 = ∂x∂tφ+
1
2
∂x|∇φ|2 +

1
ρ0
∂xp (12.49)

1
ρ0
∂xp = −∂tU1(x)− U1(x)∂xU1(x). (12.50)

Denoting the first-order velocity field outside the boundary layer U1(x) remembering that
the velocity is zero in the y-direction outside the boundary layer. To first- and second-order
we get from Eq. (12.50),

1
ρ0
∂xp1 = −∂tU1(x), (12.51)

1
ρ0
∂xp2 = −U1(x)∂xU1(x). (12.52)

Inserting this into Eqs. (12.46) and (12.47), we get

∂tv1,x − ν∂2
yv1,x = ∂tU1(x), (12.53a)

∂tv2,x + (v1,x∂x + v1,y∂y)v1,x − ν∂2
yv2,x = U1(x)∂xU1(x). (12.53b)
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To simplify the second-order equation of motion we confine ourselves to consider only the
time-averaged values. Due to the high driving frequencies, it is only possible experimentally
to observe the time-averaged values of the fields. From Eq. (3.47) we conclude that the time
average of a periodic varying derivative must vanish. Notice that we do not assume that the
second-order terms vary with the same period as in the region outside the boundary layer,
but merely states that they must vary periodically. Hence the time average of Eq. (12.53b)
becomes

ν
〈
∂2
yv2,x

〉
=
〈
v1,x∂xv1,x

〉
+
〈
v1,y∂yv1,x

〉
−
〈
U1(x)∂xU1(x)

〉
. (12.54)

In order to solve for the second-order time-averaged velocity in Eq. (12.54), it is necessary
to first solve Eq. (12.53a) for the first-order velocity. We consider the potential flow in the
x-direction outside the boundary layer as being a standing wave with amplitude U0 and
wavenumber k , which to first-order is given as,

U1(x) = U0 cos(kx) e−iωt (12.55)

Furthermore we are employing the no-slip condition at the solid wall and the fact that the
velocity must remain finite in all space as the boundary conditions for the problem,

|vx| <∞ for y →∞, (12.56a)

vx = vy = 0 for y = 0. (12.56b)

In Appendix E we have solved in details the equations of motion Eqs. (12.53a) and (12.54)
subject to the boundary conditions Eq. (12.56) with the flow in the main stream given as
Eq. (12.55). Solving for the the second-order time-averaged velocity far from the boundary
at the solid wall, at y →∞, we get〈

v2,x

〉
=

1
8
U2

0

ca
sin(2kx), (12.57)

where ca is the velocity of sound in the fluid. We notice that the acoustic streaming gives
rise to a velocity which oscillates at twice the frequency of the generating standing wave.
Furthermore we notice that the acoustic streaming velocity is independent of the viscosity
even though it was an effect created by the viscosity at the boundary.

Estimate of the Acoustic Streaming „Drag Force”

We first estimate the velocity associated with the acoustic streaming and then express this
velocity as though it was a drag force trying to move the particles as to compare it with
the other neglected effects and the pressure force.

To estimate the magnitude of the velocity due to acoustic streaming, we notice that
we defined 〈Eac〉 = (1/4)ρ0U

2
0 in Eq. (5.90c). Using this and the typical parameter values

mentioned in Chapter 7, we estimate the magnitude of the velocity∣∣∣〈v2,x〉∣∣∣ = 1
2
〈Eac〉
ρ0ca

≈ 1
2

103 J m−3

103 kg m−3 × 1483 m s−1
= 3.4× 10−4 m s−1 (12.58)

Compared to the flow velocity in the x-direction (≈ 0.1 m/s) we observe that
∣∣〈v2,x〉∣∣ is

very small.
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To compare the effect of the acoustic streaming compared to the pressure force we
rewrite Eq. (12.58) the drag force the velocity gives rise to according to Eq. (6.2), Fdrag =
6πηRv. The acoustic streaming velocity for RBCs can be compared to a „drag force” of
the magnitude∣∣∣Fdrag

∣∣∣ = 3π
ηR〈Eac〉
ρ0ca

≈ 3π
0.0027 Pa s× 5 µm× 103 J m−3

103 kg m−3 × 1483 m s−1
= 8.6× 10−11 N. (12.59)

The pressure force on similar RBCs is 2× 10−9 N, and we conclude that the force due to
acoustic streaming is 102 times smaller than the pressure force. Notice however, that the
acoustic streaming as treated above is an effect in the boundary layer, δ ≈ 0.5 µm, and
thus not of the same magnitude in the whole channel.

12.9 Summary of Neglected Effects

In this part we have focused on the effects not covered in the analysis in part II, and a
short overview of the effects is given in Table 12.1. We started by considering the effects
influencing on particles in the x-direction. Longitudinal modes introduced a varying force
field in the x-direction instead of the previously considered translation-invariant field. We
showed that the particle trajectory in this force field can be well approximated in the
considered setups by the trajectory of a particle in a force field without longitudinal modes
but with half the acoustic energy density.

The flow in the x-direction is furthermore affected if we have different viscosities in the
transport- and the buffer-medium respectively. This leads to a change in the flow-profile
in the channel in the x-direction where we no longer can assume a constant flow profile in
the center of the channel.

Secondly we are considering effects affecting the properties of the fluid. This includes
the Fåhraeus effect and temperature dependence. The Fåhraeus effect leads to a lower
concentration of RCBs in the outlets than expected because a depleted plasma layer is
created at the channel edges. The thickness of the layer is experimentally shown to remain
fairly constant when reducing the channel width. This relative volume change of the plasma
layer together with the Fåhraeus effect leads to a decrease in viscosity and this tendency
is described by the Fåhraeus–Lindqvist effect.

The pressure force changes with the acoustical properties of the fluid, and some of these
are temperature dependent. We found that the pressure force can be changed by a factor
of 0.5− 1.5 for RBCs and by approximately 0.4 for WBCs and lipid particles.

We have discussed a couple of extensions to the single-particle approach used in part
II. The simple effect of the finite size of the particles leading to a maximum concentration
is discussed and extended with a discussion of diffusion effects. The diffusion force is
estimated to be

Fdiff = kBT
∂yc

c
≈ kBT

L0
, (12.60)

where L0 is a characteristic length over which the concentration changes notably. This
force is estimated to have a magnitude of the order 10−16 N. We notice that this force
scales inversely with the distance between the particles, d, as we can interpret L0 as
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Table 12.1: Effects affecting particles in a standing wave. Magnitude refers to the force relative
to the pressure force on a R = 5 µm particle in blood plasma (Feffect/Fpressure).

Effect Affecting Magnitude Scaling

Pressure force Force on suspended particles 1 ∝ R3

Temperature Changing the acoustical properties of flu-
id/particles

0.5-1.5 - -

Diffusion Force counteracting high concentration 10−7 ∝ d−1

Secondary Bjerk-
nes

Attractive/repulsive inter-particle force 10−3 ∝ R6, d−2

Acoustical
streaming

Second-order fluid velocity change affect-
ing the particles

10−2 ∝ R

Longitudinal
modes

Potential field - - –

Viscosity differ-
ences

Change of the flow profile in the x-
direction

- - - -

Fåhraeus–
Lindqvist

Creating depleted boundary layer affect-
ing viscosity of the fluid

- - - -

being proportional to the distance between the particles. Another effect scaling with the
interparticle distance is the secondary Bjerknes force which describes the force exerted by
one particle on another, 〈

FBjerknes

〉
=

8πρ0

9d2
β2R6ω2c2aρ0〈Eac〉. (12.61)

The Bjerknes force scales as ∼ d−2, hence faster than the diffusion force when d decreases.
Furthermore we observe that this force scales significantly with the particle size as R6, a
lot more than the pressure force which scales with the volume, ∼ R3, see Eq. (5.91c). For
particles of size R = 5 µm and an interparticle distance of d = 20 µm the secondary Bjerk-
nes force has a magnitude of the order 10−12 N of. The secondary Bjerknes force becomes
an important effect for high concentrations which indicates low interparticle distance and
also for large particles of the size R ≈ 20 µm.

The last effect considered is the acoustic streaming which gives a force,〈
FA. streaming

〉
= 3πηR

〈Eac〉
ρ0ca

, (12.62)

which has a magnitude of 10−12 N with a particle size of R = 5 µm. We observe that
this force scales linearly with radius, thus making this force more important than both
the pressure (∼ R3) and the secondary Bjerknes force (∼ R6) when we consider smaller
particles.



Chapter 13. Conclusion 109

Chapter 13

Conclusion

In this thesis we have described the governing equations for microfluidics and the pertur-
bations that arise due to an applied acoustic field. We have in details derived an expression
for the time-independent pressure force on a particle immersed in a fluid affected by an
acoustic field, as sketched by Gor’kov in 1962 [14].

We have by numerical and analytical considerations shown that this pressure force is
applicable for separation of particles in a microchannel where we considered three applica-
tions in the single-particle approach. In the first case we looked at separation of lipid cells
from red blood cells and used the fact that the red blood cells move towards the nodes
in the standing pressure wave and the lipid particles towards the anti-nodes, thus driving
them in opposite directions. By applying the force over a sufficient amount of time, the
two types of particles were separated in each part of the channel and could easily be taken
out in two different flow outlets. We presented a way to optimize the channel setup by
describing how short the channels could be, compared to the throughput.

The second case dealt with separation of red and white blood cells in blood. The
direction of the pressure force on these particles is the same, but for separation we use the
fact that the properties as size and compressibility of the cells are different, thus leading
to a smaller pressure force on the red blood cells. In contrast to the first case, where the
channel just had to be long enough or have a sufficiently small flow rate to make sure
that the particles were separated, we determined the limitations of the channel length. We
found that the separation is possible in a certain interval of channel lengths, thus making
separation impossible if we make the channel too long. There exists channel lengths in
this interval where red blood cells of all the considered sizes are able to be fully separated
from the white blood cells.

In the third case we presented a channel solution where large lipid particles in milk
could be separated away such that other large particles like cells with a pressure force
with an opposite sign could be further analyzed in the milk. This was done using a 3λ/2-
system. We generalize this to size-sorting of particles with the same acoustical properties
but various sizes. We showed that by only operating in the central 1/3-part of a channel
we could assume a constant flow profile which led to a simple analytic solution to find the
required channel length for a given separation. With this setup we also proposed a method
for determining the time-averaged acoustical energy density in the channel.

We proposed a way to optimize the separation setups by using the pressure force to
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focus the particles in a channel before they are led into the separation channel. The
focusing could be done in a 2λ/2-channel, and afterward the separation of particles with
positive acoustophoretical sign could be done in a λ/2-channel and for negative sign in
a 3λ/2-channel. This system had two significant advantages compared to the systems
without focusing. The concentrations in the inlet beam were higher than e.g. using a
blood–buffer–blood-inlet channel system. Furthermore no buffer medium appears in the
region in which we consider the analytical solution for separation length, and thus the flow
profile is almost constant as assumed for the solution to be valid.

In the last part of the thesis we discussed different neglected effects related to the flow
profile, the fluid, particle properties, and many-particle effect. We showed that longitudinal
modes in the channel introduced a periodicity in the pressure force lengthwise in the
channel. With our choice of parameters, a good approximation to the particle trajectory in
the two dimensional force field is the trajectory of a particle affected by half the transverse
force field when not considering longitudinal modes.

When considering forces affecting the particle separation, we found that the acoustic
streaming gave rise to the greatest extra contribution. The acoustic streaming scaled as
the radius of the considered particles, ∝ R, as opposed to the pressure force which is a
volume effect, ∝ R3. We found that if the considered particles get an order of magnitude
smaller than the ones considered in the thesis (1−5 µm) the acoustical streaming becomes
a more important effect than the pressure force.

13.1 Outlook

Although we have looked at many things in this thesis, there is still plenty of work to be
done. First of all a deeper understanding of the standing acoustical waves in the fluid and
the silicon is needed. It would be interesting to implement the results of Rune Barnkob [4],
which considers how the standing waves in the channels actually look taking into account
the whole chip design and materials.

For our calculations we assume that the time-averaged acoustical energy density in
the channel is well-known. Our design for determinition of the energy density could be
tested in practice, and one could look into other ways to determine the energy density in
a microchannel.

Lab-on-a-chip systems have been produced for separation of red blood cells and lipid
particles in blood [28], [29]. But this system together with the other systems for separation
and sorting could be expanded to include our design with focusing in a channel with another
λ/2-width before the separation. This setup should be tested in practice before the model
is expanded further as we for example are not sure about the effects in the transition
between the two channel parts.

Finally the simulations could be made more advanced by including more effects. Here
we should focus on determining the acoustic streaming effect, especially if we want to
minituarize the system farther. For larger particles the interparticle forces such as the
secondary Bjerknes force should be included in the analyses. Furthermore temperature
effects both for the particles and the fluid could be considered.
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Appendix A

Bernoulli’s Equation for

Incompressible Inviscid Fluids

As described in Section 3.3 it is under certain circumstances possible to describe the fluid as
incompressible and thus simplifying the governing equations considerably. In this section
we will be deriving a relationship between the velocity and the density (pressure) called
the Bernoulli’s equation.

In the main part of this thesis we will be considering circumstances where the flow can
be considered as a potential flow, and we may write v = ∇φ. This leads to the equality
(v·∇)v = (1/2)∇v2 [5]. The time-dependent inviscid Navier–Stokes equation reduces from
Eq. (2.1) to

ρ0 [∂tv + (v·∇)v] = −∇p⇔ ∂tv +
1
2
∇v2 = − 1

ρ0
∇p, (A.1)

where we have set the non-changing density to be ρ0 and used the incompressibility con-
dition ∇·v = 0 expressed by the continuity equation Eq. (2.2) when ρ = ρ0 is a constant.

Introducing the velocity potential it is easily shown that we get an invariant quantity
taking the same value everywhere in the fluid,

0 = ∂t∇φ+
1
2
∇|∇φ|2 +

1
ρ0

∇p (A.2)

f(t) = ∂tφ+
1
2
|∇φ|2 +

1
ρ0
p, (A.3)

where we have used that time and spatial derivatives commute and f(t) is an arbitrary
function of time.

Eq. (A.3) is one formulation of the time-dependent Bernoulli’s equation and holds for
incompressible, inviscid potential flows.
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Appendix B

Multipole Solution to the

Spherical Wave Equation

As we discussed in Section 5.2.1 we want to show that the multipole expansion of the
potential is a solution to the wave equation. We are considering a potential of the form

φ =
a(t− r/c)

r
+ ∇·

(
A(t− r/c)

r

)
+ . . . , (B.1)

which also contains higher order derivatives. We are looking at the first two terms and
want to show that they are satisfying the wave equation,

∇2φ− 1
c2
∂ 2
t φ = 0. (B.2)

Here r is the distance from the chosen origin and c is the speed of sound in the fluid. Fur-
thermore a is an arbitrary constant and A is an arbitrary vector, both retarded functions
depending only on time and the radial distance.

First we consider some convenient differential formulas to use during the following
derivations. We use the index notation where summation over dummy indices is implied,
and the ’dot’ notation indicates differentiation with respect to the argument. First we
consider the simple formula for taking the gradient of the power functions rn where n is
an integer

∇(rn) = ∂j(r
n) = nrn−1∂jr = nrn−1 2rj

2
√
x2 + y2 + z2

= nrn−1ej , (B.3)

where ej indicates the j’th component of the unit vector e, making the expression inde-
pendent of the choice of coordinates.

Based on Eq. (B.3) we derive both the divergence and the gradient (here a tensor) of
the arbitrary vector A(t− r/c) depending only on time and the radial distance r

∇·A(t− r/c) = ∂jAj = Ȧj∂j [t− r/c] = −1
c
Ȧj∂jr = −1

c
Ȧjej , (B.4a)

∇A(t− r/c) = ∂iAj = Ȧj∂i (t− r/c) = −1
c
Ȧj∂ir = −1

c
Ȧjei. (B.4b)
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Next we consider the divergence of the position vector r

∇·r = ∂jrj = ∂xx+ ∂yy + ∂zz = 3. (B.5)

We can now find both the gradient and the divergence of the unit vector

∇er = ∂iej = ∂i
rj
r

= (∂irj)
1
r

+ rj∂i
1
r

=
δij
r
− eirj

r2
=
δij − eiej

r
, (B.6a)

∇·er = ∂jej = ∂j
rj
r

= (∂jrj)
1
r

+ rj∂j
1
r

=
3
r
− ejrj

r2
=

2
r
. (B.6b)

Finally we consider the following expression

∇·er
r2

= ∂j
ej
r2

= 4πδ3(r), (B.7)

where we have introduced the three dimensional Dirac-distribution. Note also that Eq. (B.7)
implies that

∇·∇
(

1
r

)
= ∂ 2

j

(
1
r

)
= −4πδ3(r). (B.8)

We are now ready to show that Eq. (B.1) is a solution to the wave equation, Eq. (B.2).
Because Eq. (B.2) is a linear ordinary differential equation, we conclude that each of the
terms in Eq. (B.1) must satisfy the wave equation. We therefore start by considering the
first term in Eq. (B.1).

Taking the Laplacian of the first term gives

∇2

(
a(t− r/c)

r

)
= ∂ 2

i

(
a(t− r/c)

r

)
= ∂i

[(
∂ia(t− r/c)

)1
r

+ a
(
t− r/c

)
∂i

(
1
r

)]
(B.9)

=
[
∂ 2
i a(t− r/c)

]1
r

+ 2
[
∂ia(t− r/c)

]
∂i

(
1
r

)
+ a(t− r/c)∂ 2

i

(
1
r

)
.

(B.10)

We calculate Eq. (B.10) term-by-term exploiting that a only depend on time and r in the
indicated manner and use Eq. (B.6b) and eiei = 1,[

∂ 2
i a(t− r/c)

]1
r

= − 1
cr
∂i(ȧei) = − 1

cr

(
−1
c
äeiei + ȧ

2
r

)
=

1
rc2

ä− ȧ 2
cr2

. (B.11a)

The second term gives, using the relations Eq. (B.3) and Eq. (B.6b),

2
[
∂ia(t− r/c)

]
∂i

(
1
r

)
= 2

(
−1
c
ȧei

)(
− ei
r2

)
=

2
cr2

ȧ. (B.11b)

The third term is directly given by Eq. (B.8),

a(t− r/c)∂ 2
i

(
1
r

)
= −4πaδ3(r). (B.11c)
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From Eq. (B.10) and Eq. (B.11) we can now calculate the left-hand side of the wave
equation Eq. (B.2) for the first term of the considered solution Eq. (B.1)[

∇2 − 1
c2
∂ 2
t

](
a(t− r/c)

r

)
=
[

1
rc2

ä− ȧ 2
cr2

+ ȧ
2
cr2
− 4πaδ3(r)

]
− 1
rc2

ȧ (B.12)

= −4πaδ3(r). (B.13)

We conclude that the first term of Eq. (B.1) is in fact a solution to the wave equation, except
for the expected divergence in polar coordinates when we let r go to zero — represented
with the Dirac-distribution.

Next we consider whether the second term of Eq. (B.1) is a solution to the scalar wave
equation. Taking the Laplacian of this term yields

∇2

[
∇·
(

A(t− r/c)
r

)]
= ∂ 2

i

[
(∂jAj)

1
r

+Aj∂j

(
1
r

)]
(B.14a)

= ∂i

[
(∂i∂jAj)

1
r

+ (∂jAj)∂i

(
1
r

)
+ (∂iAj)∂j

(
1
r

)
+Aj∂i∂j

(
1
r

)]
(B.14b)

= (∂i∂i∂jAj)
1
r

+ (∂i∂jAj)∂i

(
1
r

)
+ (∂i∂jAj)∂i

(
1
r

)
+ (∂jAj)∂i∂i

(
1
r

)
+ (∂i∂iAj)∂j

(
1
r

)
+ (∂iAj)∂i∂j

(
1
r

)
+ (∂iAj)∂i∂j

(
1
r

)
+Aj∂i∂i∂j

(
1
r

) (B.14c)

= (∂i∂i∂jAj)
1
r

+ 2(∂i∂jAj)∂i

(
1
r

)
+ (∂jAj)∂i∂i

(
1
r

)
+ (∂i∂iAj)∂j

(
1
r

)
+ 2(∂iAj)∂i∂j

(
1
r

)
+Aj∂i∂i∂j

(
1
r

)
.

(B.14d)

For simplicity we have omitted the arguments of the vector A.
To keep track of the following calculations we calculate each term in Eq. (B.14d) seper-

ately using the relations Eq. (B.3) to Eq. (B.8). The first term gives(
∂i∂i∂jAj

)1
r

= − 1
rc
∂i∂i

(
Ȧjej

)
=

1
rc
∂i

(
1
c
Äjeiej − Ȧj

δij − eiej
r

)
(B.15a)

=
1
c2r

(∂iÄj)eiej +
1
c2r

Äj(∂iei)ej +
1
c2r

Äjei(∂iej)

− (∂iȦj)
δij − eiej

cr2
− Ȧj

∂iδij − (∂iei)ej − ei(∂iej)
cr2

(B.15b)

= − 1
c3r

...
Ajeieiej +

1
c2r

Äj
2
r
ej +

1
c2r

Äjei
δij − eiej

r

+
...
Aei

δij − eiej
c2r2

− Ȧj
−2
rej − ei

δij−eiej

r

cr2
.

(B.15c)

We notice that eiδij = ej and eiei = 1 which reduces Eq. (B.15c) to

− 1
c3r

...
Ajej +

2
c2r2

Äjej +
2
cr3

Ȧjej . (B.16)
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Continuing with the calculation of the second term in Eq. (B.14d) exploiting that we have
calculated ∂i∂jAj in Eq. (B.15a) gives

2
(
∂i∂jAj

)
∂i

(
1
r

)
= 2

(
1
c2
Äjeiej − Ȧj

δij − eiej
cr

)(
− ei
r2

)
= − 2

c2r2
Äjej . (B.17)

Considering the third and sixth term together using Eq. (B.8) we write(
∂jAj

)
∂i∂i

(
1
r

)
+Aj∂i∂i∂j

(
1
r

)
= −4π(∂jAj)δ

3(r)− 4πAj
[
∂jδ

3(r)
]
(B.18a)

= −4π∂j
[
Ajδ

3(r)
]
. (B.18b)

Next we consider the fourth term

(∂i∂iAj)∂j

(
1
r

)
= ∂i

(
−1
c
Ȧjei

)(
−ej
r2

)
(B.19a)(

1
c2
Äjeiei −

1
c
Ȧj

2
r

)(
−ej
r2

)
= − 1

c2r2
Äjej +

2
cr3

Ȧjej , (B.19b)

and the fifth term gives

2
(
∂iAj

)
∂i∂j

(
1
r

)
= 2

(
−1
c
Ȧjej

)
∂i

[
−ej
r2

]
(B.20a)

= 2
(

1
c
Ȧjej

)[
(∂iej)

1
r2

+ ej∂i

(
1
r2

)]
(B.20b)

= 2
(

1
c
Ȧjej

)[(
δij − eiej

r

)
1
r2

+ ej

(
−2

1
r3

)]
(B.20c)

= − 4
cr3

Ȧjej . (B.20d)

Inserting the obtained results into the original expression for the Laplacian of

∇·(A(t− r/c)/r), (B.21)

we get

∇2

[
∇·
(

A(t− r/c)
r

)]
= − 1

c3r

...
Ajej +

2
c2r2

Äjej +
2
cr3

Ȧjej −
2
c2r2

Äjej

− 4π∂j
[
Ajδ

3(r)
]
− 1
c2r2

Äjej +
2
cr3

Ȧjej −
4
cr3

Ȧjej

(B.22a)

= − 1
c3r

...
Ajej −

1
c2r2

Äjej − 4π∂j
[
Ajδ

3(r)
]
. (B.22b)

Next step in confirming that the term ∇·(A(t − r/c)/r) is indeed a solution to the wave
equation is calculating the double time-derivative,

∂ 2
t

[
∇·(A(t− r/c)

r
)

]
= ∂ 2

t

[
(∂jAj)

1
r

+Aj∂j

(
1
r

)]
(B.23a)

= ∂ 2
t

[
− 1
rc
Ȧjej −

1
r2
Ajej

]
= − 1

rc

...
Ajej −

1
r2
Äjej . (B.23b)
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Inserting the calculated terms Eq. (B.22b) and Eq. (B.23b) into the wave equation, Eq. (B.2),
we get

− 1
c3r

...
Ajej −

1
c2r2

Äjej − 4π∂j
[
Ajδ

3(r)
]
− 1
c2

(
− 1
rc

...
Ajej −

1
r2
Äjej

)
= −4π∂j

[
Ajδ

3(r)
]

= −4π∇·
[
Aδ3(r)

]
.

(B.24)

Thus we have shown that the second term of Eq. (B.1) also fulfills the wave equation except
at the origin, where we have the expected divergence due to the choice of polar coordinates.

Because the wave equation is linear, we can now from Eq. (B.13) and Eq. (B.24)
conclude that Eq. (B.1) is a solution to the wave equation everywhere except at the origin
where the divergence is taken care of by the delta-functions.
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Appendix C

Scattered Wave From Incoming

Traveling Plane Wave

In this appendix we find and expression for the scattered wave from an incoming plane wave,
as we describe in Section 5.3. We consider the incoming traveling plane wave described by
the velocity potential

φin(x, t) = −u0

k
cos(kx− ωt). (C.1)

This gives the incoming velocity field as the gradient of Eq. (C.1)

vin = (∂xφin)ex = u0 sin(kx− ωt)ex = vin,0ex, (C.2)

where we have defined vin,0 as the amplitude of the incoming field in the x-direction.
Importantly we notice that the time derivative of the velocity potential can be written in
terms of this component in the following way:

∂tφin = −u0ω

k
sin(kx− ωt) = −cavin,0. (C.3)

We can from the incoming velocity potential determine the scattered potential of Eq. (5.36)
using that from Eq. (C.3) we have

ρin = −ρ0

c2a
∂tφin =

ρ0

ca
vin,0. (C.4)

This gives us

φsc(t− r/ca) = − R3

3car
f1v̇in,0(t− r/ca)−

R3

2
f2∇·

(
vin(t− r/ca)

r

)
. (C.5)

We neglect terms of higher orders in r, because we are not considering r values close to
the origin (inside the sphere). Noting that the dot notation implies differentiation with
respect to the argument, we get

φsc(t− r/ca) = − R3

3car
f1v̇in,0(t− r/ca) +

R3

2car
f2v̇in(t− r/ca)·er +O(r−2). (C.6)
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The velocity is then given as the gradient of Eq. (C.6)

vsc(t− r/ca) = ∇φsc(t− r/ca) (C.7)

=
(
R3

3c2ar
f1v̈in,0(t− r/ca)−

R3

2c2ar
f2v̈in(t− r/ca)·er

)
er +O(r−2) (C.8)

= vsc,0er +O(r−2), (C.9)

where we have defined vsc,0 as the radial component of the scattered velocity.
Using the incoming velocity

vin(t− r/ca) = −u0 sin
[
ω(t− r/ca)

]
ex, (C.10)

and taking the double-derivative we get

v̈in(t− r/ca) = u0ω
2 sin

[
ω(t− r/ca)

]
ex = v̈in,0ex, (C.11)

the scattered velocity field is found by inserting into Eq. (C.8),

vsc(t− r/ca) =
(
R3

3c2ar
f1u0ω

2 sin
[
ω(t− r/ca)

]
− R3

2c2ar
f2u0ω

2 sin
[
ω(t− r/ca)

]
ex ·er

)
er

=
R3u0ω

2

c2ar
sin
[
ω(t− r/ca)

](1
3
f1 −

1
2
f2 cos θ

)
er. (C.12)

As was the case for the time derivative of the incoming velocity potential, the scattered
velocity potential can be expressed by the component of the scattered velocity field

∂tφsc

(
t− r/ca

)
= − R3

3car
f1v̈in,0

(
t− r/ca

)
+

R3

2car
f2v̈in,0

(
t− r/ca

)
er = −cavsc,0 (C.13)
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Appendix D

RBC-lipid Separation — Five-inlet

Channel

An optimazation of the BWB-systems, described in Section 8.4, could be to make a
WBWBW-system instead. This is done to avoid having RBCs at the channel edged, i.e.
near anti-nodes where the pressure is small, and the RBCs thus must use a long channel
to reach the central outlet. The optimization are done in two steps: First optimizing the
separation of RBCs and lipids by varying the channel position with a constant width of
the channel afterwards by keeping the position constant but varying the position.

D.1 Varying the Position of the Blood Inlets

Figure D.1: The five-channel WBWBW-
system where we vary the center of the
blood inlets.

We keep the width of the inlet channel at winlet =
30 µm and vary the position of the center.
Fig. D.1 shows a sketch of the system. The re-
quired channel length before 95% of the incom-
ing particles are in the correct outlet, is seen in
Fig. D.2a. The farther we move the inlet chan-
nel towards the center of the channel, the faster
the RBCs are separated, and faster separation
of the lipid particles is achieved by moving the
inlet towards the channel edge as the situation
comparable to the considered BWB-system. The
optimal length of the channel at the intersection
between the two curves in Fig. D.2b, where 95 %
of the RBCs are in the center outlet channel, and
95 % of the lipids are in the outer outlet. This
almost correspond to the position, where the in-
ner edge of the blood inlets is where the outer
edge of the center outlet is. The best separation
is achieved when the blood is injected outside the
center outlet because the lipid moves about 102 slower in the y-direction than the RBCs.
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(a) (b)

Figure D.2: (a) A five-inlet system with winlet = 30 µm where we vary the center of the blood
inlet. The dashed line indicates the split between the inner and outer outlet channel. (b) Zoom
of (a) to see the intersection between the two curves and thus the optimal separation length.

D.2 Varying the Width of the Blood Inlets

To see if we can optimize the separation by using smaller blood inlet channel, we consider
a fixed center of the blood inlet at ycenter = 87.5 µm (corresponding to the maximum of
the pressure force) and vary the width of the blood inlet channel; a sketch of the system
is shown in Fig. D.3a, and the results can be seen in Fig. D.3b. We see that the required
length of the channel grows as we make the inlets larger. This is due to the fact that
we inject particles farther and farther away from the outlet splitting point and where the
pressure force is smaller the wider we make the inlet. If we again compare with the BWB-
system, we conclude that the required length of the channel is not noticeably shorter. If
we for instance picked a design with an inlet 60 µm wide, i.e. yinlet ∈ [57.5 µm; 117.5 µm],
we would get approximately the same channel length as for the BWB-system. However
this would lead to a flow rate, Qblood = 1.91 × 10−9 m3/s = 0.12 mL/min, or only 60 %
of the BWB-design or approximately 40 % of the one-inlet design. Thus we conclude that
this five-inlet system is not the optimal choice if we want a high throughput since a big
part of the inlets are filled with buffer.
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(a) (b)

Figure D.3: (a) The five-channel inlet system where the widths of the inlets are varied. The
dashed line indicates the split between the inner and outer outlet channel. (b) A five-channel
system with a fixed center at ycenter = 87.5 µm and varying width of the blood inlet.
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Appendix E

Derivation of the Acoustic

Streaming Term

In Section 12.8 we found that the governing equations of the boundary layer problem
outline in the section was given as

∂tv1,x − ν∂2
yv1,x = ∂tU1(x), (E.1a)

ν∂2
y〈v2,x〉 =

〈
v1,x∂xv1,x

〉
+
〈
v1,y∂yv1,x

〉
−
〈
U1(x)∂xU1(x)

〉
. (E.1b)

To solve those for the single solid-boundary problem considered in Section 12.8 we start by
solving the first-order problem, as this enters into the second-order equation Eq. (E.1b).

We assume a first-order stationary standing wave in the region outside the boundary
region,

U1(x) = U0 cos(kx) e−iωt, (E.2)

where we have used complex notation for convenience, remembering to take the real part
at the end.

This implies that the first-order equation for the velocity Eq. (E.1a) becomes a second-
order inhomogeneous partial differential equation in time and y,

∂tv1,x − ν∂2
yv1,x = −iωU0 cos(kx) e−iωt. (E.3)

The boundary condition for this partial differential equation is that the velocity must
remain finite as y approach infinity i.e. |v1,x| < ∞ for y → ∞. At the other boundary
y = 0 we employ the usual no-slip condition at the solid wall (which we for convenience
have placed at y = 0), such that v1,x = 0 for y = 0.

We assume for the time dependence that the first-order perturbation in velocity os-
cillates in phase with the oscillations in the main stream, i.e. that the first-order velocity
perturbation has a harmonic time dependence. Given this condition we search for a solution
to Eq. (E.3) of the form,

v1,x = F (y)U0 cos(kx) e−iωt, (E.4)
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where F (y) is an arbitrary function that only depends on y. Inserting Eq. (E.4) into
Eq. (E.3) we get an ordinary differential equation for F (y),

−iωF (y)U0 cos(kx) e−iωt − νF ′′(y)U0 cos(kx) e−iωt = −iωU0 cos(kx) e−iωt (E.5)
ν

iω
F ′′(y) + F (y) = 1, (E.6)

where the prime notation indicates differentiation with respect to the argument. Solving
the corresponding homogeneous equation gives us

F (y) = A exp

(√
−iω
ν

y

)
+B exp

(
−
√
−iω
ν

y

)
, (E.7)

where A and B are arbitrary integration constants. From the boundary condition |v1,x| <
∞ for y →∞ we conclude that A = 0 and the solution to the corresponding homogeneous
equation of Eq. (E.6) is,

F (y) = B exp
(
−
√
−i
√
ω

ν
y

)
= B exp

(
−
[

1√
2
− i√

2

]√
ω

ν
y

)
(E.8)

= B exp
(
− [1− i]

y

δ

)
, (E.9)

where we have introduced δ =
√

2ν/ω, and we will show below that this is in fact an
estimate for the thickness of the boundary layer.

As a guess for a solution to the inhomogeneous equation, Eq. (E.6), we choose a constant
F (y) = F0 which we by substituting into the equation finds to be F0 = 1. Thus we obtain
the solution to Eq. (E.3) of the form Eq. (E.4), and by use of the other boundary condition,
v1,x = 0 for y = 0, we conclude that B = −1. Hence we finally get, remembering to take
the real part,

v1,x = Re
{
U0 cos(kx) e−iωt

(
1− e−[1−i]y/δ

)}
. (E.10)

We notice that we can estimate the thickness of the boundary layer from Eq. (E.10). The
solution grows exponentially towards the stationary standing wave in the main stream
Eq. (E.2) with the characteristic length δ.

In Section 12.8 we concluded that the flow is invariant in the z-direction, i.e. ∂zvz = 0,
leading to another formulation of the continuity condition ∇·v = 0,

∂xvx + ∂yvy = 0. (E.11)

To ensure that this is automatically fulfilled, we introduce the so called stream function
ψ(x, y, t) which is defined as

vx ≡ ∂yψ ∧ vy ≡ −∂xψ. (E.12)

The definition Eq. (E.12) is seen to fulfill the two-dimensional continuity condition Eq. (E.11)

∂x(∂yψ) + ∂y(−∂xψ) = 0, (E.13)
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as long as the velocity and stream function are connected via Eq. (E.12). The first-order
stream function ψ1 corresponding to Eq. (E.10) is given from Eq. (E.12) via integration,
where we take ψ1 = 0 for y = 0 equivalent to the earlier mentioned condition v1,x =
0 for y = 0,

ψ1(x, y, t) = Re

{
U0 cos(kx) e−iωt

(
y +

e−κy

κ

)}
= Re

{
U0 cos(kx) e−iωtC1(y)

}
, (E.14)

where we for notation simplicity have introduced κ = [1− i] /δ and C1(y) = (y + e−κy/κ).
From this stream function the first-order velocity component in the y-direction can be
derived from Eq. (E.12),

v1,y = Re
{
U0k sin(kx) e−iωtC1(y)

}
. (E.15)

We have now derived the first-order perturbations to the velocity, and from Eq. (E.1b) we
can now find the second-order perturbation. We turn our attention to the right-hand side of
Eq. (E.1b) and first focus on the time-dependence. We notice that the terms have the form
considered in Section 3.5, such that the time average of the product of A(t) = Re

{
A0e

iωt
}

and B(t) = Re
{
B0e

iωt
}
is given as, Eq. (3.55),〈

A(t)B(t)
〉

=
1
2
Re [A0B

∗
0 ] , (E.16)

where the prime denotes complex conjugation.
Carrying out the spatial differentiation of the expressions given in Eqs. (E.2), (E.10),

and (E.15) respectively, we get

ν∂2
y〈v2,x〉 = −1

2
U2

0k cos(kx) sin(kx) Re
{
C ′1(y)C

′∗
1 (y)

}
+

1
2
U2

0k cos(kx) sin(kx) Re
{
C1(y)C ′′∗1 (y)

}
+

1
2
U2

0k cos(kx) sin(kx).

(E.17)

Using that cos(α) sin(α) = 1/2 sin(2α) we reduce Eq. (E.17) to,

ν∂2
y〈v2,x〉 =

1
4
U2

0k sin(2kx)
[
1 + Re

{
C1(y)C ′′∗1 (y)

}
− |C ′∗1 |2

]
. (E.18)

We notice from earlier that C1(y) = (y + e−κy/κ) and κ = [1− i] /δ so that the right-hand
side of Eq. (E.18) is known, and we by two-fold integration in y get

ν〈v2,x〉 =
1
4
U2

0k sin(2kx)
[
1
2
δye−y/δ cos(y/δ)− 2δ2e−y/δ sin(y/δ)

− 1
2
δye−y/δ sin(y/δ)− 1

4
e−2y/δδ2 +Ay +B

]
,

(E.19)

where A and B are arbitrary integration constants with respect to y.



130 Appendix E. Derivation of the Acoustic Streaming Term

It is clear that the second-order time-averaged velocity must stay finite at all times
indicating the boundary condition |v2,x| < ∞ for y → ∞. Exploiting this boundary
condition, we get A = 0 in Eq. (E.19). Furthermore we still apply the no-slip condition
at the boundary of the solid wall, implying that also v2,x = 0 for y = 0. Using this in
Eq. (E.19) we conclude that B = δ2/4.

Far from the boundary layer we therefore have the velocity field due to the viscid effects
at the boundary,

ν〈v2,x〉
∣∣∣
∞

=
1
16
U2

0k sin(2kx)δ2 ⇔ 〈v2,x〉
∣∣∣
∞

=
1
8
U2

0

ca
sin(2kx), (E.20)

where we in the last equality have used that the wavenumber in the acoustic wave outside
the boundary layer is k = ω/ca, and that we have already concluded that the characteristic
length of the boundary layer could be expressed as δ =

√
2ν/ω.
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Appendix F

Temperature Dependence of

Viscosity and Speed of Sound

In Section 12.4 we determine the temperature dependence of η and of the Φ-factor. The
value of η for different temperatures is found in [8] and given in Table F.1. The temperature
dependence is taken from [17] and is also shown in Table F.1.

Table F.1: Viscosity of blood and speed of sound in water as a function of temperature.

τ [◦C] η [mPa s] ca [ m s−1]

0 - 1401.0
10 - 1447.8
20 - 1483.2
22 3.4 -
25 - 1497.4
30 - 1509.5
37 2.7 -
40 2.4 1528.4
50 - 1541.4
60 - 1549.5
70 - 1553.2
80 - 1552.8
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Appendix G

Gor’kov’s Article

Here follows the original Gor’kov article from 1962, [14]. It should be noted that this is a
scanned document, since we have not been able to find it electronically.
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Appendix H

Matlab Source Code

In this appendix we print some of the Matlab code we used in the thesis. Due to space
restrictions we have only included the code for the most important parts, since a lot of the
code is just off-the-shelf plotting code etc.The rest of the code can, however, be obtained
by contacting the authors.

H.1 Least-square Fit

Here follows the source code for the least-square fit we used in Section 6.3.

H.1.1 Source Code for yOFt.m

The first source code is the file yOFt.m an auxiliary function for the main program.

1 % This function is called from Fit_E_ky.m and contains the analytic

2 % expression for y(t)

3

4 function F = yOFt(x , t )
5 % x(1) corresponds to E, and x(2) corresponds to k_y

6 global const ;
7 global y0 ;
8 cons tant s ;
9 c o e fF i t =2/3/ const . eta * const .R_PS^2* const . const_phi_PS % alpha-

coefficient - but without E and k_y

10 F = 1/x (2 ) *atan (exp(2*x (2 ) ^2* c o e fF i t *x (1 ) * t /1000) *tan ( x (2 ) *y0 ) ) *1000000
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H.1.2 Source Code for Fit_E_ky.m

This is the source code for the main function in our least-square fit analysis.

1 %%%% Script Fit_E_ky.m %%%%

2 % Makes a two-parameter fit of E and k_y from particle trajectory y(t)

from

3 % a particle affected by pressure force

4

5 clear a l l ;
6 close a l l ;
7 % All lengths are in um and times in ms

8 global const
9 global y0

10

11 % Loading of the data

12 cons tant s ;
13 load PartA_1V_bred % Data must be from left side of channel, otherwise

uncomment the following line

14 %part(:,2)=377-part(:,2);

15 y0=part (1 , 2 ) *1e−6;
16

17 % Sets the options for the curve fit

18 opt ions = opt imset ( ’ t o l x ’ ,1 e−18, ’ t o l f un ’ ,1 e−18) ;
19 lb = [ 0 0 ] ;
20 ub = [1000 200000 ] ;
21 [ x , resnorm ] = l s q c u r v e f i t ( ’ yOft ’ , [ 2 0 8000 ] , part ( : , 1 ) , part ( : , 2 ) , lb , ub ,

opt ions ) ;
22

23 % Fit of the data

24 t t f i t=linspace ( part (1 ) , part ( length ( part ( : , 1 ) ) ) ,1000) ;
25 y y f i t =1./x (2 ) *atan (exp(2*x (2 ) * const . coef_PS .* x (1 ) .* t t f i t /1000) .* tan ( x

(2 ) *y0 ) ) *1000000;
26

27 % Plot of the data

28 f igure (1 ) ;
29 plot ( part ( : , 1 ) , part ( : , 2 ) , ’ ok ’ , t t f i t , yy f i t , ’−b ’ ) ;
30 legend ( ’Exp . r e s u l t ’ , ’MATLAB f i t ’ , 4 ) ;
31 xlabel ( ’ t [ms ] ’ ) ;
32 ylabel ( ’ y [ \mu{m} ] ’ ) ;
33

34 E=x (1)
35 ky=x (2)
36 lambda=2*pi/x (2 )
37

38 t i t l e ( [ ’ F i t o f t r a j e c t o r y in channel with width w=’ num2str( const .w*1 e6
) ’ \mu{m} where E=’ num2str(E) ’ J/m^3 and \lambda/2= ’ num2str(
lambda*1 e6 /2) ’ \mu{m} ’ ] )
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H.2 Simulation of Single-particle in Rectangular Channel

This is the basic code for the simulations of the single-particles in our rectangular channel
including the source file we used for all the constants.

H.2.1 Source Code for constants.m

This is the source code for all the constants we used in our simulation

1 %%%% constants.m %%%%

2 % A common file containing the constants we use in the simulations

3

4 global const
5

6 % Diameter of RBC is 6-8 um, thickness is 2 um, so volumes are

7 % approximately 50 - 100 um^3

8 V_red=75e−18; % m

9 % Converting to a radius when assuming spherical RBCs

10 const . R_red=(V_red*3/4/pi ) ^(1/3) ; % m

11 const . R_lipid=1.5e−6; % m

12 % WBCs are approximately spherical in shape, range from about 5 to 20

um in

13 % diameter. 10 um is a good average diameter

14 const .R_whi=5e−6; % m

15 % Radius of polystyrene

16 const .R_PS=2.58e−6; % m

17

18 % Here we use the viscosity of blood

19 const . eta =0.0027; % Pa s

20 % Density of blood

21 const . rho_0=1052.2; % kg m^(-3)

22 % Speed of sound in water

23 const . c=1483; % m s^(-1)

24 % Densities of the particles

25 const . rho_s_red=1096; %kg m^(-3);

26 const . rho_s_lipid=920; %kg m^(-3);

27 const . rho_s_whi=1060; %kg m^(-3);

28

29 % Compressibilities

30 const . beta_0=5.88e−10 % Pa^(-1)

31 const . beta_red=3.48e−10; % Pa^(-1)

32 const . be ta_l ip id =5.34e−10; % % Pa^(-1)

33 % We assume that beta_whi=beta_red

34 const . beta_whi=const . beta_red ; % % Pa^(-1)

35

36 % Calculating the Phi-factors

37 const . const_phi_red=(( const . rho_s_red+2/3*( const . rho_s_red−const . rho_0 )
) /(2* const . rho_s_red+const . rho_0 )−1/3* const . beta_red/ const . beta_0 ) ;

38 const . const_phi_l ip id=(( const . rho_s_lipid+2/3*( const . rho_s_lipid−const .
rho_0 ) ) /(2* const . rho_s_lipid+const . rho_0 )−1/3* const . be ta_l ip id /
const . beta_0 ) ;
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39 const . const_phi_whi=(( const . rho_s_whi+2/3*( const . rho_s_whi−const . rho_0 )
) /(2* const . rho_s_whi+const . rho_0 )−1/3* const . beta_whi/ const . beta_0 ) ;

40 const . const_phi_PS=0.226;
41

42 % Channel parameters

43 % Height

44 const . h=125e−6; % m

45 % Width

46 const .w=350e−6; % m

47 % The wavenumber , assuming that we have half a wavelength

48 const . k=pi/ const .w; % m^(-1)

49

50 % We assume that the incoming wave is given as

51 % phi=-u_0/k*cos(omega*t)*cos(k*x)

52 % Amplitude of the potential

53 const . u_0=100; % m s^(-1)

54 const .E=1000; % J m^(-3)

55

56 % The change in pressure per unit length

57 const . del_p_L=3e5 ; % Pa m^(-1)

58

59 % The flow-rate using the first term

60 Q=const . h^3* const .w* const . deltaP_flow_over_L/12/ const . eta *(1−192/pi^5*
const . h/ const .w*tanh (pi* const .w/(2* const . h ) ) ) % m^3/s

61 mLprMin=Q*60*1 e6 % mL min^(-1)

62 % The average velocity in the x-direction

63 v_x=Q/ const . h/ const .w % m s^(-1)

64

65 % How many terms to include in the pousielle flow

66 const . o r d e rPou s e i l l e =4;

H.2.2 Source Code for Pos_Equation.m

This file calculates the derivatives we use in our ode45-function. It is an auxiallry function
for CalcPosition.m.

1 %%%% Script Pos_Equation.m %%%%

2 % Set-up of the differential -equations in our problem

3 % They will later be used in the ode45 method

4

5 function dpos=Pos_Equation ( t , pos )
6

7 %Loads constants

8 global const
9 global part_nr

10

11 %Define the velocity-vector, dpos(2) is the y-component and dpos(1) the

12 %x-component

13 dpos=zeros ( 2 , 1 ) ;
14
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15 % Get the right differential -equations in the y-direction from the

particle

16 % number

17 i f part_nr==1 %RBC

18 const . coef_red=2/3/ const . eta * const .E* const . k* const . R_red^2* const .
const_phi_red ;

19 dpos (2 )=const . coef_red * sin (2* const . k*pos (2 ) ) ;
20 e l s e i f part_nr==2 %Lipid

21 const . c o e f_ l i p i d=2/3/ const . eta * const .E* const . k* const . R_lipid^2*
const . const_phi_l ip id ;

22 dpos (2 )=const . c o e f_ l i p i d * sin (2* const . k*pos (2 ) ) ;
23 e l s e i f part_nr ==3 %WBC

24 const . coef_whi=2/3/ const . eta * const .E* const . k* const .R_whi^2* const .
const_phi_whi ;

25 dpos (2 )=const . coef_whi* sin (2* const . k*pos (2 ) ) ;
26 else
27 disp ( [ ’ Choose a va l i d p a r t i c l e ! ’ ] )
28 end
29

30 %Pouseille flow at z=h/2

31 for i i =1: const . o r d e rPou s e i l l e
32 nn=i i *2−1;
33 dpos (1 )=dpos (1 )+1/(nn)^3*(1−cosh (nn*(pi *( pos (2 )−const .w/2) ) / const . h

) /cosh (nn*pi* const .w/(2* const . h ) ) ) *(−1) ^((nn−1)/2) ;
34 end
35 dpos (1 )=dpos (1 ) *4* const . h^2* const . del_p_L/(pi^3* const . eta ) ;
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H.2.3 Source Code for CalcPosition.m

In this file we find the required x-length and time for a particle to go from ystart to yend.
It requires the scripts Pos_Equation.m and constants.m.

1 %%%% Script CalcPosition.m %%%%

2 % Calculates the particle trajectories using the ode45 function and our

3 % function Pos_Equation.m

4

5 % Returns the positions and times given a y_start, y_end, and a

particle

6 % number

7 function [ Tslut , Xslut ] = Ca lcPos i t i on ( y_start , y_end , p a r t i c l e )
8

9 % Loads our constants file

10 global const
11 global part_nr
12

13 % 1 is RBC, 2 is Lipid, and 3 is WBC

14 part_nr=p a r t i c l e ;
15

16 % Options for the ode45 function including tolerances

17 opt ions = odeset ( ’ RelTol ’ ,1 e−12, ’ AbsTol ’ , [ 1 e−12 1e−12]) ;
18 % The time-interval we are looking at

19 TimeLength=100;
20

21 % Solving the differtial equations using our Pos_Equation.m

22 [T, y]=ode45 (@Pos_Equation , [ 0 TimeLength ] , [ 0 y_start ] , opt ions ) ;
23

24 Tslut=0;
25 Xslut=0;
26

27 % Finding the required lengths before particles are at y_end

28 i f p a r t i c l e==1 | p a r t i c l e ==3 % For RBC and WBC

29 i nd ex s l u t=min( find ( y ( : , 2 )>y_end) ) ;
30 ttemp=T( index s l u t ) ;
31 xtemp=y( indexs lu t , 1 ) ;
32

33 % If the particles reaches y_end return time and x-position

34 i f isnan ( ttemp ) == 0
35 Tslut=ttemp ;
36 end
37

38 i f isnan ( xtemp) == 0
39 Xslut=xtemp ;
40 end
41 e l s e i f p a r t i c l e==2 % For lipids

42 i nd ex s l u t=min( find ( y ( : , 2 )<y_end) ) ;
43 ttemp=T( index s l u t ) ;
44 xtemp=y( indexs lu t , 1 ) ;
45
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46 % If the particles reaches y_end return time and x-position

47 i f isnan ( ttemp ) == 0
48 Tslut=ttemp ;
49 end
50

51 i f isnan ( xtemp) == 0
52 Xslut=xtemp ;
53 end
54 end
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